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Abstract

Belief revision aims at incorporating, in a rational way, a new
piece of information into the beliefs of an agent. Most works
in belief revision suppose a classical logic setting, where the
beliefs of the agent are consistent. Moreover, the consistency
postulate states that the result of the revision should be con-
sistent if the new piece of information is consistent. But in
real applications it may easily happen that (some parts of)
the beliefs of the agent are not consistent. In this case then it
seems reasonable to use paraconsistent logics to derive sen-
sible conclusions from these inconsistent beliefs. However,
in this context, the standard belief revision postulates trivi-
alize the revision process. In this work we discuss how to
adapt these postulates when the underlying logic is Priest’s
LP logic, in order to model a rational change, while being
a conservative extension of AGM/KM belief revision. This
implies, in particular, to adequately adapt the notion of ex-
pansion. We provide a representation theorem and some ex-
amples of belief revision operators in this setting.

Introduction
Belief revision aims at incorporating, in a rational way, a
new piece of information into the beliefs of an agent. The
core of belief change theory (Alchourrón, Gärdenfors, and
Makinson 1985; Gärdenfors 1988; Katsuno and Mendel-
zon 1991; Hansson 1999; Fermé and Hansson 2011) is
well-established now, and the numerous representation the-
orems, for instance (Alchourrón, Gärdenfors, and Makinson
1985; Gärdenfors 1988; Katsuno and Mendelzon 1991; Al-
chourrón and Makinson 1985) as well as the results show-
ing the closeness between belief change and non-monotonic
inference (Gärdenfors 1990; Kraus, Lehmann, and Magi-
dor 1990; Lehmann and Magidor 1992) and possibilistic
logic (Dubois and Prade 1991; Dubois, Lang, and Prade
1994) confirm that the AGM framework (for Alchourrón,
Gärdenfors and Makinson 1985) correctly models this fun-
damental process.

Nonetheless, some adaptations are required when one
leaves the standard classical setting. In particular, one fun-
damental assumption of the AGM framework is that one
works in extensions of classical logic (AGM postulates are
stated for any logic satisfying some basic requirements, one
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of which is that the consequence relation must contain all
classical consequences). If one does not want this to occur
then one quickly enters into unknown territories.

To motivate this work, let us recall that the AGM revision
postulates aim to formalize three intuitive principles:

• primacy of update. The new piece of information must
be believed after the change;

• consistency. The result of the change has to be a consis-
tent belief base whenever the new piece of information is
consistent;

• minimal change. We want the result to be as close as
possible to the previous beliefs: we do not want to add
unnecessary new beliefs and we want to give up only the
beliefs that prevent the first two principles from holding.

Minimal change is really at the heart of belief change, as
the revised base should be as pertinent as possible. So it is
not a principle that can be relaxed.

Primacy of update is a very natural requirement. Nonethe-
less, in some applications it may be sensible to expect a dif-
ferent behaviour. Sometimes we may want to be given the
choice on whether to accept only a part of the new piece of
information (Hansson 1998; Makinson 1998; Hansson et al.
2001; Booth et al. 2012; Falappa et al. 2012; Booth et al.
2014; Garapa, Fermé, and Reis 2020). Or we may not want
to give such a high priority on the new piece of informa-
tion with respect to the current beliefs, which could lead us
to promotion (Schwind, Konieczny, and Marquis 2018) or
improvement (Konieczny, Medina Grespan, and Pino Pérez
2010; Konieczny and Pino Pérez 2008), or, when we want to
give the same weight to both, to merging operators (Revesz
1993; Konieczny and Pino Pérez 2002, 2011; Schwind and
Konieczny 2020). So relaxations of this principle have been
highly investigated.

Contrastingly, the relaxations of the last principle, consis-
tency, have rarely been investigated. We can see several rea-
sons for that. First because, as explained above, the AGM
framework requires working with a logic that is an exten-
sion of classical logic. So it prevents us from working with
paraconsistent logics, that do not contain all classical con-
sequences (in particular when the current belief base is not
classically consistent). Another reason could be that adding
a new piece of information into the beliefs of the agent when
working in a paraconsistent logic could appear simple: as
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these logics do not fear logical conflicts, simply perform-
ing the conjunction seems to be enough. This is a debatable
point, since it forgets the fact that belief revision is about
rational change; and the minimal change principle can be
interpreted as a requirement to reject the conjunction in this
case. This is what this paper is about.

A number of AGM postulates are based on consistency
conditions. For instance, in line with the previous point, one
of the AGM postulates says that if the conjunction of the be-
lief base and the new piece of information is consistent, then
the result of the revision must be exactly this conjunction.
This is very sensible in classical logic: if there is no logi-
cal conflict caused by the new piece of information we have
nothing else to do than adding this piece of information. A
direct counterpart of this postulate in paraconsistent logics
would require to trivialize the change: we would always have
to use the conjunction. So this postulate, and other ones,
have to be adapted to be able to cope with paraconsistent
logics.

