Skip to Main content Skip to Navigation
New interface
Preprints, Working Papers, ...

A link condition for simplicial complexes, and CUB spaces

Abstract : We motivate the study of metric spaces with a unique convex geodesic bicombing, which we call CUB spaces. These encompass many classical notions of nonpositive curvature, such as CAT(0) spaces and Busemann-convex spaces. Groups having a geometric action on a CUB space enjoy numerous properties. We want to know when a simplicial complex, endowed with a natural polyhedral metric, is CUB. We establish a link condition, stating essentially that the complex is locally a lattice. This generalizes Gromov's link condition for cube complexes, for the $\ell^\infty$ metric. The link condition applies to numerous examples, including Euclidean buildings, simplices of groups, Artin complexes of Euclidean Artin groups, (weak) Garside groups, some arcs and curve complexes, and minimal spanning surfaces of knots.
Document type :
Preprints, Working Papers, ...
Complete list of metadata
Contributor : Thomas Haettel Connect in order to contact the contributor
Submitted on : Wednesday, November 16, 2022 - 3:56:10 AM
Last modification on : Thursday, November 17, 2022 - 3:41:22 AM

Links full text


  • HAL Id : hal-03854673, version 1
  • ARXIV : 2211.07857


Thomas Haettel. A link condition for simplicial complexes, and CUB spaces. 2022. ⟨hal-03854673⟩



Record views