
HAL Id: hal-03864946
https://hal.science/hal-03864946

Submitted on 22 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Changing Partitions in Rectangle Decision Lists
Stefan Mengel

To cite this version:
Stefan Mengel. Changing Partitions in Rectangle Decision Lists. 25th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2022), Meel, Kuldeep S. and Strichman, Ofer,
Aug 2022, Haifa, Israel. pp.17:1–17:20, �10.4230/LIPIcs.SAT.2022.17�. �hal-03864946�

https://hal.science/hal-03864946
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Changing Partitions in Rectangle Decision Lists
Stefan Mengel
Univ. Artois, CNRS, Centre de Recherche en Informatique de Lens (CRIL), Lens, France

Abstract
Rectangle decision lists are a form of decision lists that were recently shown to have applications
in the proof complexity of certain OBDD-based QBF-solvers. We consider a version of rectangle
decision lists with changing partitions, which corresponds to QBF-solvers that may change the
variable order of the OBDDs they produce. We show that even allowing one single partition change
generally leads to exponentially more succinct decision lists. More generally, we show that there
is a succinctness hierarchy: for every k ∈ N, when going from k partition changes to k + 1, there
are functions that can be represented exponentially more succinctly. As an application, we show a
similar hierarchy for OBDD-based QBF-solvers.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory
of computation → Proof complexity

Keywords and phrases rectangle decision lists, QBF proof complexity, OBDD

Digital Object Identifier 10.4230/LIPIcs.SAT.2022.17

Funding Stefan Mengel: This work has been partly supported by the PING/ACK project of the
French National Agency for Research (ANR-18-CE40-0011).

Acknowledgements The author would like to thank the reviewers for their generous and very detailed
comments that greatly improved the presentation of this paper.

© Stefan Mengel;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022).
Editors: Kuldeep S. Meel and Ofer Strichman; Article No. 17; pp. 17:1–17:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.SAT.2022.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Changing Partitions in Rectangle Decision Lists

1 Introduction

Decision lists are a classical formalism for encoding Boolean functions. Intuitively, they
consist of a list of lines of the form “if Li(X) then ci” where Li(X) is a condition on the
input variables X and ci is a constant from {0, 1}. To evaluate a decision list on an input,
one traverses the lines from the first to the last line and checks the respective condition
Li(X). As soon as one meets a condition Li(X) that evaluates to true, one stops this process
and returns the corresponding value ci. Decision lists were originally introduced by Rivest in
learning theory [22] and have since then been studied in different areas.

There are different types of decision lists, depending on which form the conditions Li(X)
have. In the classical work of Rivest [22] they are terms of width k which already makes
the model powerful enough to strictly generalize k-DNF, k-CNF and k-decision trees. Other
works consider different classes of functions as the Li(X), e.g. linear threshold functions [8, 24],
bounded depth circuits [2], and combinatorial rectangles [15, 21].

In recent years, decision lists have become important in the context of proof complexity of
quantified Boolean formulas (QBF). The idea is that for several proof systems, one can from
a refutation of an input formula efficiently extract a winning strategy of the universal player
that is encoded as a decision list. The type of the decision list depends on the respective
proof system, see e.g. [1, 2, 3]. Since the length of the decision list depends on the size of the
refutation, lower bounds on decision lists then translate to lower bounds for proofs in the
proof system at hand.

In this paper, we focus on so-called rectangle decision lists, i.e., decision lists in which all
of the Li(X) are combinatorial rectangles, so functions of the form Li(X) = r1

i (X1)∧ r2
i (X2)

where (X1, X2) is a partition of X into sets of equal size and r1
i , r

2
i are arbitrary Boolean

functions in X1 and X2, respectively. Rectangle decision lists were originally introduced in
communication complexity theory [15, 21]1. Recently, they were also considered in QBF
proof complexity in [19] where they were used to show lower bounds to certain OBDD-based
proof systems.

While in settings from communication complexity it makes sense to assume that the
partition (X1, X2) is part of the problem statement and is thus fixed from the outside and
the same throughout the decision list, this is not the case in the QBF setting: the solvers
modeled by the OBDD-based proof system can freely choose the variable order of the OBDDs
they construct. On the side of the decision lists, this results in a choice of the partition
(X1, X2) that is used throughout the proof. Thus, to show lower bounds, unlike in [15, 21]
which considered one fixed partition, in [19] it was shown that there are functions for which
all possible balanced partitions decision lists must be long. This yields lower bounds for
solvers that choose the variable order of the OBDDs optimally at the beginning and then
work with that order throughout their run.

While this is in fact what the QBF-solver QBDD [20] does, this result is somewhat
unsatisfying since it does not use the full power of modern practical OBDD-libraries: state-
of-the-art OBDD-implementations like CUDD [23] allow reordering the variables of OBDDs.
So it is conceivable to implement OBDD-based solvers for QBF that adapt the variable order
throughout their run when this appears useful. Could this make the resulting solvers more
powerful?

This paper answers the above question positively: even if we allow only one change of

1 Note that while those papers introduced the concept of rectangle decision lists they did not use that
name which seems to first have been introduced independently in [8] and in [12]

S. Mengel 17:3

the variable order in the computation of the solver, this leads to exponentially faster runtime
on some formulas. More generally, we show that for every constant k ∈ N, allowing k + 1
variable order changes yields exponential runtime savings over k variable order changes. We
show this by using the translation of lower bound questions for OBDD-based QBF-solvers
into lower bounds for rectangle decision lists from [19]. In this translation, every variable
order change on the OBDDs becomes a potential partition change in the decision list. Thus,
we study lower bounds for rectangle decision lists with changing partitions and show that
their length decreases exponentially for some functions whenever one additional partition
change is allowed.

Note that different partitions for rectangles have been studied before in so-called multi-
partition communication complexity. In particular, there is a strict hierarchy with respect
to the number of partitions in that setting as well [10]. Since rectangle decision lists are
easily seen to simulate multi-partition communication protocols, our lower bound results
for fixed k are qualitatively stronger than those of [10], even though the dependence on k
is far better in [10] and k is not needed to be constant there. Other related work is found
in [6] which considers refutation lower bounds in an OBDD-based proof system for SAT that
allows variable order changes. As it is common for lower bounds for QBF-systems based on
strategy extraction, see e.g. [1, 2, 3], we do not take into account the cost of reasoning inside
NP but only measure the hardness that stems from the addition of quantifiers. Thus, our
results are incomparable to those of [6].

Structure of the paper:

We start with some preliminaries and necessary background in Section 2. In Section 3, we
showcase our approach by separating rectangle decision lists with a single partition change
from those with none. The lower bound in this part of the paper is relatively easy with the
results from [19] but can be seen as a warm-up for the more technical bounds later on. In
Section 4, we develop the general technique for lower bounds for rectangle decision lists with
partition changes. Afterwards, in Section 5, we show how to use this technique to prove that
there is a strict hierarchy for rectangle decision lists with respect to the number of partition
changes. In Section 6, we apply our techniques to QBF proof systems.

2 Preliminaries

Graphs.

We assume that the reader knows some basic graph theory, see e.g. [9]. All graphs in this
paper are finite and have no self-loops but in some cases parallel edges. Given a graph
G = (V,E) and a partition (V1, V2) of V , we denote by E(V1, V2) the set of edges in E

that have one end-point in V1 and the other in V2. By G[V1, V2] we denote the bipartite
subgraph of G with vertex set V and edge set E(V1, V2). We call a graph G = (V,E) a
(c, d)-expander if all vertices of G have degree bounded by d and for every vertex set V ′ ⊆ V
with |V ′| ≤ |V |/2 we have |E(V ′, V \ V ′)| ≥ c|V ′|. If the exact values of c and d are not
important or clear from the context, we simply speak of a class of expander graphs. It is
well-known that for every d ≥ 3 there is a constant c > 0 such that there is an infinite class
of expander graphs, see e.g. [14] for background on this.

SAT 2022

17:4 Changing Partitions in Rectangle Decision Lists

Boolean Functions.

We use standard notation for Boolean functions, i.e., functions f : {0, 1}n → {0, 1} for some
n ∈ N. In particular, as usual, ∧ denotes conjunction, ∨ disjunction, and ⊕ exclusive or.

An assignment of a set X of variables is a mapping τ : X → {0, 1} of variables to truth
values. Given assignments τ : X → {0, 1} and σ : Y → {0, 1} such that X and Y are
disjoint, we let τ ∪ σ denote the assignment of X ∪ Y such that (τ ∪ σ)(x) = τ(x) if x ∈ X
and (τ ∪ σ)(x) = σ(x) if x ∈ Y . The result of applying an assignment τ to formula ϕ and
propagating constants is denoted ϕ[τ].

