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Backward stochastic differential equations with conditional

reflection and related recursive optimal control problems

Ying Hu ∗ Jianhui Huang † Wenqiang Li‡

November 9, 2022

Abstract

We introduce a new type of reflected backward stochastic differential equation (RBSDE) for which
the reflection constraint is imposed on its main solution component, denoted as Y by convention,
but in terms of its conditional expectation E[Yt|Gt] on a general sub-filtration {Gt}. We thus term
such equation as conditionally reflected BSDE (for short, conditional RBSDE). Conditional RBSDE
subsumes classical RBSDE with a pointwise reflection barrier, and the recent developed BSDE with a
mean reflection constraint, as its two special and extreme cases: they exactly correspond to {Gt} being
the full filtration to represent complete information, and the degenerated filtration to deterministic
scenario, respectively. For conditional RBSDE, we obtain its existence and uniqueness under mild
conditions by combining the Snell envelope method with Skorokhod lemma. We also discuss its
connection, in the case of linear driver, to a class of optimal stopping problems in presence of partial
information. As a by-product, a new version of comparison theorem is obtained. With the help of this
connection, we study weak formulations of a class of optimal control problems with reflected recursive
functionals by characterizing the related optimal solution and value. Moreover, in the special case of
recursive functionals being RBSDE with pointwise reflections, we study the strong formulations of
related stochastic backward recursive control and zero-sum games, both in non-Markovian framework,
that are of their own interests and have not been fully explored by existing literature yet.

Keywords: Conditionally reflected BSDE, partial information, optimal stopping, backward recursive
reflected control problems, weak-formulation equivalence, zero-sum stochastic differential games.

1 Introduction

Reflected backward stochastic differential equations (RBSDEs) were firstly introduced by El Karoui,
Kapoudjian, Pardoux, Peng and Quenez in [8] for which the solution is an adapted triple processes
(Y,Z,K) satisfying the following backward stochastic system in an integral form

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+KT −Kt −
∫ T

t

ZsdWs, 0 ≤ t ≤ T, (1.1)

subject to a pointwise constraint
Yt ≥ St, 0 ≤ t ≤ T, (1.2)

for a given barrier process S. The term K of the solution is used to push the main solution component

Y to satisfy the constraint (1.2) in a minimum energy way, i.e.,
∫ T
0

(Yt − St)dKt = 0. In [8], the authors
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show the well-posedness of the solution (Y,Z,K) of the above equation for a given terminal condition ξ,
a Lipschitz generator (driver) f, and a continuous barrier process S. They also establish its connection to
both optimal stopping problems and related obstacle problems. Due to its interesting structure, RBSDEs
have been extensively applied, among others, into the problems such as pricing of the American option
[9], and dynamic recursive portfolio problems [10, 28].

Recently, Briand, Elie and Hu [5] introduced BSDEs with mean reflection, which is a type of
reflected BSDEs satisfying (1.1) but subject to a constraint condition in terms of the expectation as

E[`(t, Yt)] ≥ 0, 0 ≤ t ≤ T, (1.3)

for some given loss function `. In contrast to the pointwise reflection constraint (1.2), condition (1.3) is
described in sense of the distribution of the term Yt at each instant time t. In [5], the authors construct
a unique solution (Y,Z,K) with the deterministic K under appropriate conditions on the data (ξ, f, `).
Using BSDEs with the above mean reflection, they studied the related super-hedging of a claim under
a given running static risk management constraint. Since then, many extension works on BSDEs with
mean reflection have been studied, among others, [15, 16] with quadratic growth in z of the generator f ,
[23] with BSDEs driven by G-Brownian motion, and [6] with the related particles systems.

In this paper, we study a new type of reflected BSDEs, which is called conditional RBSDEs, for
which the reflection barrier is defined via a general conditional expectation operator, that is, system (1.1)
is subject to a constraint of the form:

E[Yt − St|Gt] ≥ 0, 0 ≤ t ≤ T (1.4)

for some generic Gt ⊆ Ft, 0 ≤ t ≤ T , so the sub-filtration G = {Gt}0≤t≤T (see Section 2 for more details)
stands for partial information that is common for various real decision making applications. It is worth
to note that both the constraints (1.2) and (1.3) (with linear loss function `) can be seen as the special
case of condition (1.4). In fact, reflection condition (1.2) (resp., (1.3)) corresponds to the full information
(resp., (degenerated) deterministic scenario) situation in (1.4) when Gt = Ft (resp., Gt = F0), 0 ≤ t ≤ T .

Condition (1.4) is strongly suggested by portfolio selection problems subject to some state con-
straints but in the context of partial information. On one hand, notice that the partial-information
feature in portfolio investments have been extensively studied by many mathematical finance works such
as [3, 14, 21, 29, 30]. Roughly speaking, in these studies, investors are often posed in a situation where
only part of the overall information of the market can be accessed; for instance, the driving noise infor-
mation available to the investor is often incomplete due to some observation or measurement limitations,
so the investors can only observe a subset of underlying noise components but not all. This is typical for
various commonly-seen real situations, especially when some latent factors are indispensable to drive the
dynamic evolution but cannot be accurately and instantaneously calibrated. On the other hand, due to
some regulation criteria or behavior pattern, investors (e.g., fund managers) should make sure the state
(fund account) to be controlled or steered to meet some constraint (e.g., above some market benchmark
or average level) for the purposes such as principal evaluation or stimulus mechanism. This brings some
obstacle constraint on the underlying state evolution. Together, some constraint portfolio selections with
partial information is hence suggested. For illustration, we present two examples below to formulate our
BSDE (1.1) with constraint (1.4), and motivate related optimal control problems.