We want to stress that studying belief revision in a para-
consistent logic setting is more than a technical exercise or a
purely theoretical question. The AGM setting assumes that
the beliefs of the agent are consistent. If it is not the case,
then any revision (by a consistent formula) will restore con-
sistency. This is very sensible theoretically. But we want to
stress than in real applications this will certainly be the ex-
ception rather than the general case. If an agent gathers its
beliefs from a lot of different sources (think for instance of
an ontology built from gathering information from internet
sources), it may very easily happen that some parts of these
beliefs are not consistent. In this case, either we can try to
repair the inconsistencies, but this will certainly require arbi-
trary choices and does not really represent the current beliefs
of the agent, or we can live with the inconsistency (Gabbay
and Hunter 1991; Priest 2002; Béziau, Carnielli, and Gab-
bay 2007) until we explicitly obtain information allowing to
solve these inconsistencies, while being able to derive sen-
sible conclusions from the beliefs of the agent that are not
related to these inconsistencies.

As an example, consider that the current beliefs of the
agents are p∧¬p∧q∧r and that the new piece of information
is ¬q. If someone uses a classical AGM/KM operator1 then
the result will have to be consistent, so learning¬q will solve
the conflict on p. But, without any additional information, it
is arguable to consider that these variables can be indepen-
dent, and that the expected result could be p ∧ ¬p ∧ ¬q ∧ r,
i.e., that we take into account the new piece of information,
but that it does not change anything about the conflict on p.
There is no existing operator that allows that, and this is the
kind of operators that we want to introduce in this paper.

To do so, we will work in the LP logic setting. LP logic
(for Logic of Paradox) (Priest 1979, 1991) is a 3-valued
logic, with the third value meaning “inconsistent” (“both
true and false”), that allows to isolate inconsistencies in the
concerned propositional variables. For instance in a large
base (or ontology), we can have several topics (identified by

1The KM framework is a particular case of AGM in the finite
propositional case (Katsuno and Mendelzon 1991).

sets of variables) with inconsistencies on some of these top-
ics, but we want to be able to have non-trivial consequences
on topics with no inconsistencies. LP logic allows to do that.

We discuss how to adapt the AGM/KM postulates when
the underlying logic is Priest’s LP logic, in order to model
a rational change, while being a conservative extension of
AGM/KM belief revision. This requires in particular to ad-
equately adapt the definition of expansion, since its direct
translation is not adequate for non classical settings. We pro-
vide a representation theorem for this class of revision op-
erators in terms of plausibility preorders (faithful assigne-
ments) on interpretations. And we define a whole family of
distance-based operators, that generalize Dalal revision in
this setting. For space reasons the proofs are omitted, but an
extended version containing all the proofs is available from
http://www.cril.fr/∼konieczny/AAAI22-SKP.pdf.

Formal Preliminaries

Let LPS be a propositional language built up from a finite
set of propositional variables PS = {x1, . . . , xn} and the
usual connectives. Given X ⊆ PS, X̄ denotes the set PS \
X . The symbol ⊥X denotes the formula

∧
xi∈X xi ∧ ¬xi.

Given a formula α, V ar(α) denotes the set of propositional
variables appearing in α.

An LP world ω is a mapping from PS to {0, 1,B}
(the value “B” intuitively means “both true and false”).
These three truth values are ordered as 0 <t B <t 1.
An LP world ω is said to be a classical world if for each
xi ∈ PS, ω(xi) ∈ {0, 1}. The set Ω? denotes the set of
all LP worlds, and the set Ω denotes the set of all clas-
sical worlds. The LP semantics of a formula in an LP
world ω are defined inductively as follows: ω(¬α) = B
if ω(α) = B, ω(¬α) = 1 if ω(α) = 0, ω(¬α) = 0 if
ω(α) = 1, ω(α∧β) = min({ω(α), ω(β)},≤t), ω(α∨β) =
max({ω(α), ω(β)},≤t).

An LP world ω is an LP model of a formula α iff ω(α) ∈
{1,B}, and it is said to be a classical model of α when ω
is a classical world. A formula is said to be LP-consistent
if it has an LP model; it is said to be consistent if it has a
classical model. Note that the notion of LP-consistency is a
trivial one, since the LP world ω⊥ defined as ω⊥(xi) = B
for each xi ∈ PS is an LP model of every formula. The set
of LP models of a formula α is denoted by JαK, and its set
of classical models is denoted by [α].

An LP world will be written as a sequence of symbols
from {0, 1,B}, assuming an implicit ordering on PS. For
instance, for PS = {p, q, r} the LP world ω defined as
ω(p) = 0, ω(q) = B and ω(r) = 1 will simply be denoted
by ω = 0B1.

The LP consequence relation, denoted by |=LP , is defined
as α |=LP β iff JαK ⊆ JβK. Two formulae α, β are said to be
equivalent, denoted by α ≡LP β, iff JαK = JβK. Likewise,
the classical consequence relation |= is defined as α |= β
iff [α] ⊆ [β], and two formulae are said to be classically
equivalent, denoted by α ≡ β, iff [α] = [β].
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Representative LP Models & LP-DNF
Let us now consider the partial ordering2 ≤LP on the set
of all LP worlds Ω?, defined for all ω, ω′ ∈ Ω? as ω ≤LP
ω′ if and only if for each xi ∈ PS, ω′(xi) ∈ {ω(xi),B}.
Intuitively, ω <LP ω′ could be read as ω′ is “less classical”
than ω. In particular, it can be seen that the minimal elements
of Ω? with respect to≤LP form the set of all classical worlds
Ω. Now, let us stress that if an LP world ω is an LP model of
a formulaα, then all of the LP worlds that are “less classical”
than ω are also LP models of α. This is formalized in the
following lemma:
Lemma 1. If ω ∈ JαK and ω ≤LP ω′, then ω′ ∈ JαK.