A partition (X1, X2) of the variable set X is called balanced if |X1| = |X2|. Unless stated
explicitly otherwise, we assume in the remainder of this paper that all variable partitions are
balanced. A combinatorial rectangle on variable set X respecting the partition (X1, X2) of
X is defined to be a function R(X) that can be written as

R(X) = R1(X1) ∧R2(X2)

where R1 and R2 are arbitrary Boolean functions depending only on X1 and X2, respectively.
When writing the value table of R as a matrix where rows are indexed by assignments to
X1 and columns are indexed by assignments to X2, then, after arranging the rows and
columns in such a way that models of R1(X1), resp. R2(X2), are listed as consecutive rows,
resp. columns, the models of R form a rectangle in the matrix, which explains the name
of the concept. Due to this representation, we call the models of R1 and R2 the rows and
columns of R, respectively. In a slight abuse of notation, it is often convenient to identify
combinatorial rectangles with their set of models R−1(1) in which case we simply write
R = R1 × R2. We say that a Boolean function f has the monochromatic rectangle R if
R ⊆ f−1(0) or R ⊆ f−1(1).

Rectangle Decision Lists.

A rectangle decision list L in variables X is a sequence (R1, c1), . . . , (R`, c`) where every Ri
is a combinatorial rectangle in X and ci ∈ {0, 1} is a constant. The Boolean function
fL computed by L is defined as follows: given an assignment τ to X, for i = 1, . . . , ` we
evaluate Ri on τ . Let i∗ be the first index such that Ri∗(τ) = 1, then the value computed by
fL on τ is ci∗ . For this to be well-defined, we assume that R` is the constant 1-function. We
say that ` is the length of L and denote it by |L|. If all rectangles Ri respect the partition
Π = (X1, X2) of X, we say that L respects Π. We say that L has k partition changes if there
are exactly k indices i ∈ [`− 1] such that the partition of Ri is different from that of Ri+1.

Given a rectangle decision list L and a partial assignment τ to a subset Y of X, one can
construct from L a rectangle decision list L′ that computes the function one gets from fL
by fixing the variables in Y according to τ . The list L′ is constructed by simply fixing all
rectangles of L according to τ and thus |L′| ≤ |L|.

We generally assume that rectangle decision lists respect a balanced partition Π, but in
some cases it will be convenient to allow for some slight imbalance. The following observation
shows that this cannot decrease the length of the decision lists by much.

I Observation 1. Let L be a rectangle decision list respecting a partition Π = (X1, X2) such
that |X1| = |X2|+ k. Then for every subset X ′ ⊆ X1 with |X ′| = k/2 we have that there is a
rectangle decision list L′ respecting (X1 \X ′, X2 ∪X ′) computing the same function fL such
that |L′| ≤ 2k/2|L|.

Proof (sketch). For every rectangle Ri in L and every assignment τ to X ′, consider the
sub-rectangle Riτ containing the models that are consistent with τ . Clearly, Ri can be

S. Mengel 17:5

partitioned into at most 2k/2 such Riτ , so we can substitute (Ri, ci) by 2k/2 entries (Riτ , ci).
But since the models of (Riτ) all take the same values on X ′, the rectangle Riτ can also be
rewritten to respect (X1 \X ′, X2 ∪X ′). J

In lower bounds, we often tacitly ignore slight imbalances in partitions due to Observation 1.
We will use the following relation between the length of rectangle decision lists and size of
monochromatic rectangles from [15] which we slightly reformulate.

I Theorem 2. Let f be a function in variables X and let Π be a balanced partition of X.
If f has a rectangle decision list with partition Π of length s, then f has a monochromatic
rectangle with partition Π of size at least 1

4es2|X| where e ≈ 2.718 denotes Euler’s number.

The inner product function IPn in variables Xn := {x1, . . . , xn} and Yn := {y1, . . . , yn} is
defined as the inner product of the two-element field, so

IPn(Xn, Yn) :=
⊕
i∈[n]

xi ∧ yn.

We use a generalization of the inner product function IP with respect to an underlying graph
structure from [19, 13], see also [17, Chapter 5.8]. So let X be a set of Boolean variables and
let G be a graph with vertex set X and edge set E. Then we define

IPG(X) :=
⊕
xy∈E

x ∧ y.

Note that with this definition IP = IPMn
where Mn is a matching with n edges. For the

statement of the following lemma, recall that a matching is induced if it can be obtained as
the subgraph induced by the endpoints of its edges. We will use the following result from [19].

I Lemma 3. Let G = (X,E) be a graph with n vertices. Let {e1, . . . , em} be an induced
matching of G and let (X1, X2) be a partition of X such that for every ei we have ei ∈
E(X1, X2). Then every monochromatic rectangle of IPG respecting the partition (X1, X2)
has size at most 2n−m.

Ordered Binary Decision Diagrams.

Ordered binary decision diagrams (short OBDDs) are a classical representation of Boolean
functions [5]. we only give a very short introduction here; see [25] for a textbook treatment.

Let X be a set of variables and π an ordering of X. An OBDD on variables X with
variable order π is defined to be a directed acyclic graph B with one source s and two
sinks labeled 0 and 1, called the 0- and 1-sink respectively. All non-sink nodes are labeled
with variables from X such that on every path P in B the variables appear in the order π.
Moreover, all non-sink nodes have two outgoing edges, one labeled with 0, the other with 1.
The size of B, denoted by |B|, is defined as the number of nodes in B. For every assignment τ
to X, the OBDD B computes a value B(τ) as follows: starting in the source, we construct a
path by taking for every node v labeled by a variable x the edge labeled with τ(x). We
continue until we end up in a sink, and the label of the sink is the value of B on τ denoted
by B(τ). This way B computes a Boolean function and every Boolean function can be
computed by an OBDD. The OBDD B is called complete if on every source-sink path P all
variables in X appear as node labels. The width of a complete OBDD B is defined as the
maximal number of nodes that are labeled with the same variable.

SAT 2022

17:6 Changing Partitions in Rectangle Decision Lists

I Observation 4. There is a polynomial time algorithm that, given an OBDD B, computes
an equivalent complete OBDD B′. Moreover, |B′| ≤ (|X|+ 1)|B|.

The algorithm for Observation 4 can e.g. be found in the proof of [25, Lemma 6.2.2].
OBDDs can be combined by arbitrary binary Boolean functions efficiently, see e.g. [25,

Chapter 3]:

I Lemma 5. Let f : {0, 1}2 → {0, 1} be a binary Boolean function. Then there is an
algorithm that, given two OBDDs B1 and B2 with order π over the variable set X, computes
in time polynomial in |B1|+ |B2| an OBDD B with order π such that B computes on every
assignment τ : X → {0, 1} the value B(τ) := f(B1(τ), B2(τ)). In particular, the size of B is
polynomial in that of B1 and B2.

OBDDs are well-known to be canonical in the sense that, for fixed variable order π, there
is a unique minimal representation of any Boolean function f by an OBDD with order π, see
again [25, Chapter 3] for background and proofs of this.

I Lemma 6. Let f be a Boolean function on variables X and let π be a variable order of X.
Then there is a unique OBDD (up to isomorphism) of minimal size with order π computing f .
Moreover, given an OBDD with order π representing f , this unique OBDD can be computed
in polynomial time. The same is true for complete OBDDs.

We always assume that OBDDs are minimized with the help of the algorithm of Lemma 6.

I Lemma 7 ([7]). Let B be an OBDD of width w and let Y be a subset of the variables in B.
Then there is an OBDD B′ of width 2w that encodes ∃Y.B with the same variable order as B.

Quantified Boolean Formulas.

We consider quantified Boolean formulas (QBF) in prefix conjunctive normal form (PCNF),
i.e., in the form Φ = Q1x1 . . . Qnxn.C1 ∧ . . . ∧ Cm where the Qi are quantifiers ∃ or ∀ and
the Cj are clauses. We call Q1x1 . . . Qnxn the prefix of Φ and C1 ∧ . . . ∧ Cm the matrix.