Example 1.1. (Pricing American options with partial information) Denote G as a generic partial
information a representative agent can access from the market information sources. The pricing to an
American contingent claim at each time t, consists of the selection of a stopping time τ and a payoff
S̃τ on exercise. It is natural to restrict that both the stopping time τ and stopped (truncated) process

S̃ = {S̃τ} to be G-adapted because they are both constructed upon the information available to a specific
decision maker (i.e., agent) from the market. We denote by S the payoff of the American claim for
an idealized agent who may access the full information of the market. Then, for a realistic agent with
only partial information, it is reasonable and more practical to only anticipate the conditional, unbiased
payoff: S̃t = E[St|Gt], 0 ≤ t ≤ T, in current information capacity.

It is well known that for each selection on τ , there exists a unique strategy (yτ , zτ ) to replicate the
payoff S, where (yτ , zτ ) is the unique solution of the BSDE

−dyτt = f(t, yτt , z
τ
t )dt− zτt dWt, y

τ
τ = Sτ ,
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for some convex and Lipschitz generator f . Then the optimal pricing of the American contingent claim
S̃ with partial information at each time t, is given by

yt := esssup
τ∈[t,T ]:G-adapted

E[yτt |Gt].

Similar to the full information context studied in [8], we may expect (in fact, we verify the case when the
generator f is linear in (y, z) in Section 3) that the value process y can be characterized as follows

yt = E[Yt|Gt], 0 ≤ t ≤ T,

where (Y,Z,K) is the solution triple of conditional RBSDE (1.1) along with (1.4). Condition (1.4) means

that the term Y is always required to be larger than the payoff S̃ at each time t, in terms of conditional
expectation on the available information {Gt}. Then we can use conditional RBSDE (1.1) and (1.4) to
price American options with partial information. Indeed, when all agents are symmetric in their infor-
mation (i.e., all access the same sub-filtration {Gt}), some equilibrium on supple-demand condition will
be achieved by game-theoretic analysis, and the market price will be thus formalized on such partial
information basis. Specifically, in one extreme and idealized case when agents can all access full informa-
tion, the above result will reduce to the pricing results studied by El Karoui, Pardoux and Quenez [9].
Another extreme case is when all agents only access trivial filtration (i.e., cannot observe any realization
of stochastic scenarios), then an optimal (deterministic time) stopping arises to get an expected payoff
evaluated by the agent, see Example 3.1.

Example 1.2. (Recursive reflected utility maximization with partial information) We consider an
optimal portfolio selection problem in a market consisting of a risk-free bond and d risky assets. The
bond is assumed to be zero interest rate and the discounted (by the bond) individual risky asset price V it
at time t has the following form

dV it
V it

= bitdt+ σitdW
i
t , i = 1, 2, · · · , d. (1.5)

Here, bi, σi, i = 1, 2, · · · , d, are given return and volatility rates, respectively, and W = (W 1, · · · ,W d) is
a standard d-dimensional Brownian motion. An investor only observes the (public market) price of listed
risky assets (e.g., stocks) 1, 2, · · · ,m (with 1 ≤ m ≤ d) since, for instance, the prices of some unlisted
risky assets are latent as described in principle-agent situation with partial information or hidden actions
by Williams [27]. Then the partial information available to the investor in public market is

Gt = σ{V is , 0 ≤ s ≤ t, i = 1, 2, · · · ,m}, 0 ≤ t ≤ T,

which is same to σ{W i
s , 0 ≤ s ≤ t, i = 1, 2, · · · ,m} when both bi and σi, i = 1, 2, · · · ,m, are deterministic.

Let πt = (π1
t , · · · , πdt ) be the proportion of the amount invested in risky assets at time t, which should

be G-adapted. Then the wealth process Xπ
t at time t with the proportion π should satisfy

dXπ
t =

d∑
i=1

πitX
π
t [bitdt+ σitdW

i
t ].

Such portfolio model with partial information has been studied by Nagai and Peng [24] when addressing
a type of risk-sensitive optimization problems on infinite time horizon.

The expected utility of the investor is of recursive utility, denoted by Y π0 , which can be described
by the solution of classical BSDE according to [11]. Moreover, let the constant a be the minimum utility
threshold acceptable to the investor, i.e., Y π0 ≥ a, for all admissible investment proportion π. In fact, we
can consider a stronger dynamic constraint as follows, which depends on the evaluation of the utility at
each time t based on the partial information G, i.e.,

E[Y πt |Gt] ≥ S̃t, 0 ≤ t ≤ T,
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where S̃ is G-adapted with S0 = a. Combining the above two factors, we obtain a recursive reflected
utility Y π0 , which is defined by the solution of the following controlled conditional RBSDE Y πt = Φ(Xπ

T ) +

∫ T

t

f(s,Xπ
s , Y

π
s , Z

π
s )ds+Kπ

T −Kπ
t −

∫ T

t

Zπs dWs, 0 ≤ t ≤ T,

E[Y πt |Gt] ≥ S̃t, 0 ≤ t ≤ T,

where Φ and f represents the terminal and running utility, respectively. The aim of the investor is to
choose an admissible proportion π to maximize the recursive Y π0 using the available information G only.