Given an LP world ω, let us define the formula ψω as
ψω =

∧
xi∈PS li, where li = xi if ω(xi) = 1, li = ¬xi

if ω(xi) = 0, otherwise li = xi ∧ ¬xi.
One extends the above definition to a set of LP worlds

S 6= ∅, i.e., ψS is defined as ψS =
∨
ω∈S ψω . The set JψSK

is called the LP closure of S.
The LP closure of S only contains (i) the LP worlds from

S, and (ii) all LP worlds that are “less classical” than some
LP world from S (which is a necessary condition according
to Lemma 1). This is formalized in the following lemma:
Lemma 2. 1. ω ∈ JψωK

2. If ω ∈ JψSK, then ∃ω′ ∈ S s.t. ω′ ≤LP ω
3. If S ⊆ JαK, then ψS |=LP α

The LP closure also satisfies the standard closure proper-
ties of extensivity, monotonicity, and idempotence:
Lemma 3. 1. S ⊆ JψSK

2. If S ⊆ T , then ψS |=LP ψT
3. ψS ≡LP ψJψSK

Now, with every formula one can associate a representa-
tive subset of its set of LP models that will be of particular
importance in the rest of this paper.
Definition 1. Given a formula α, the representative set of
LP models of α, denoted by JαK?, is defined as JαK? =
min(JαK,≤LP ).

Let us introduce a few remarkable properties on represen-
tative LP models:
Lemma 4. 1. α ≡LP ψJαK?

2. If S ( JαK?, then α 6|=LP ψS

The first point states that the representative set of LP mod-
els of α is sufficient to retrieve all LP models of α. And the
second point says that each LP model from the representa-
tive set of α is necessary to retrieve all LP models of α.

These two points together mean that each formula can be
characterized (up to equivalence) by its representative set.
Given that the LP worlds from any representative set are
all pairwise incomparable w.r.t. ≤LP (see Definition 1), this
characterization result can be formally expressed as follows:
Let (2Ω?)∼ denote the set of all subsets of LP worlds that
are pairwise incomparable w.r.t. ≤LP , i.e., (2Ω?)∼ = {S ⊆
Ω? | ∀ω, ω′ ∈ S, ω ≤LP ω′ =⇒ ω = ω′}:

2Given a partial ordering ≤, the symbols < and ' denote re-
spectively the corresponding strict and equivalence relations. When
the ordering is denoted by�, its strict counterpart is denoted by≺.

Corollary 1. For any formula α, there is a unique set Sα ∈
(2Ω?)∼ such that α ≡LP ψSα . Moreover, Sα = JαK?.

Corollary 1 says that the representative set of a formula
α is the only set from (2Ω?)∼ which can characterize α (up
to equivalence). The other way around, one can also see that
every set of LP worlds S ∈ (2Ω?)∼ is the representative set
of some formula:
Corollary 2. For each S ∈ (2Ω?)∼, there exists a formula
α such that JαK? = S.

So Corollaries 1 and 2 make clear the one-to-one corre-
spondence between the set of all formulae (up to equiva-
lence) and their representative sets from (2Ω?)∼. Since any
formula α can be represented equivalently in a canonical
form characterized by its representative set, in what follows,
given any formula α, the formula ψJαK? ≡LP α will be
called the LP Disjunctive Normal Form (LP-DNF) of α. And
lpdnf(α) will denote the set {ψω | ω ∈ JαK?}. Accord-
ingly, we have that α ≡LP

∨
ψω∈lpdnf(α) ψω .

Issues with KM Postulates in LP Revision
A revision operator ◦ associates all formulae ϕ, µ with a
formula ϕ ◦ µ. A set of standard properties are expected in
the classical case. Let us recall the standard KM postulates:
Definition 2. (Katsuno and Mendelzon 1991) A revision op-
erator ◦ is said to be a KM revision operator if it satisfies the
following postulates:

(R1) ϕ ◦ µ |= µ
(R2) If ϕ ∧ µ is consistent, then ϕ ∧ µ ≡ ϕ ◦ µ
(R3) If µ is consistent, then ϕ ◦ µ is consistent
(R4) If ϕ ≡ ϕ′ and µ ≡ µ′, then ϕ ◦ µ ≡ ϕ′ ◦ µ′

(R5) (ϕ ◦ µ) ∧ µ′ |= ϕ ◦ (µ ∧ µ′)
(R6) If (ϕ◦µ)∧µ′ is consistent, then ϕ◦(µ∧µ′) |= (ϕ◦µ)∧µ′

Let us recall that the notion of consistency referred to in
these postulates corresponds to the notion of classical con-
sistency, i.e., it refers to formulae which admit at least one
classical model.