We write DΦ(xi) = {x1, . . . , xi−1} for the set of variables that come before xi in the
quantifier prefix. A variable xi is existential if Qi = ∃, and universal if Qi = ∀. We write
var∃(Φ) for the set of existential variables, var∀(Φ) for the set of universal variables, and
var(Φ) for the set of all variables occurring in Φ. A universal strategy for a PCNF Φ is a
family ~f = {fu}u∈var∀(Φ) of functions fu : [var(Φ)]→ {0, 1} such that fu(τ) = fu(σ) for any
assignments τ and σ that agree on DΦ(u). If ~f is a universal strategy and τ : var∃(Φ)→ {0, 1}
an assignment of existential variables, we write τ ∪ ~f(τ) for the assignment of var(Φ) such that
(τ ∪ ~f(τ))(x) = τ(x) for existential variables x ∈ var∃(Φ) and (τ ∪ ~f(τ))(u) = fu(τ ∪ ~f(τ))
for universal variables u ∈ var∀(Φ). A universal strategy ~f is a universal winning strategy for
Φ if τ ∪ ~f(τ) falsifies the matrix of Φ for every assignment τ of the existential variables. A
QBF is false if it has a universal winning strategy, and true otherwise.

3 Rectangle decision lists with more than one order are exponentially
shorter

In this section, we will see that even allowing one partition change in a rectangle decision
list allows for exponentially shorter lists. We show this with the following function: let
G = (X,E) be a (c, 3)-expander graph where the vertex set X consists of the variables of

S. Mengel 17:7

the function we will construct. Using Vizing’s theorem, see [9, Section 5.3], we know that
there is a valid edge coloring χ of G with at most 4 colors, say, {1, 2, 3, 4}. Now set

E1 := {e ∈ E | χ(e) ∈ {1, 2}} and E2 := {e ∈ E | χ(e) ∈ {3, 4}}

and define the two graphs G1 := (X,E1) and G2 := (X,E2). The function we will consider
is then

fG := (z ∧ IPG1(X)) ∨ (¬z ∧ IPG2(X))

where z is a fresh variable not in X.

I Proposition 8. fG has a constant size rectangle decision list with one variable partition
change.

Proof. We will start with a simple observation:

B Claim 9. There is a variable partition Π1 such that IPG1(X) has a constant length
rectangle decision list.

Proof. All vertices in X are incident to at most 2 edges in G1. So G1 consists of a collection
of cycles and paths. First, consider an order π′ of X such that for each component the
vertices appear in a contiguous sequence. Let (X ′1, X ′2) be the partition of X that we get by
cutting X into two parts in the middle of π′. Then there is a most one component C of G1
that has vertices in both X ′1 and X ′2. Sorting C in DFS order then yields an order π and a
corresponding partition (X1, X2) such that there are at most two edges e1, e2 between X1
and X2 in G1.

To complete the proof of the claim, we explain now how to compute IPG1(X) with the help
of few rectangles. Let e1 = x1y1 and e2 = x2y2. Then, given an assignment τ to X, we can
decide if τ satisfies IPG1(X) from the values IPG1[X1](τ), IPG1[X2](τ), τ(x1), τ(x2), τ(y1), τ(y2).
Note that the set of assignments τ ′ that coincides with τ on all these values is a rectangle
with partition (X1, X2) and these rectangles are monochromatic with respect to fG and
partition the space of all assignments to X. Moreover, on half of the 32 resulting rectangles
IPG1 evaluate to 1. As a consequence, we can construct a rectangle decision list respecting
(X1, X2) by iteratively testing for containment in one of the 16 rectangles on which IPG1

evaluates to 1 and reject if the input is in none of them. J

With Claim 9, we get partitions Π1 and Π2 such that IPG1(X) has a constant length
decision list with respect to the partition Π1 and IPG2(X) has a constant length decision
list with partition Π2. By construction, in both of the constructed decision list, all outputs
but that of the last (default) rectangle are 1. Thus, we get constant size decision lists of
z ∧ IPG1(X) and ¬z ∧ IPG2(X) by adding the variable z and fixing it to 1, respectively 0, in
all rectangles. We get a decision list for fG by deleting the last default line from the list for
IPG1(X) and concatenating IPG2(X) to it. J

We next show that if we allow no variable order changes, then rectangle decision lists for
fG are exponentially long.

I Proposition 10. For every balanced partition (X1, X2), every rectangle decision list for
fG respecting the order (X1, X2) has size 2Ω(|X|).

SAT 2022

17:8 Changing Partitions in Rectangle Decision Lists

Proof. Fix a partition (X1, X2). Then, because G is an expander graph, there are Ω(|X|)
edges between X1 and X2. Call this set of edges E′. Assume w.l.o.g. that |E′∩E1| ≥ |E′∩E2|,
so |E′ ∩ E1| = Ω(|X|).

Now consider a (X1, X2)-rectangle decision list for fG. By fixing in all rectangles the
variable z to 1, we get a (X1, X2)-rectangle decision list for IPG1(X) without increasing the
size of the list.

Now greedily extract from E′∩E1 an induced matchingM . Since the degree of all vertices
in G1 is at most 2, we have |M | = Ω(|X|). Using Lemma 3, we get that any monochromatic
rectangle of IPG1(X) respecting the partition has size at most 2|X|−Ω(|X|). Plugging this into
Theorem 2, we get

2|X|−Ω(|X|) ≥ 1
4es2|X|

where s is the length of the rectangle decision list. It follows that s = 2Ω(|X|) as claimed. J

4 Lower Bounds for Lists with Partition Changes

In this section, we will develop a lower bound technique for rectangle decision lists that also
works when some partition changes are allowed. The main problem when trying to generalize
the proof of Section 3 is that the argument of the proof of Theorem 2 breaks down when
allowing even a single partition change. This is because a rectangle R for a partition Π1
might not contain any big rectangles anymore when considered with respect to a different
partition Π2. To avoid this problem, we develop a new lower bound technique that can play
the role of Theorem 2 when some partition changes can occur. Since bounds on rectangle
sizes seem to be not quite strong enough to show such a lower bound, we base it on the more
restrictive notion discrepancy which we introduce first.

4.1 Discrepancy
Discrepancy of Boolean functions is a well-known tool in communication complexity, in
particular in randomized models, see e.g. [18, Chapter 3]. Here we will consider a variant
of discrepancy with respect to different partitions of the variables. To this end, we make
some definitions. Let f : {0, 1}n → {0, 1} be a Boolean function. As usual, we define the
discrepancy of a rectangle R with respect to the function f and a probability distribution µ
of inputs to f as

Discµ(R, f) :=
∣∣∣∣Pr
µ

(f(x) = 1 and x ∈ R)− Pr
µ

(f(x) = 0 and x ∈ R)
∣∣∣∣

where x is chosen randomly according to the distribution µ. Now we define the discrepancy
of f for the partition Π and the distribution µ as

Discµ(f,Π) := max
R

(Discµ(R, f))

where the maximum is over all rectangles respecting the partition Π. We will exclusively
work with the uniform distribution so we leave out the subscript µ and get

Disc(R, f) =
∣∣|f−1(1) ∩R| − |f−1(0) ∩R|

∣∣ /2n
and

Disc(f,Π) := max
R

(Disc(R, f)) .

S. Mengel 17:9

We now give a bound on the discrepancy of the graph inner product function IPG. It
turns out that, as for the size of monochromatic rectangles in Lemma 3, the discrepancy
is bounded exponentially in the size of an induced matching between the two sides of the
considered partition.

I Lemma 11. Let G = (X,E) be a graph with n vertices. Let {e1, . . . , em} be an induced
matching of G and let Π = (X1, X2) be a partition of X such that for every ei one of the
end points is in X1 and one is in X2. Then

Disc(IPG,Π) ≤ 2−m/2.

The proof of Lemma 11 is very similar to that of Lemma 3, so we sketch it in Appendix A.

4.2 Rectangles in Partial Functions
It will be useful to consider partial functions which we model as functions f : {0, 1}n →
{0, 1, ∗}. Here, as usual, 1 and 0 stand for true and false, respectively, while ∗ denotes
inputs on which f is undefined. We say that a Boolean function f ′ is consistent with f if
f(a) = f ′(a) whenever f(a) ∈ {0, 1}. Essentially, the Boolean functions consistent with f
are all functions we can get from f by defining all undefined values. As a special case, we
say that a rectangle R is consistent with f if f(R) ⊆ {0, ∗} or f(R) ⊆ {1, ∗}. Note that we
assume in this that R is a Boolean function and in particular is not partial.

We will use the following simple observation.

I Lemma 12. Let f : {0, 1}n → {0, 1} be a Boolean function with discrepancy d. Let f̃ be a
partial Boolean function with at most u undefined values such that f is consistent with f̃ .
Then any rectangle consistent with f̃ has size at most 2nd+ 2u.

