Nodal statistics-based structural pattern detection for graph collections characterization
Lucrezia Carboni, Michel Dojat, Sophie Achard

To cite this version:
Lucrezia Carboni, Michel Dojat, Sophie Achard. Nodal statistics-based structural pattern detection for graph collections characterization. Conference of Complex System, Oct 2022, Palma de Mallorca, Spain. . hal-03866319

HAL Id: hal-03866319
https://hal.archives-ouvertes.fr/hal-03866319
Submitted on 22 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Motivations
- Human consciousness states can be differentiated by nodal organization in brain functional connectivity networks [1]
 - structural pattern definition
 - extend node role discovery to graph collections [2, 3]
 - graph collections comparison based on structural pattern

Nodal statistics-based structural pattern on single graph

Def. Nodal statistics based equivalence relation. We consider undirected unweighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and refer to a nodal statistics $s : \mathcal{V} \rightarrow s(\mathcal{V})$ any function of the adjacency matrix. The equivalence relation \sim_s associated with a nodal statistics s, on the nodes set \mathcal{V} of a graph is:

$$v \sim_s u \iff s(u) = s(v).$$

The equivalence relation associated with any collection of statistics $\mathcal{S} = \{s_i\}_{i=1}^{n}$, is defined as:

$$a \sim_{\mathcal{S}} b \iff a \sim_{s_i} b, \quad \text{for all } i = 1, \ldots, n. \quad (1)$$

Def. Structural Pattern. Its induced partition P on \mathcal{V},

$$P_{\mathcal{S}} = \frac{\mathcal{V}}{\sim_{\mathcal{S}}} = \{[a], \forall a \in \mathcal{V}\},$$

defines the structural pattern of \mathcal{G} associated with the statistics collection \mathcal{S}.

Def. Node role. The class of equivalence $[a] = \{b \in \mathcal{V} | a \sim_{\mathcal{S}} b\} \iff s(a) = s(b)$ corresponds to node role.

Structural patterns for graph collections characterization

Def. Correspondence structural pattern score. Let $\mathcal{G}, \mathcal{G}'$ be two graphs having same vertices \mathcal{V} and let \mathcal{S} be a statistics collection whose associated partitions are $P_{\mathcal{S}}, P'_{\mathcal{S}}$ on $\mathcal{G}, \mathcal{G}'$ respectively. Given bijective mapping from $P_{\mathcal{S}}, P'_{\mathcal{S}}$ to an initial segment of the natural numbers as enumerations, let $c(\mathcal{v}_i), c'(\mathcal{v}_i)$ be the enumeration of the classes of \mathcal{v}_i, the correspondence structural pattern score between $\mathcal{G}, \mathcal{G}'$ is defined as:

$$C(\mathcal{G}, \mathcal{G}') = \max_{\Gamma} \frac{1}{|\mathcal{V}|} \sum_{i=1}^{|\mathcal{V}|} \lambda(\tau(c(\mathcal{v}_i)) = c'(\mathcal{v}_i)) \quad (3)$$

where π is the set of all coupling between the elements in $P_{\mathcal{S}}$ and the elements in $P'_{\mathcal{S}}$ and λ is the indicator function.

Def. Nodal-percentage of participation. Given a graphs collection $\mathcal{G} = \{\mathcal{G}_i = (\mathcal{V}_i, \mathcal{E}_i)\}_{i=1}^{N}$ and a statistics collection \mathcal{S} we count the percentage of participation of each node of \mathcal{V} in non-trivial classes:

$$\forall v \in \mathcal{V}, \quad \text{PP}_{\mathcal{S}}(v) = \frac{1}{|\mathcal{G}|} \sum_{i=1}^{|\mathcal{G}|} \mathbb{I}(v \in \mathcal{G}_i \cap \#\mathcal{V}_i \neq 0)$$

Nodal-percentage of participation captures brain homotopy

The symmetry in real data and brain models reveals the expected hemisphere similarity in the participation of analogue regions.

References

lucrezia.carboni@inria.fr