KM revision operators can be characterized in terms of
faithful assignments:
Definition 3. A faithful assignment (denoted by ϕ 7→�ϕ) is
a mapping associating every formula ϕ with a preorder �ϕ
over classical worlds, such that:

1. ∀ω, ω′ ∈ Ω, if ω, ω′ ∈ [ϕ] then ω 'ϕ ω′
2. ∀ω, ω′ ∈ Ω, if ω ∈ [ϕ] and ω′ /∈ [ϕ], then ω ≺ϕ ω′
3. If [ϕ] = [ϕ′], then �ϕ=�ϕ′

Proposition 1. (Katsuno and Mendelzon 1991) A revision
operator ◦ is a KM revision operator if and only if there ex-
ists a faithful assignment ϕ 7→�ϕ associating every formula
ϕ with a total preorder �ϕ over classical worlds, such that
for all formulae ϕ, µ, [ϕ ◦ µ] = min([µ],�ϕ).

Our goal is to define interesting revision operators in the
LP setting, and in order to do so, our first step is to look at
the KM postulates with the LP semantics in mind. Yet in the
paraconsistent case the notion of LP-consistency is a trivial
one, i.e., each formula is LP-consistent since the world ω⊥
defined as ω(xi) = B for each xi ∈ PS is an LP model
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of every formula. So, if one interprets the KM postulates
in the LP setting, postulate (R3) becomes trivially true and
the remaining KM postulates can be rephrased as follows:

(R1-LP) ϕ ◦ µ |=LP µ

(R2-LP) ϕ ∧ µ ≡LP ϕ ◦ µ
(R4-LP) If ϕ ≡LP ϕ′ and µ ≡LP µ′, then ϕ ◦ µ ≡LP ϕ′ ◦ µ′

(R5-LP) (ϕ ◦ µ) ∧ µ′ |=LP ϕ ◦ (µ ∧ µ′)

(R6-LP) ϕ ◦ (µ ∧ µ′) |=LP (ϕ ◦ µ) ∧ µ′

Postulates (R1-LP) and (R4-LP) express requirements
that are similar to the classical case and can be seen as nat-
ural extensions of (R1) and (R4) to the LP setting. As to
the remaining postulates, let us first discuss (R2-LP). This
postulate is clearly too strong since it forces the revision to
trivialize to the conjunction. So one must consider a weak-
ening of (R2-LP). One of the least demanding weakenings
is to ask that the agent’s current beliefs should not change
when they are revised by a tautology (see, e.g., (Benferhat,
Lagrue, and Papini 2005)):

(R2-LP’) ϕ ◦ > ≡LP ϕ
Requiring (R2-LP’) is very natural even in the paracon-

sistent case: there is no reason for changing some agent’s
beliefs ϕ when the new information is tautological, whether
ϕ is consistent or not. But then, it turns out that the postu-
lates (R5-LP) and (R6-LP) again trivialize the revision to
be the conjunction in presence of (R2-LP’):
Proposition 2. If ◦ satisfies (R2-LP’), (R5-LP) and (R6-
LP), then it satisfies (R2-LP).

What is Expansion?
The previous results illustrate the trivialization caused by a
naive interpretation of KM revision postulates in LP. Most of
these problems are caused by the use of LP conjunction. In
particular, as LP conjunction is always LP-consistent, then
(R2-LP) trivializes the revision to a simple conjunction in
LP. As explained in the introduction, we want to go further
than that, and we motivated the fact that revision is not just
about consistent change, but about rational change.

To solve this trivialization issue, one has to come back to
the AGM definition of expansion, revision and contraction
(Alchourrón, Gärdenfors, and Makinson 1985), and to re-
member that the addition of a formula into a belief set has
to be done using expansion, and that revision is defined us-
ing expansion. It turns out that AGM showed that, in the
classical setting, the only expansion operator is logical con-
junction. But this is not necessarily the case in other, non-
classical settings, like ours. Expansion basically aims at ac-
quiring new information when a new evidence does not raise
conflicts in the beliefs of the agent. Interpreted in terms of
possible worlds, this is done by selecting the possible worlds
of the beliefs of the agent that satisfy the new evidence.

This makes perfect sense in the AGM “coherentist” set-
ting, where all the beliefs, so all the possible worlds, have
the same status. But in LP, the representative set of models of
a formula are more important than the others. For instance,
given ϕ = p ∧ q, we get that JϕK = {11, 1B,B1,BB} and
JϕK? = {11}, so the LP model 11 is more informative than
the others which are only there because of 11.

So, expansion in this setting should take this dimension
into account, and make a selection among the LP worlds
from the representative set. Let us put it formally. Recall
that the LP-DNF formula which is equivalent to a formula
α is ψJαK? , and that lpdnf(α) = {ψω | ω ∈ JαK?}. Then
given two formulae α and β, let us denote by lpdnf(α |
β) the subset of lpdnf(α) defined as lpdnf(α | β) =
{ψω ∈ lpdnf(α) | ψω |=LP β}. Let us simply denote
by
∨
lpdnf(α | β) the formula

∨
{ψω | ψω ∈ lpdnf(α |

β)}. From the semantical point of view, the representative
set of the formula

∨
lpdnf(α | β) (when defined) precisely

corresponds to the LP models in the representative set of α
which are LP models of β.
Proposition 3. Assume that lpdnf(α | β) 6= ∅. Then
J
∨
lpdnf(α | β)K? = JαK? ∩ JβK.