Proof. Let R be a rectangle consistent with f̃ . Assume w.l.o.g. that f(R) ⊆ {1, ∗}. Then
we bound the size of R as follows:

|R| = |f−1(1) ∩R|+ |f−1(0) ∩R|
≤ 2nDisc(R, f) + 2|f−1(0) ∩R|
≤ 2nd+ 2u

The first step is true because by definition of discrepancy we have |f−1(1)∩R|−|f−1(0)∩R| ≤
2nDisc(R, f). In the second step we use that, since R is consistent with f̃ , all values in
|f−1(0) ∩R| must be undefined in f̃ . J

4.3 Lower Bounds for Functions with Small Discrepancy
We can now formulate and prove the main result of of this section which shows that
discrepancy can be used to show lower bounds for decision lists with partition changes.

I Proposition 13. Let f : {0, 1}n → {0, 1} be computed by a rectangle decision list with k−1
partition changes using the k partitions Π1, . . . ,Πk. Assume that for every i ∈ [k] we have
Disc(f,Πi) ≤ 2−cn. Then the length of the rectangle decision list is at least Ω(2

cn

(k−1)2k−1).

Proof. Let f be computed by the decision list (R1, c1), . . . , (Rt, ct). Assume that the
partitions Π1, . . . ,Πk are used in that order in the decision list.

We will iteratively construct a big rectangle R̄ that is consistent with a partial function f̄
that is consistent with f and has relatively few unknown values. The idea is similar to

SAT 2022

17:10 Changing Partitions in Rectangle Decision Lists

that in [15] but more complicated due to the partition changes. We think of the rectangles
R1, . . . , Rt as organized in phases: rectangle Ri is in phase j if it is with respect to the
partition Πj .

We construct a rectangle R̄i iteratively for all i ∈ [t] such that ⋃
j≤i:Ri,Rj in same phase

Rj

 ∩ R̄i = ∅. (1)

Moreover, we construct for every phase j ∈ [k] a partial function f j that is consistent
with f . We start by setting f1 := f .

We now construct the R̄i. If Ri is the first rectangle in phase j, we check if |Ri| >
(2t+ 1)j−12n−

cn

2j−1 . If so, we set R̄ = Ri, f̄ = f̄j and stop. Otherwise, if Ri has less than
(2t+ 1)j−12(n− cn

2j−1)/2 rows, we set R̄i to be the rectangle we get from {0, 1}n by deleting
the rows of Ri. Otherwise, Ri has less than (2t+ 1)j−12(n− cn

2j−1)/2 columns which we then
delete from {0, 1}n to get R̄i.

By construction, the property (1) is satisfied: the only rectangle Rj that is in the same
phase as Ri and has j ≤ i is in fact Ri. But since we deleted either all rows or all columns
of Ri in the construction of R̄i, the intersection is empty.

If Ri is not the first rectangle in the phase, then we have already constructed R̄i−1 which
has the same partition Πj as Ri. Note that Ri ∩ R̄i−1 is a rectangle. We proceed similarly
to before but consider Ri ∩ R̄i−1 instead of Ri: if |Ri ∩ R̄i−1| > (2t+ 1)j−12n−

cn

2j−1 , we set
R̄ = Ri ∩ R̄i−1 and f̄ := fj . Otherwise, we delete the lines or columns of Ri ∩ R̄i−1 from
R̄i−1, whichever are less, to construct R̄i.

Finally, we define fj for j > 1 inductively as the partial function we get from fj−1 by
making all entries of all lines and columns that have ever been deleted in the construction
of the R̄i in an earlier phase take the value ∗. Obviously, f and fj are consistent for all
j ∈ [k]. Let us analyze how many inputs to f̄j evaluate to ∗. In the worst case, we have
deleted columns or rows in t steps of the construction. The undefined values in fj are from
the deletions of rows and columns in phases 1, . . . , j − 1. The highest number of rows or
columns deleted for one such Ri is in phase j − 1 and is (2t+ 1)j−22(n− cn

2j−2)/2 there, so in
that step at most 2n/2(2t+ 1)j−22(n− cn

2j−2)/2 = (2t+ 1)j−22n−
cn

2j−1 values have been set to ∗.
So fj has at most u := t(2t+ 1)j−22n−

cn

2j−1 undefined values.
Now assume that R̄ and f̄ are assigned in phase j which happens by construction if

we have that the first rectangle Ri in phase j satisfies |Ri| > (2t+ 1)j−12n−
cn

2j−1 or a later
rectangle Ri in the phase j satisfies |Ri ∩ R̄i−1| > (2t+ 1)j−12n−

cn

2j−1 . Then in any case we
get that

|R̄| > (2t+ 1)j−12n−
cn

2j−1 ≥ 2n−cn + 2u ≥ 2nDisc(f,Πj) + 2u. (2)

Now assume w.l.o.g. that ci = 1, i.e., the rectangle Ri assigns the value 1 to all inputs that
end up at this test during the evaluation of the decision list and satisfy Ri. We claim that
the function

f(x, y) :=
{

1, if (x, y) ∈ R̄
∗, otherwise

is consistent with f̄ . Assume this were not the case. Then there must be an element (x, y) ∈ R̄
on which f̄(x, y) = 0, so this value must be assigned in the test for a rectangle Ri′ that is
tested before Ri. Assume first that this happens in the same phase j. Then R̄ ⊆ R̄i ⊆ R̄i′ .

S. Mengel 17:11

But by (1), the rectangle Ri′ can then not be responsible for assigning any value in R̄. So the
rectangle Ri′ must be in an earlier phase j′ < j. But note that when constructing R̄i′ , we
have by (1) deleted all entries of Ri′ . Thus, in f̄i we have the value ∗ for the corresponding
inputs which is a contradiction to f̄ taking the value 0 there. But then we get a contradiction
with Lemma 12 and (2), because the rectangle f̄ is too big. It follows that R̄ and f̄ can
never be assigned in the construction.

As a consequence, the construction of the R̄i goes through to the end. Reasoning as
before, all non-*-values in R̄t must have the same value. As a consequence, we get with
Lemma 12 that

|R̄t| ≤ 2nDisc(f,Πk) + 2u ≤ 2n−nc + 2t(2t+ 1)k−22n−
cn

2k−1 .

Reasoning as for the number of unknown values in fj before, we also know that R̄t is
constructed from {0, 1}n by deleting in at most t rounds at most (2t+ 1)k−22n−

cn

2k−1 values
each. From this we get

|R̄t| ≥ 2n − t(2t+ 1)k−22n−
cn

2k−1 .

Putting this together, it follows that

2n − t(2t+ 1)k−22n−
cn

2k−1 ≤ 2n−nc + 2t(2t+ 1)k−22n−
cn

2k−1

⇒2n − 2n−nc

2n−
cn

2k−1
≤ (3t)k−1

⇒1
32

cn

(k−1)2k−1 − 1
3 ≤ t.

J

5 Separating the Hierarchy for Partition Changes

In this section, we will use Proposition 13 to show that increasing the number k of partition
changes allowed in a rectangle decision list makes them exponentially more succinct. To this
end, we will need functions that have small discrepancy when considered for any set of k
partitions but as soon as we allow k + 1 partitions, they become easy. The functions that we
will consider are constructed from such of the form IPG for carefully chosen graphs.

To construct these graphs, let us make some additional definitions. Given two graphs G1
and G2 on the same vertex set V , denote by G1 +G2 the graph that we get by taking the
union of the edge sets of G1 and G2.

I Proposition 14. For every k ∈ N there is a constant c such that for every n ∈ N large
enough, there are k + 1 graphs G1, . . . , Gk+1 on a vertex set V of size n with the following
properties:

no graph Gi has any parallel edges,
every vertex in every Gi has degree at most 2, and
for every k partitions (V 1

1 , V
1
2), . . . , (V k1 , V k2) of V there is a graph Gi such that for every

j ∈ [k] the bipartite graph Gi[V j1 , V
j
2] has an induced matching of size cn.

Proof. Let V be a vertex set that is big enough. We choose all graphs Gi randomly in
the so-called configuration model which we briefly describe next. Let d be even. Then a
random d-regular multi-graph in the configuration model is chosen by first considering the
set W := V × [d] and choosing a random matching of W which we call the edges of the

SAT 2022

17:12 Changing Partitions in Rectangle Decision Lists

configuration. We then get a multigraph by projecting the edges of the configuration to V .
It is known that almost every 4-regular multi-graph chosen in the configuration model is an
expander, see [4], i.e., with probability going to 1 for n→∞ a graph chosen in this model is
an (α, 4)-expander for some constant α > 0.