And as a direct consequence of the definition of
lpdnf(α | β) and Proposition 3, we get:
Corollary 3. lpdnf(α | β) 6= ∅ iff JαK? ∩ JβK 6= ∅.

We are now ready to define our expansion operator, which
we call LP+expansion:
Definition 4. The LP+expansion of α by β, denoted by
α+LP β is defined as

α+LP β =

{ ∨
lpdnf(α | β), if lpdnf(α | β) 6= ∅,

⊥PS , otherwise.

When lpdnf(α | β) 6= ∅ we say that α+LP β is conclusive.

Example 1. Let us illustrate this difference in behaviour be-
tween conjunction and LP+expansion with a simple exam-
ple. Consider a formula α such that JαK? = {01BB, 1111}.
Now Jα +LP ψ{0111}K = Jψ{01BB}K, whereas Jα ∧
ψ{0111}K = Jψ{01BB,B111}K. And Jα +LP ψ{0BBB}K =
J⊥PSK, whereas Jα ∧ ψ{0BBB}K = Jψ{0BBB}K.

As we will have to deal with representative worlds, we
have to define a (strong) inference relation between formulae
that takes into account these worlds only.
Definition 5. The strong LP inference relation, denoted by
|=LP?, is the relation onLPS×LPS defined for all formulae
α, β as: α |=LP? β iff lpdnf(α) ⊆ lpdnf(β).

Obviously enough, this inference relation |=LP? can be
semantically characterized in terms of inclusion between
representative sets:
Remark 1. α |=LP? β iff JαK? ⊆ JβK?.

We are now ready to give a translation of the AGM ex-
pansion postulates in this setting. In the following postulates
we will use strong LP inference to compare the belief bases
of the agent, in order to be able to focus on the conserva-
tion of representative worlds. Whereas we use (standard) LP
inference to look at (all) the consequences of these bases.
Definition 6. An operator + : LPS×LPS → LPS is an LP-
expansion operator if is satisfies the following properties:
(K+2) ϕ+ α |=LP α
(K+3) ϕ+ α |=LP? ϕ
(K+4) If ϕ |=LP α, then ϕ+ α ≡LP ϕ
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(K+5) If ϕ |=LP? ψ, then ϕ+ α |=LP? ψ + α
(K+6) If +′ satisfies (K+2)-(K+5), then ϕ+′ α |=LP ϕ+ α

These postulates are an adaptation of the AGM expansion
postulates for this setting where some LP models are more
important than others.

As in the standard AGM framework there is a unique op-
erator satisfying these postulates:
Proposition 4. The LP+expansion +LP is the only LP-
expansion operator.

Reasonable LP Revision
Based on the notion of LP-expansion, which we denote sim-
ply by + in the following (since it is unique), we propose
the following new set of postulates for LP revision:
Definition 7. A revision operator ◦ is an LP revision opera-
tor if it satisfies the following postulates:
(LP1) ϕ ◦ µ |=LP µ
(LP2) If ϕ+ µ is conclusive, then ϕ ◦ µ ≡LP ϕ+ µ
(LP4) If ϕ ≡LP ϕ′ and µ ≡LP µ′, then ϕ ◦ µ ≡LP ϕ′ ◦ µ′

(LP5) (ϕ ◦ µ) + µ′ |=LP ϕ ◦ (µ ∧ µ′)
(LP6) If (ϕ ◦ µ) + µ′ is conclusive,

then ϕ ◦ (µ ∧ µ′) |=LP (ϕ ◦ µ) + µ′

These postulates are similar to the original KM ones, ex-
cept that we use the correct notion of expansion in this set-
ting. We did not add a translation to (R3) since as we previ-
ously explained, its direct translation is trivially true in LP.
But we will discuss an adaptation of (R3) in the next section.
Let us now give a representation theorem for these operators.
Definition 8. An LP faithful assignment is a mapping
ϕ 7→�ϕ which associates every formula ϕ with a preorder
over LP worlds and which satisfies the following conditions:

(L1) If ω, ω′ ∈ JϕK?, then ω 'ϕ ω′

(L2) If ω ∈ JϕK? and ω′ /∈ JϕK?, then ω ≺ϕ ω′

(L3) If ϕ ≡LP ϕ′ then �ϕ=�ϕ′

Proposition 5. An operator ◦ is an LP revision operator if
and only if there is an LP faithful assignment ϕ 7→�ϕ asso-
ciating every formula with a total preorder over LP worlds
such that for all formulae ϕ, µ, ϕ ◦ µ ≡LP ψmin(JµK,�ϕ).

So, as in the classical case, there is a whole family of sen-
sible revision operators, which can be defined as a selection
of the most plausible (LP) possible worlds.

Adaptation of (R3)
(R3) requires that the result of the revision has to be consis-
tent whenever the new piece of information is consistent.
As all formulae are LP-consistent, a direct translation of
(R3) into our LP setting would always be trivially satisfied.
Nonetheless, one could expect the fact that if the new piece
of information is consistent, then the result should be con-
sistent. In fact, such a property would be both too strong and
too weak. So we will look for a more adequate version of it.

To see that it is too strong, one has to realize that two
formulae that are equivalent in classical logic are not always
so in LP. In the following example, we show that revising
a consistent base by a consistent new information does not
lead to a consistent result.

Example 2. Let α1 = p ∧ q and α2 = p ∧ (¬p ∨ q). Re-
mark that in classical logic these two formulae are equiva-
lent. This is no longer the case in LP, since Jα1K? = {11},
whereas Jα2K? = {11,B0}. Indeed, in LP logic there is a
possible LP world in α2 where the variable p is “inconsis-
tent” and q is false (i.e., the LP world B0), which is not
an LP model of α1. Then it can be perfectly sensible to
expect the revision by ¬q to give different results in these
two cases, for instance obtaining Jα1 ◦ ¬qK? = {10} and
Jα2 ◦ ¬qK? = {B0}. Remark that α2 ◦ ¬q is not consistent,
whereas both α2 and ¬q are.

On the other hand, (R3) focuses on (fully) consistent
cases (i.e., where the models are classical ones). But con-
sider for instance a (almost consistent) case with ten propo-
sitional variables, with only one variable having a B value in
all (representative) models of the base and the new informa-
tion, all the other ones having classical truth values. Then we
could expect an (R3)-like postulate to force those other vari-
ables to remain classical. It is this property that we intend to
formalize now.

Given an LP world ω ∈ Ω?, we denote by ω! the set of
“inconsistent” variables in ω, i.e., ω! = {xi ∈ PS | ω(xi) =
B}. Given X ⊆ PS, a formula α is said to be strongly X-
consistent whenever ω! ⊆ X̄ for all ω such that ω ∈ JαK?.

Obviously enough, strong PS-consistency implies (clas-
sical) consistency. The converse statement does not hold,
e.g., the formula α = p ∧ (¬p ∨ q) is consistent, but
JαK? = {11,B0}, thus α is not strongly PS-consistent.
Definition 9. An LP revision operator ◦ is said to be strong
if it satisfies the following additional postulate:

(LP3) If ϕ is strongly X-consistent and µ is strongly X-
consistent, then ϕ ◦ µ is strongly X-consistent

This postulate ensures that if some propositional variables
have consistent truth values in the (representative set of the)
beliefs and in the (representative set of the) new information,
then they will have consistent truth values in the (represen-
tative set of the) revised beliefs.
Definition 10. An LP faithful assignment ϕ 7→�ϕ is said to
be strong if it satisfies the following additional condition:
(S) If ϕ is strongly X-consistent, ω! ⊆ X̄ , ω′! ∩ X 6= ∅ and

ω <LP ω′, then there exists ω′′ s.t. ω′′! ⊆ X̄ , ω ≤LP ω′′,
ω′′ �ϕ ω′, and (ω′′ 6≤LP ω′ =⇒ ω′′ ≺ϕ ω′)

This condition states that if the beliefs are strongly X-
consistent, then any possible world that does not comply
with X (i.e., ∃x ∈ X s.t. ω(x) = B) is worse than some
more classical possible world that complies with X .

We can now state the representation theorem for strong
LP revision operators:
Proposition 6. An operator ◦ is a strong LP revision oper-
ator if and only if there is a strong LP faithful assignment
ϕ 7→�ϕ associating every formula with a total preorder
over LP worlds such that for all formulae ϕ, µ, ϕ ◦ µ ≡LP
ψmin(JµK,�ϕ).

Condition (S) of a strong LP faithful assignment charac-
terizes (LP3) for LP revision operators. But as it may be
difficult to check, it can be useful to consider a simpler
(stronger) version of this condition:
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(C) If ϕ is strongly X-consistent, ω! ⊆ X̄ and ω′! ∩X 6= ∅, then
ω �ϕ ω′

This condition states that if the beliefs are strongly X-
consistent, then all possible worlds that do not comply with
X are worse than all worlds that comply with X .

Proposition 7. If ϕ 7→�ϕ is an LP faithful assignment
which satisfies (C), then it satisfies (S).

Let us show that strong LP revision operators can be seen
as an extension of classical AGM/KM revision operators.

First, let us recall that strong PS-consistency implies
(classical) consistency, but not conversely. However, the
DNF of every consistent formula α is a formula which is
classically equivalent to α and is strongly PS-consistent3:

Proposition 8. If α is consistent, then dnf(α) is strongly
PS-consistent.

Notice that for classical revision operators we have that
ϕ ◦ α ≡ dnf(ϕ) ◦ α. This is a consequence of (R4).

Now we can show that:

Proposition 9. For every KM revision operator ◦, there
exists a strong LP revision operator ⊗ such that for every
consistent formula ϕ and every formula µ, we have that
ϕ ◦ µ ≡ dnf(ϕ) ⊗ µ.

So, the class of strong LP revision operators can be seen
as a “safe” extension of classical AGM/KM revision oper-
ators. Some strong LP revision operators behave exactly as
classical AGM/KM revision on consistent formulae, while
giving non-trivial results on inconsistent formulae.