An alternative way to construct a random 4-regular graph is to choose two random
2-regular graphs G1, G2 in the configuration model and take their sum G1 + G2; call this
the sum model. It is known that the configuration model and the sum model are contiguous,
which intuitively means that both of them have asymptotically the same properties almost
surely, see [16, Chapter 9] for exact definitions and details on this. In particular, since
graphs chosen in the configuration model are (α, 4)-expanders for some constant α > 0 with
probability going to 1 for n→∞, the same is true for graphs chosen randomly in the sum
model. From this convergence, it follows that there is a constant n0 such that for a random
graph with at least n0 vertices chosen in the sum model the probability of not being an
(α, 4)-expander is bounded by the constant 1

10(k+1)2 .
We now choose the graphs G1, . . . , Gk+1 that were promised in the statement of the

proposition as random 2-regular graphs in the configuration model with more than n0 vertices.
Applying the union bound, we get the following bound on the sum graphs Gi +Gj :

Pr(∃i, j ∈ [k + 1], i 6= j : Gi +Gj is not an (α, 4)-expander)

≤
∑

i,j∈[k+1],i6=j

Pr(Gi +Gj is not an (α, 4)-expander) ≤ (k + 1)2 1
10(k + 1)2 = 1

10 .

So with probability at least .9 all sums Gi +Gj with i, j ∈ [k + 1], i 6= j are (α, 4)-expanders.
We assume in the remainder that this is the case for our graphs Gi.

By definition, the degree bound of the Gi is clear. We next show the third item of the
claim. We first show that there is a Gi such that for every j ∈ [k] the induced bipartite
graph Gi[V j1 , V

j
2] has at least α|V |/3 edges. By way of contradiction, assume that this were

not the case, so for every Gi there is a (V j1 , V
j
2) such that Gi[V j1 , V

j
2] has less than α|V |/3

edges. Then there is a j such that there are two graphs Gi1 , Gi2 such that Gi1 [V j1 , V
j
2] and

Gi2 [V j1 , V
j
2] have at most α|V |/3 edges which contradicts Gi1 +Gi2 being an (α, 4)-expander.

So there is a graph Gi such that for every j we have that Gi[V j1 , V
j
2] has at least α|V |/3

edges. It only remains to greedily extract an induced matching from each Gi[V j1 , V
j
2] which

due to the fact that Gi has bounded degree is of size linear in α|V |/3.
The only problem we still have to take care of is that the graphs Gi might have parallel

edges. Because of the degree bound between each pair of vertices, there are at most two
parallel edges. Deleting one of them reduces the number of edges in the induced matchings
by at most half which completes the proof. J

I Theorem 15. For every constant k ∈ N and n ∈ N sufficiently big, there is a Boolean
function fn,k in n+ k + 1 variables such that

fn,k can be computed by a rectangle decision list of length O(k) with k partition changes,
but
any rectangle decision list with k − 1 partition changes computing fn,k has length 2Ω(n).

Proof. Let G1, . . . , Gk+1 be graphs on a vertex set X with the properties guaranteed by
Proposition 14. The function we consider is

f(X,Y) :=
∨

i∈[k+1]

yi ∧ IPGi
(X)

S. Mengel 17:13

where Y := {y1, . . . , yk+1}.
Reasoning as in Claim 9, we see that for all i ∈ [k+1] there is a variable partition such that

IPGi
(X) and thus yi ∧ IPGi

(X) has a constant length rectangle decision list. Concatenating
these decision lists yields one of length O(k) computing f . This proves the first claim.

For the second claim, consider any rectangle decision list with at most k − 1 partition
changes computing f . Let (X1

1 , X
1
2), . . . , (Xk

1 , X
k
2) be the partitions used. Then, by Pro-

position 14, there is an i ∈ [k + 1] such that for every j ∈ [k] the graph Gi[Xj
1 , X

j
2] has an

induced matching of size cn for some constant c only depending on k. Fixing the variables
y1, . . . , yk+1 in the right way, we get from the rectangle decision list for f one for IPGi

of the
same length and with the same partitions. By Lemma 11 we get that

Disc(f, (Xj
1 , X

j
2)) ≤ 2−cn/2.

Plugging this into Proposition 13, we get that the rectangle decision list for IPGi
and thus

that for f must be of length 2Ω(n), which completes the proof. J

6 Application to QBF Proof Complexity

In this section, we will present a consequence of the results developed above for certain QBF
proof systems. We consider an extension of the proof systems introduced in [19] that models
the behavior of certain OBDD-based QBF-solvers. We show that in this setting there is a
similar hierarchy as in Theorem 15 for refutations in an extension of these proof systems
that allows changing variable orders in derivations.

6.1 OBDD-Refutations with Reordering
In this section, we introduce the model that we will consider in the remainder of this paper.
We work with the proof system introduced in [19] that uses OBDDs as lines in derivations
as follows: let Φ = Q1x1 . . . Qnxn.C1 ∧ . . . ∧ Cm be a PCNF. A derivation of an OBDD Lk
from Φ is a sequence L1, . . . , Ls of OBDDs such that for all i ∈ [m] the OBDD Li is equivalent
to the clause Ci and for i > m the OBDD Li is derived by one of the following rules:

1. conjunction (∧): Li represents Lj ∧ L′j for j, j′ < i.
2. projection (∃): Li represents ∃x.Lj for some x ∈ var(Lj) and j < i.
3. entailment (|=): Li is entailed by Li1 , . . . , Lir , for i1, . . . ir < i.
4. universal reduction (∀): Li represents Lj [u/c], where j < i, u is a universally quantified

variable that is rightmost among variables in Lj and c ∈ {0, 1}.

Here, Lj [u/c] denotes the OBDD obtained from Lj by removing each node labeled with
variable u and rerouting all incoming edges to its neighbor along the c-labeled edge (effectively
substituting c for u).

In [19] it is explained how the above system corresponds to practical solvers like the
QBDD-solver of [20] in the sense that lower bounds for the proof system give lower bounds
for the runtime of the solver. In [19], it is assumed that the variable order of all OBDDs in a
derivation is the same—which corresponds to the fact that the QBDD-solver uses a fixed
variable order in each run. Since we want to model QBF-solvers that are allowed to change
variable orders, we introduce a new rule:

5. reordering (r): Li is equivalent to a line Lj where j < i but has a different variable
order.

SAT 2022

17:14 Changing Partitions in Rectangle Decision Lists

We assume that, whenever applying the rules 1.–4., all OBDDs mentioned in those rules
have the same variable order. As a consequence, whenever we want to change the variable
order in a derivation, we have to do so by explicitly using rule 5. In the following, we assume
only a bounded number of different variable orders are used in derivations. To this end, we
make the following definition: Let L1, . . . , Ls be a derivation. We say that it has k variable
order changes if there are k indices i ∈ [s− 1] such that the variable order of Li is different
from that of Li+1. We denote by r≤k the reordering rule from above restricted to the case in
which there are at most k variable changes allowed in a derivation.

The size of a derivation L1, . . . , Ls is
∑
i∈s |Ls|, i.e., the sum of the sizes of all occurring

OBDDs. The derivation is called a refutation if Ls ≡ 0. For every subset of rules S ⊆
{∧,∃,∀, r, rk}, the proof system OBDD(S) is the restriction of the proof system from above to
the rules in S. Of particular interest in [19] were OBDD(∧,∃,∀) and OBDD(∧,∃,∀, |=): the
former is a formalization of the practical solver QBDD [20] while the latter is the strengthening
that allows “free” reasoning in NP and for which any lower bound is thus due to genuine
hardness due to adding quantification. We here will study the fragments OBDD(∧,∃,∀, r≤k)
and OBDD(∧,∃,∀, |=, r≤k) which add up to k variable order changes in derivations. Note
that it was shown in [19] that the systems OBDD(∧,∃,∀) and OBDD(∧,∃,∀, |=) are sound,
so in particular only false PCNF allow refutations, and it is easy to see that this remains
true when allowing changes of variable orders.

6.2 Statement of the Hierarchy for OBDD-Refutations and the
Separating Functions

The main aim of this section is the following hierarchy with respect to the number of variable
order changes.

I Theorem 16. For every constant k ∈ N and n ∈ N sufficiently big, there is a Boolean
function Φ in O(n) variables and size O(kn) such that

Φ has an OBDD(∧,∃,∀, r≤k)-refutation of polynomial size, but
every OBDD(∧,∃,∀, |=, r≤k−1)-refutation of Φ has length 2Ω(n).