Distance-Based LP Revision Operators
Let us now investigate how to generalize Dalal revision
(Dalal 1988), and more generally, distance-based revision
operators into this LP logic setting.

Definition 11. Let d be a mapping Ω? × Ω? 7→ R+ such
that d(ω, ω′) = 0 if and only if ω = ω′. The distance-based
LP revision operator ◦db is defined for all formulae ϕ, µ by
ϕ ◦db µ = ψmin(JµK,�dϕ), where �dϕ is a total preorder over
LP worlds induced by ϕ and defined by:

• ω �dϕ ω′ if and only if d(ω, ϕ) ≤ d(ω′, ϕ)

• d(ω, ϕ) = minω′∈JϕK? d(ω, ω′),

Note that the distance is computed from the representative
models of the base. Moreover, d is not required to satisfy the
properties of symmetry and triangular inequality of standard
metrics. For convenience, such a mapping d will be called
a distance in the following, since it generalizes well-known
distance-based operators.

Proposition 10. Every distance-based LP revision opera-
tor is an LP revision operator, i.e., it satisfies (LP1), (LP2),
(LP4), (LP5), and (LP6).

One of the most natural ways to define a distance d
is to take advantage of existing distances in the clas-
sical case, like the Hamming distance dH , defined as

3Note that for a consistent formula α, dnf(α) = ψ[α].

dH(ω, ω′) =
∑
x∈PS d

H
b (ω(x), ω′(x)), where dHb is de-

fined by dHb (ω(x), ω′(x)) = 0 if ω(x) = ω′(x), otherwise
dHb (ω(x), ω′(x)) = 1. In the classical case, this distance
induces a revision operator which corresponds to the Dalal
revision operator (Dalal 1988)4. We will study similar dis-
tance definitions in our LP setting, so let us put it formally:
Definition 12. A decomposable distance between LP worlds
is a mapping Ω? × Ω? 7→ R+ defined for all LP worlds ω,
ω′ as d(ω, ω′) =

∑
x∈PS db(ω(x), ω′(x)), where db is a

mapping {0, 1,B}2 7→ R+ satisfying db(ω(x), ω′(x)) = 0
if and only if ω(x) = ω′(x).

Since a decomposable distance d is fully characterized by
db, one denotes by ◦db the induced LP distance-based revi-
sion operator. It can be easily seen that every operator ◦db
is indeed a distance-based LP operator according to Defini-
tion 11. Let us see what kind of properties could make sense
for the db mapping.

First, let us remark that symmetry is not a natural require-
ment in our setting. For instance, one may want in some
cases to favor classical truth values (true and false) over the
inconsistent one, e.g., to ask that db(0,B) 6= db(B, 0).

But a sensible requirement is to be neutral with respect
to the classical values true and false, i.e., to decomposable
distances that are “0-1 symmetric”, i.e., such that db(0,B) =
db(1,B), db(B, 0) = db(B, 1), and db(0, 1) = db(1, 0).

Now, since in the classical case 2-valued worlds are con-
sidered, to define an operator based on a 0-1 symmetric de-
composable distance the only reasonable choice for db is to
define db(0, 1) = db(1, 0) = 1, which defines the Dalal
operator (taking any positive value other than 1 defines the
same operator). But in our setting, with 3-valued interpre-
tations, there is more room for non-trivial choices. Still, by
setting the distance between the “classical” values to the ref-
erence value 1 (i.e., db(0, 1) = db(1, 0) = 1) and since
db(ω(x), ω(x)) = 0 by definition, we already require that:
• db(0, 0) = db(1, 1) = db(B,B) = 0

• db(0, 1) = db(1, 0) = 1

So one is left with a choice on the remaining values:
• db(0,B) = db(1,B) = d01←B

• db(B, 0) = db(B, 1) = dB←01

But it turns out that the choice for d01←B does not matter:
Proposition 11. Let db, d′b be such that dB←01 = d′B←01.
Then ◦db = ◦d′b .

So an operator ◦db based on a 0-1 symmetric decompos-
able distance is in fact characterized by a single value: the
value dB←01.

We know from Proposition 10 that whatever the choice
of this value, the obtained operator will satisfy all required
postulates. But the exact value will determine the exact be-
haviour of the operator.

In particular the choice of dB←01 < 1, so dB←01 <
db(0, 1) = db(1, 0), will give rise to operators that always

4In his paper (Dalal 1988), Dalal defines his operator by means
of formula dilation (Bloch and Lang 2002), but it can also be de-
fined using the Hamming distance between worlds.
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prefer to change the valuation of a propositional variable to
B instead of the classical truth values 0 and 1.

Conversely the choice of dB←01 > |PS| will force the
best possible worlds to be the “most classical ones” (since
the price to pay for a B value will be too high).

And choosing an intermediate value (1 ≤ dB←01 ≤ |PS|)
gives rise to operators that more or less favor classical truth
values with respect to the B value, so one can choose the
cost of not being consistent.

Now let us show that there is only one operator with
dB←01 < 1, and similarly there is a unique operator with
dB←01 > |PS|:
Proposition 12.

1. Let db, d′b be such that dB←01 < 1 and d′B←01 < 1.
Then ◦db = ◦d′b .

2. Let db, d′b be such that dB←01 > |PS| and d′B←01 >

|PS|. Then ◦db = ◦d′b .

Since values dB←01 < 1 define the same operator, let us
denote it by ◦dinf . Likewise, the values dB←01 > |PS| define
the operator denoted by ◦dsup .

So, intuitively, when defining an operator, one would
rather choose a lower value for dB←01 when one is more re-
luctant to change, or stated equivalently, more tolerant to in-
consistencies. In the most change-reluctant cases, in partic-
ular for ◦dinf , one would expect the underlying operators not
to be inclined to any change at all, giving as output a revised
formula ϕ ◦ µ which always entails ϕ. Note that whereas
this is not a desired behaviour in the classical setting where
consistency must be preserved in all cases (cf. (R3)), this
property is perfectly acceptable (although not necessary) in
our LP setting. Let us call this property “persistence”:

(Per) ϕ ◦ µ |=LP ϕ

It turns out that, among the class of all operators based on
a 0-1 symmetric decomposable distance, the operator ◦dinf is
the only operator satisfying (Per):
Proposition 13. An operator ◦db based on a 0-1 symmetric
decomposable distance satisfies (Per) if and only if ◦db =
◦dinf .

But, as our work shows, this is the simplest of all possibil-
ities. And in fact all the remaining operators ◦db , i.e., when
dB←01 ≥ 1 are strong LP revision operators:
Proposition 14. An operator ◦db based on a 0-1 symmet-
ric decomposable distance satisfies (LP3) if and only if
dB←01 ≥ 1.

Actually, the operator ◦dsup can be characterized by an ad-
ditional interesting property:

(LP3’) If ϕ is strongly PS-consistent and µ is consistent, then
ϕ ◦ µ is strongly PS-consistent

Proposition 15. An operator ◦db based on a 0-1 symmetric
decomposable distance satisfies (LP3’) if and only if ◦db =
◦dsup .

So the operator ◦dsup forces the result of the revision to be
consistent whenever it is possible.

The postulates (LP3’) and (LP3) are two adaptations of
(R3) in our framework. Note that there can be other interest-
ing ones.

Let us illustrate the (differences in) behaviour of these op-
erators on the following example:

Example 3. Consider first the following worlds:
ωϕ = 000000000000 ω1 = 0000000BBBBB
ω2 = 1000000BBBB0 ω3 = 1110000BB000
ω4 = 111111100000 ω5 = B000000BBBB0
ω6 = BBB0000BB000

Now, let ϕ and µ be two formulae such that JϕK = {ωϕ}
and JµK = {ω1, ω2, ω3, ω4}. Let d1

B←01 = 1 and d2
B←01 =

2. We get that ϕ ◦dinf µ = {ω1, ω5, ω6}, ϕ ◦d
1
B←01 µ =

{ω1, ω2, ω3}, ϕ ◦d
2
B←01 µ = {ω3, ω4}, and ϕ ◦dsup µ = {ω4}.

Accordingly, the higher the value of dB←01, the more clas-
sical the result of the revision of ϕ by µ.

Related Work
There is a few related work on revision on paraconsistent
logics. The first approach we are aware of is (da Costa and
Bueno 1998), which contains an extensive discussion on
why belief revision in paraconsistent logics makes perfect
sense. It uses da Costa Cn logics, but does not go further
than discussing the standard AGM postulates in this setting.
In (Mares 2002) the author works with a dedicated logic R,
where an additional structure is required to guide the re-
vision process, and no link is made with the standard ap-
proach. In (Priest 2001) the proposed operator used a com-
plex process using different criteria to rank all bases consid-
ered as potential solutions. This paper also discussed which
are the AGM postulates satisfied by this operator. In (Gi-
rard and Tanaka 2016) the authors use LP logic, like us,
but they defined two particular operators, corresponding to
Segerberg’s irrevocable revision (Segerberg 1998) and to
Nayak’s lexicographic revision (Nayak 1994) on 3-valued
interpretations. Their operators are defined using dynamic
epistemic logic, and they do not study the links with AGM
postulates. Note that none of these works provide a repre-
sentation theorem, and none of them safely extend the clas-
sical AGM/KM framework. The only two works that we
are aware of where the authors provide representation the-
orems are (Testa, Coniglio, and Ribeiro 2017) and (Testa
et al. 2018). But in both cases they use a logic with an ex-
plicit consistency connector, and the theorems are set for the
basic postulates only, not for the full set of AGM postulates.

Conclusion
In this work we discussed how to adapt the AGM/KM postu-
lates when the underlying logic is Priest’s LP logic, in order
to model a rational change, as a conservative extension of
AGM/KM belief revision. This implied in particular to ad-
equately adapt the notion of expansion. We provided a rep-
resentation theorem and some examples of belief revision
operators in this setting.

We hope that this work will allow to rethink the defini-
tion of revision as rational change instead of as consistent
change, and will be applied to frameworks where some be-
liefs are more important/fundamental than others.
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Booth, R.; Fermé, E.; Konieczny, S.; and Pino Pérez, R.
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