We remark that in Theorem 16 the lower bound is for the stronger model with entailment
(|=) while the upper bound does not use it. To prove Theorem 16, we again consider the
graphs G1, . . . , Gk+1 from Proposition 14. We here use them to define a separating function
for OBDD-refutations with an increasing number of variable order changes. Remember
that X is the underlying vertex set of all the Gi and thus the variable set of the IPGi . Let
y1, . . . , yk+1, z be additional variables not appearing in X. We use the following observation
as a building block.

I Observation 17. There is a constant w such that for every i ∈ [k + 1], there is a CNF-
encoding φi of yi ∨ (IPGi

6= z) with auxiliary variables and an order πi of the variables of φi
such that every sub-formula of φi has an OBDD-representation of width at most w and with
order πi.

The proof of Observation 17 is not hard but somewhat tedious, so we defer it to Appendix B.
For every i ∈ [k + 1], let Zi denote the set of auxiliary variables used in the construction

of φi and let Z := Z1 ∪ . . . ∪ Zk+1. Assume that for all i, i′ ∈ [k + 1] with i 6= i′, the sets Zi
and Zi′ are disjoint. We now define the matrix of the PCNF we want to construct as

M(X, y1, . . . , yk+1, z, Z) := (¬y1 ∨ . . . ∨ ¬yk+1) ∧
∧

i∈[k+1]

φi.

S. Mengel 17:15

Then the separating formula Φ is defined as

∃y1 . . . yk+1∃X∀z∃Z.M(X, y1, . . . , yk+1, z, Z).

We will use Φ to prove Theorem 16 in the next two sections.

6.3 The Upper Bound
In this section, we show the upper bound of Theorem 16. We start with the following Lemma.

I Lemma 18. There is a constant w such that for every i, there exists a variable order
πi such that φi has a polynomial length OBDD(∧,∃,∀)-derivation with variable order πi
from the clauses of φi. Moreover, the width of all intermediate results of this refutations
represented as OBDDs with order πi is at most w.

Proof. We use the variable order πi from Observation 17. We first represent all clauses of φi
by an OBDD with this variable order. Then we conjoin these OBDDs of all clauses in an
arbitrary order. Since we know that all sub-formulas of φi have an OBDD-representation
of width w, we know that all intermediate results we get have width at most w and thus
polynomial size. The same is true for the end result, the representation of φi. J

I Lemma 19. For every i, there is a variable order πi such that there is an OBDD(∧,∃,∀)-
derivation of yi from Φ with the order πi and of polynomial size.

Proof. We first use Lemma 18 to derive an OBDD-representation of φi of width w. In the
next step, we project away the variables in Zi. The result of this is an OBDD B representing
yi ∨ (IPGi

6= z). Since φi has width at most w, from Lemma 7, we get that B and all
intermediate results have width at most 2w and thus size polynomial in n.

In the next step, we apply universal reduction twice on B to get the OBDDs B[z/0] ≡
yi ∨ IPGi and B[z/1] ≡ yi ∨ ¬IPGi . Since universal reduction does not increase the size of
an OBDD, the overall derivation has polynomial size. We then use one conjoining step to
compute B[z/0] ∧B[z/1] ≡ (yi ∨ IPGi

) ∧ (yi ∨ ¬IPGi
) ≡ yi. J

We are now ready to prove the upper bound of Theorem 16.

I Lemma 20. There is a polynomial size OBDD(∧,∃,∀, r≤k)-refutation of Φ.

Proof. For every i ∈ [k + 1], we use a variable order πi to derive yi from Φ in polynomial
size with the help of Lemma 19. Assume that yk+1 was the last of the yi derived this way.
Note every yi has a constant size OBDD-representation with order πk+1, so we can reorder
the variables of the representations of yi to πk+1. We then conjoin all the representations of
the yi with that of ¬y1 ∨ . . . ∨ ¬yk+1 to derive 0 as desired. Overall, we make a polynomial
number of derivation steps and all intermediate results have polynomial size, so the overall
size of the refutation is polynomial in n, as desired. Finally, remark that we have to change
the variable order only k times. J

6.4 The Lower Bound
In this section, we will show that if we allow an OBDD-refutation of Φ to only make k − 1
variable order changes, the refutation must be of exponential size. Our result uses a variant
of strategy extraction from [19], see also [1, 2, 3] for more on this technique for lower bounds
in the QBF-setting.

SAT 2022

17:16 Changing Partitions in Rectangle Decision Lists

I Proposition 21. Let Ψ be a PCNF. If Ψ has a OBDD(∧,∃,∀, r≤k−1)-refutation of size s,
then there is a universal winning strategy for Ψ whose functions can all be represented by
rectangle decision lists of length s2 with k − 1 partition changes.

We remark that Proposition 21 in [19] was only shown for the case without any partition
changes. However, it is immediate from the proof that variable order changes translate
directly into partition changes in the construction. For completeness, we show Proposition 21
in Appendix C.

I Lemma 22. Every OBDD(∧,∃,∀, |=, rk−1)-refutation of Φ has size 2Ω(n).

Proof. From an OBDD(∧,∃,∀, r≤k−1)-refutation of size s, by Proposition 21 we get a
rectangle decision list L of length s2 that represents the winning strategy fz for the only
universal variable z in Φ. Note that fz depends only on DΦ(z) = {y1, . . . , yk+1} ∪X.

Since we assume that the refutation is a OBDD(∧,∃,∀, |=, rk−1)-refutation, by Proposi-
tion 21 there are at most k − 1 partition changes in the rectangle decision list L for fz; let
(V 1

1 , V
1
2), . . . , (V k1 , V k2) denote the partitions. By Proposition 14, there is a graph Gi such

that for every j ∈ [k] we have that the graph G[V j1 , V
j
2] has an induced matching of size αn

for some constant α.
Now fix some of the variables as follows: set yi = 0 and all other yj = 1. Denote the

corresponding restriction of fz by f ′z. By definition of winning strategies, we have that f ′z is
such that for every assignment τ to X ∪Z, the formula we get from M(X, y1, . . . , yk+1, z, Z)
by fixing the yj as described evaluates to 0 under the assignment τ∪fz(τ). But the assignment
to the yj satisfies the clause ¬y1 ∧ . . . ∧ ¬yk+1 and all φj except φi, so what remains of the
matrix is IPGi

6= z. In order to not satisfy this, f ′z must thus compute IPGi
.

Now from L we get a rectangle decision list L′ by restricting in all rectangles the values of
the yj according to the way we fixed them above and then projecting away the corresponding
variables. This does not increase the length of the decision list and keeps the partitions roughly
balanced. Call the corresponding partitions (V̄ 1

1 , V̄
1
2), . . . , (V̄ k1 , V̄ k2), then by Lemma 11,

Disc(IPGi
) ≤ 2−α

′n

for some constant α′ > 0. By Proposition 13, we get that L′ and thus also L has length 2Ω(n)

as claimed. J

7 Conclusion

We have shown that rectangle decision lists in general become far more succinct when the
underlying partition is allowed to change along the list. More precisely, whenever one more
partition change is allowed, there are functions that can be expressed with exponentially
shorter lists. We have also lifted this to OBDD-refutations for QBF. It follows that in
principle one can construct OBDD-based QBF-solvers that are exponentially faster than the
QBDD-solver from [20] by changing the variable order in a run. However, in practice there is
of course the question of when the variable order should be changed and which order should
be taken. A first natural idea in this direction might be to adapt the known reordering
heuristics for OBDD construction, see e.g. [25, Chapter 5.8] for an overview.

It would be interesting to see if one can still show lower bounds for rectangle decision
lists when no bound on the number k of partition changes is assumed. Note that the lower
bound in Proposition 13 breaks down as soon as k is logarithmic in n, so the techniques
presented here do not directly help in this setting. Considering that it is known how to prove
lower bounds in the related model of multi-partition communication complexity [10], such
bounds might be within reach of current lower bound techniques.

S. Mengel 17:17

References
1 Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications.

Formal Methods Syst. Des., 41(1):45–65, 2012. doi:10.1007/s10703-012-0152-6.
2 Olaf Beyersdorff, Ilario Bonacina, Leroy Chew, and Ján Pich. Frege systems for quantified

boolean logic. J. ACM, 67(2):9:1–9:36, 2020. doi:10.1145/3381881.
3 Olaf Beyersdorff, Luke Hinde, and Ján Pich. Reasons for hardness in QBF proof systems.

ACM Trans. Comput. Theory, 12(2):10:1–10:27, 2020. doi:10.1145/3378665.
4 Béla Bollobás. The isoperimetric number of random regular graphs. Eur. J. Comb., 9(3):241–

244, 1988. doi:10.1016/S0195-6698(88)80014-3.
5 Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.

Computers, 35(8):677–691, 1986. doi:10.1109/TC.1986.1676819.
6 Sam Buss, Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov. Reordering rule makes

OBDD proof systems stronger. In Rocco A. Servedio, editor, 33rd Computational Complexity
Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of LIPIcs, pages
16:1–16:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

7 Florent Capelli and Stefan Mengel. Tractable QBF by knowledge compilation. In Rolf
Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical
Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume
126 of LIPIcs, pages 18:1–18:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.STACS.2019.18.

8 Arkadev Chattopadhyay, Meena Mahajan, Nikhil S. Mande, and Nitin Saurabh. Lower
bounds for linear decision lists. Chic. J. Theor. Comput. Sci., 2020, 2020. URL: http:
//cjtcs.cs.uchicago.edu/articles/2020/1/contents.html.

9 Reinhard Diestel. Graph Theory, 5th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2016.

10 Pavol Duris, Juraj Hromkovic, Stasys Jukna, Martin Sauerhoff, and Georg Schnitger. On
multi-partition communication complexity. Inf. Comput., 194(1):49–75, 2004. doi:10.1016/j.
ic.2004.05.002.

11 Andrea Ferrara, Guoqiang Pan, and Moshe Y. Vardi. Treewidth in verification: Local vs. global.
In Geoff Sutcliffe and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning, 12th International Conference, LPAR 2005, Montego Bay, Jamaica, December
2-6, 2005, Proceedings, volume 3835 of Lecture Notes in Computer Science, pages 489–503.
Springer, 2005. doi:10.1007/11591191_34.

12 Mika Göös, Pritish Kamath, Toniann Pitassi, and Thomas Watson. Query-to-communication
lifting for PˆNP. Comput. Complex., 28(1):113–144, 2019. doi:10.1007/s00037-018-0175-5.

13 T.P. Hayes. Separating the k-party communication hierarchy: an application of the Za-
rankiewicz problem. Available at http://www.cs.unm.edu/ hayes/papers/, 2001.

14 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

15 Russell Impagliazzo and Ryan Williams. Communication complexity with synchronized clocks.
In Proceedings of the 25th Annual IEEE Conference on Computational Complexity, CCC 2010,
Cambridge, Massachusetts, USA, June 9-12, 2010, pages 259–269. IEEE Computer Society,
2010. doi:10.1109/CCC.2010.32.

16 Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random graphs. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 2000. doi:10.1002/9781118032718.

17 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

18 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

19 Stefan Mengel and Friedrich Slivovsky. Proof complexity of symbolic QBF reasoning. In
Chu-Min Li and Felip Manyà, editors, Theory and Applications of Satisfiability Testing -
SAT 2021 - 24th International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings,

SAT 2022

https://doi.org/10.1007/s10703-012-0152-6
https://doi.org/10.1145/3381881
https://doi.org/10.1145/3378665
https://doi.org/10.1016/S0195-6698(88)80014-3
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.4230/LIPIcs.STACS.2019.18
http://cjtcs.cs.uchicago.edu/articles/2020/1/contents.html
http://cjtcs.cs.uchicago.edu/articles/2020/1/contents.html
https://doi.org/10.1016/j.ic.2004.05.002
https://doi.org/10.1016/j.ic.2004.05.002
https://doi.org/10.1007/11591191_34
https://doi.org/10.1007/s00037-018-0175-5
https://doi.org/10.1109/CCC.2010.32
https://doi.org/10.1002/9781118032718
https://doi.org/10.1007/978-3-642-24508-4

17:18 Changing Partitions in Rectangle Decision Lists

volume 12831 of Lecture Notes in Computer Science, pages 399–416. Springer, 2021. doi:
10.1007/978-3-030-80223-3_28.

20 Guoqiang Pan and Moshe Y. Vardi. Symbolic decision procedures for QBF. In Mark Wallace,
editor, Principles and Practice of Constraint Programming - CP 2004, 10th International
Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004, Proceedings, volume
3258 of Lecture Notes in Computer Science, pages 453–467. Springer, 2004. doi:10.1007/
978-3-540-30201-8_34.

21 Periklis A. Papakonstantinou, Dominik Scheder, and Hao Song. Overlays and limited
memory communication. In IEEE 29th Conference on Computational Complexity, CCC
2014, Vancouver, BC, Canada, June 11-13, 2014, pages 298–308. IEEE Computer Society,
2014. doi:10.1109/CCC.2014.37.

22 Ronald L. Rivest. Learning decision lists. Mach. Learn., 2(3):229–246, 1987. doi:10.1007/
BF00058680.

23 Fabio Somenzi. CUDD: CU decision diagram package-release 2.4. 0. University of Colorado at
Boulder, 2009.

24 György Turán and Farrokh Vatan. Linear decision lists and partitioning algorithms. In
Foundations of Computational Mathematics: Selected Papers of a Conference Held at Rio de
Janeiro, January 1997, page 414. Springer Science & Business Media, 2012.

25 Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000. URL:
http://ls2-www.cs.uni-dortmund.de/monographs/bdd/.

A Proof of Lemma 11

When fixing all variables not incident to any edge ei according to a partial assignment τ ,
we get a function fτ in the variables {x1, . . . , xm} ∪ {y1, . . . , ym} where we assume for every
i ∈ [m] that ei = xiyi. As in the proof of Lemma 3 in [19], fτ is essentially IPm up to flipping
the output and the sign of some inputs. Let R be the rectangle with partition (Xm, Ym)
that maximizes

∣∣|IP−1
m (1) ∩R| − |IP−1

m (0) ∩R|
∣∣. Then it follows that for every τ and every

rectangle R̄ respecting Π we have∣∣|f−1
τ (1) ∩ R̄| − |f−1

τ (0) ∩ R̄|
∣∣ ≤ ∣∣|IP−1

m (1) ∩R| − |IP−1
m (0) ∩R|

∣∣ .
We then get for every rectangle R̄ respecting Π that

Disc(R̄, IPG) =
∣∣|IP−1

G (1) ∩ R̄| − |IP−1
G (0) ∩ R̄|

∣∣ /2n
=

∣∣∣∣∣∑
τ

|f−1
τ (1) ∩ R̄| −

∑
τ

|f−1
τ (0) ∩ R̄|

∣∣∣∣∣ /2n
≤
∑
τ

∣∣|f−1
τ (1) ∩ R̄| − |f−1

τ (0) ∩ R̄|
∣∣ /2n

≤ 2n−2m ∣∣|IP−1
m (1) ∩R| − |IP−1

m (0) ∩R|
∣∣ /2n

= 2−2m ∣∣|IP−1
m (1) ∩R| − |IP−1

m (0) ∩R|
∣∣

= Disc(R, IPm)

≤ 2−m/2

where we use in the last line that the discrepancy of IPm is known to be 2−m/2.

B Proof of Observation 17

Remember that we want to encode

yi ∨ (IPGi 6= z)

https://doi.org/10.1007/978-3-030-80223-3_28
https://doi.org/10.1007/978-3-030-80223-3_28
https://doi.org/10.1007/978-3-540-30201-8_34
https://doi.org/10.1007/978-3-540-30201-8_34
https://doi.org/10.1109/CCC.2014.37
https://doi.org/10.1007/BF00058680
https://doi.org/10.1007/BF00058680
http://ls2-www.cs.uni-dortmund.de/monographs/bdd/

S. Mengel 17:19

where Gi is a graph such that all vertices have degree at most 2 and IPGi(X) =
⊕

xy∈E x∧ y.
In our construction, it will be helpful to use the notion of pathwidth of a graph. So consider
a graph G = (V,E). A path decompostion of G is defined to be a sequence B1, . . . , Bs of
so-called bags where Bi ⊆ V for all i ∈ [s] with the following properties:

for every v ∈ V there is an i ∈ [s] such that v ∈ Bi,
for every e = uv ∈ E there is an i ∈ [s] such that {u, v} ⊆ Bi, and
for every i, j ∈ [s] with i ≤ j, if v ∈ Bi ∩Bj then for all k with i ≤ k ≤ j we have v ∈ Bj .

The width of a path decomposition is defined as maxi∈[s](|Bi| − 1). The pathwidth of G is
the minimal width of a path decomposition of G.

We will first encode IPGi
as follows: because of the degree bound, we know that Gi

consists of a union of paths and cycles. It follows that Gi has a path decomposition B1, . . . , Bs
of width 2. Let V r :=

⋃
i∈[r]Bi and let Gri be the graph Gi[V r] induced by Vr in Gi. We

inductively construct a CNF-formula Fr with auxiliary variables z1, . . . , zr and of size O(r)
such that for every assignment τ to X, there is exactly one extension of τ to a model τ ′ of Fr
and τ ′(zr) is the value of IPGr

i
(τ). For r = 1, this is easy to do, since the number of variables

and edges is constant. For the induction step, observe that the additional clauses for Fr only
need to contain zr−1, zr and the variables in Br−1 and Br. In particular, it follows that there
is a linear size CNF-encoding F of IPGi

whose models compute the value of that function in
a variable zn.

Define the primal graph of a CNF-formula F to be the graph whose vertices are the
variables in F and whose edge set contains an edge xy if and only if x and y appear in a
common clause of F . Define for every i ∈ [s − 1] new bags B′i := Bi ∪ Bi+1 ∪ {zr−1, zr}.
Then B′1, . . . , B′s−1 is a path decomposition of width at most 7 of the primal graph of F .

Next, add two clauses that force z 6= zn. Finally, add yi to all clauses of the resulting
formula. Call the result φi. Note that φi encodes yi ∨ (IPGi

6= z) as required. Moreover,
since adding two variables increases the pathwidth by at most two, the primal graph of φi
has pathwidth at most 9. Now using the fact that taking subgraphs does not increase the
pathwidth of a graph and that all CNF-formulas whose primal graph has pathwidth k have
OBDD-representations of width O(2k), see [11], completes the proof.

C Strategy extraction

In this section, we show how to perform strategy extraction for OBDD-proof systems with
changes of variable orders, proving Proposition 21. Instead of directly extracting rectangle
decision lists, we make an intermediate step using OBDD-decision lists which we define next.

I Definition 23. An OBDD-decision list of length s is a sequence (L1, c1), . . . , (Ls, cs) where
the ci ∈ {0, 1} are truth values and the Li are OBDDs, and Ls computes the constant
function 1. Let V be the set of variables occurring in the circuits Li. The decision list
computes a function f : {0, 1}V → {0, 1} as follows. Given an assignment τ : V → {0, 1}, let
i = min{1 ≤ j ≤ s | Lj(τ) = 1}. Then we have f(τ) = ci. The width of the OBDD-decision
list is the maximal width of the Li. We say that there are k variable order changes in the
decision list if there are k indices i ∈ [s − 1] for which the variable order of Li and Li+1
differ.

The next result states that OBDD-decision lists can be efficiently extracted from OBDD-
refutations.

I Proposition 24. There is a linear-time algorithm that takes an OBDD(∧,∃,∀, |=, r)-
refutation of length s of a PCNF formula Φ and outputs a family of OBDD-decision lists of

SAT 2022

17:20 Changing Partitions in Rectangle Decision Lists

length at most s and width at most w computing a universal winning strategy for Φ, where w
is the width of the refutation. Moreover, if there are at most k variable order changes in the
refutation, then the same is true in each of the OBDD-decision lists.

Proof. Let R = L1, . . . , Ls be an OBDD-refutation of a PCNF formula Φ. For each
universal variable u, the algorithm is going to compute an OBDD decision list Lu as
follows. Let Li1 = Lj1 [u/c1], Li2 = Lj2 [u/c2], . . ., Li` = Lj`

[u/c`] be the lines of R
obtained by universal reduction of variable u in their order of appearance in R, that
is, i1 < i2 < . . . < i` and 1 ≤ jr < ir ≤ k for each r ∈ [`]. The decision list is
Lu = (¬Li1 , c1), (¬Li2 , c2), . . . , (¬Li` , c`), (1, 1). These lists can be constructed in linear
time by scanning the proof line by line and adding the pair (¬Li, c) to the decision list Lu
whenever Li = Lj [u/c] is derived from Lj by universal reduction (recall that OBDDs can be
negated simply by swapping the 0 and 1 sinks).

We claim that the Boolean functions ~f = {fu}u∈var∀(Φ) computed by the decision lists
Lu represent a winning universal strategy for Φ. We begin by observing that, for every
assignment τ of the existential variables, there is a unique assignment ~f(τ) of the universal
variables such that τ ∪ ~f(τ) is consistent with ~f : the OBDDs in each decision list Lu only
contain variables that precede u in the quantifier prefix, so that each function fu only depends
on these variables and no circular dependencies can arise. The assignment ~f(τ) can be
computed simply by following the order of universal variables in the quantifier prefix.

Let m denote the number of clauses of Φ. We now prove, by downward induction on
i for m ≤ i ≤ s, that ϕi is falsified by any assignment τ that is consistent with ~f , where
ϕi =

∧i
j=1 Lj denotes the conjunction of proof lines up to i. Since ϕm is logically equivalent

to the matrix of Φ, this implies that ~f is a universal winning strategy. The base case i = s is
trivial as Ls ≡ 0 is falsified under any assignment τ ∪ ~f(τ). For the induction step, assume
that the assignment τ ∪ ~f(τ) falsifies ϕi for each assignment τ of the existential variables.
We consider two cases:
1. If Li is derived using conjunction, projection, entailment, or reordering, then ϕi−1 |= Li,

so any assignment that falsifies Li must falsify ϕi−1 as well. In combination with the
induction hypothesis, this tells us that the assignment τ ∪ ~f(τ) falsifies ϕi−1 for each
assignment τ of the existential variables.

2. Otherwise, the line Li = Lj [u/c] is derived from Lj with j < i by universal reduction.
Towards a contradiction, assume that there is an assignment τ of the universal variables so
that τ ∪ ~f(τ) satisfies ϕi−1 but falsifies Li. Consider the decision list Lu. By construction,
it contains the pair (¬Li, c), and since ϕi−1 is satisfied by τ ∪ ~f(τ), the OBDD ¬Lir
is falsified for each pair (¬Lir , cir) that precedes (¬Li, c) in Lu. Since Li is falsified by
τ ∪ ~f(τ), the OBDD ¬Li is satisfied and thus fu(τ ∪ ~f(τ)) = c. But Li = Lj [u/c] is
falsified, so Lj must be falsified as well, a contradiction.

Observing that the variable orders appearing in Lu also appear in R and the order in
which they appear is the same, completes the proof. J

I Lemma 25. If there is an OBDD-decision list of length s and width w computing a function
f : {0, 1}V → {0, 1}. Let π1, . . . , πk be the variable orders of the OBDDs used in that order,
and let for every i ∈ [k] the pair (Xi, Yi) of variable sets be a partition of V such that Xi

is the set of variables appearing in a prefix of πi. Then there is a rectangle decision list of
length w(s− 1) + 1 computing f with partitions π1, . . . , πk appearing also in that order.

The proof of Lemma 25 makes use of the following well-known connection between OBDD
and rectangles, see e.g. [18].

S. Mengel 17:21

I Theorem 26. Let g be a function in variables X computed by a π-OBDD of width w. Let
X1 be a prefix of the variable order π and let X2 := X \ X1. Then g(X) =

∨w
i=1Ri(X),

where every Ri is rectangle with partition (X1, X2).

Proof of Lemma 25. Let (L1, c1), . . . , (Ls, cs) be an OBDD-decision list of length s and
width w computing function f : {0, 1}V → {0, 1}, and let (Xi, Yi) be partitions of V as in
the statement of the lemma. By Theorem 26, each OBDD Lj for 1 ≤ j < s with variable
order πi is equivalent to a disjunction

∨w
j=k Rjk(V) of rectangles with respect to (Xi, Yi).

We construct a rectangle decision list by replacing each pair (Lj , cj) for 1 ≤ j < s by the
sequence (Rj1, cj), . . . , (Rjw, cj). We can simply append (Ls, cs) to this sequence since the
constant Ls trivially is a rectangle. The resulting rectangle decision list computes f and has
length w(s− 1) + 1. Moreover, it makes k − 1 partition changes and the partitions it uses
are (X1, Y1), . . . (Xk, Yk) in that order. J

Combining Proposition 24 and Lemma 25 directly yields Proposition 21.

SAT 2022

	1 Introduction
	2 Preliminaries
	3 Rectangle decision lists with more than one order are exponentially shorter
	4 Lower Bounds for Lists with Partition Changes
	4.1 Discrepancy
	4.2 Rectangles in Partial Functions
	4.3 Lower Bounds for Functions with Small Discrepancy

	5 Separating the Hierarchy for Partition Changes
	6 Application to QBF Proof Complexity
	6.1 OBDD-Refutations with Reordering
	6.2 Statement of the Hierarchy for OBDD-Refutations and the Separating Functions
	6.3 The Upper Bound
	6.4 The Lower Bound

	7 Conclusion
	A Proof of Lemma 11
	B Proof of Observation 17
	C Strategy extraction