Inspired by the above examples, we aim to study the well-posedness of conditional RBSDE consist-
ing of (1.1), (1.4), and associated backward recursive reflected control problems with partial information.
We also address the counterpart of control problems in full information case which may admit more
explicit results under more relaxed assumptions. In order to guarantee the uniqueness of the solution
(Y,Z,K), we consider the case that K is required to be G-adapted as explained in Remark 2.1. Similar to
classical RBSDE studied in [8] and BSDEs with mean reflection in [5], the form of conditional RBSDEs

involves in a flat condition:
∫ T
0
E[Yt−St|Gt]dKt = 0 besides (1.1) and (1.4). It is worth to point out that,

when studying the well-posedness of the solution, the partial information is only required to satisfy the
usual filtration condition and the additional left-quasi-continuous condition (to ensure the conditional
expectation E[·|Gt] is continuous in t). For related backward recursive reflected control problems with
partial information, we consider the partial information constructed by a subset of components of driv-
ing Brownian motion noises, which is motivated by Example 1.2. We emphasize that this construction
approach includes a large class of partial information models, as explained in Remark 3.1.

The rest of this paper is organized as follows. Section 2 formulates the conditional RBSDE on a
general sub-filtration along with necessary assumptions. We then study the well-posedness (including the
existence and the uniqueness as well as a prior estimate) of the solution of conditional RBSDE. Section 3
is devoted to the connection between conditional RBSDE and a new class of optimal stopping problems
in presence of partial information. As a byproduct, a related comparison theorem is also derived that
has its own interests in theoretical analysis. Section 4 considers two types of backward recursive reflected
control problems with partial information in case of the driver for recursive functional being linear and
convex, respectively. Section 5 continues to study the strong formulations of nonlinear backward recursive
reflected functionals for which both stochastic control and zero-sum game problems in non-Markovian
framework are examined. Some equivalence between strong and weak formulations is also established.

2 Conditional reflected BSDEs

2.1 Preliminary

Let T > 0 be a finite time horizon. Suppose that {Ws, s ∈ [0, T ]} is a d-dimensional standard Brownian
motion defined on a probability space (Ω,F ,P). We denote by E the (conditional) expectation under the
probability measure P and by F = (Fs)s≥0 the complete filtration generated by Brownian motion W . Let

Gt ⊆ Ft, t ∈ [0, T ],

be a given sub-filtration of Ft satisfying the following basic assumption1:
(i) the usual condition (i.e., non-decreasing and right-continuous);
(ii) left-quasi-continuous (i.e., left-continuous with respect to stopping times).
We denote this sub-filtration by G = (Gt)0≤t≤T and refer it as partial information (resp., F as full
information) inspired by examples in Introduction. The trivial σ-field is denoted by H, i.e., H = F0 = G0,
which is referred as (degenerated) deterministic scenario. We introduce the following spaces of processes:

• S2(0, T ;R) =
{
ϕ
∣∣∣ϕ : Ω× [0, T ]→ R is F-adapted and continuous: ‖ϕ‖2S2 , E[ sup

t∈[0,T ]

|ϕt|2] < +∞
}
.

1The condition (i) is essential and classical for the information filtration and the condition (ii) is introduced to ensure
the continuity property of conditional expectation E[·|Gt] in t.
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• H2(0, T ;Rd) =
{
ϕ
∣∣∣ϕ : Ω× [0, T ]→ Rd is F-predictable: ‖ϕ‖2H2 , E

[ ∫ T

0

|ϕt|2dt
]
< +∞

}
.

• A2(0, T ;R) =
{
ϕ
∣∣∣ϕ ∈ S2(0, T ;R), ϕ is nondecreasing, ϕ0 = 0

}
.

• A2
G(0, T ;R) =

{
ϕ
∣∣∣ϕ ∈ A2(0, T ;R), ϕ is G-adapted

}
.

For all these spaces, we write S2,H2,A2,A2
G when there is no confusion hereafter. We are interested in

the following conditional RBSDE associated with parameters: the terminal condition ξ, the generator f
and a barrier process S:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+KT −Kt −
∫ T

t

ZsdWs, t ∈ [0, T ],

E[Yt − St|Gt] ≥ 0, P-a.s., 0 ≤ t ≤ T,∫ T

0

E[Yt − St|Gt]dKt = 0, P-a.s.

(2.1)

It is clear that conditional RBSDE (2.1) will reduce to the classical RBSDE introduced by El Karoui,
Kapoudjian, Pardoux, Peng and Quenez [8] when Gt = Ft, and to BSDE with linear mean reflection
studied recently by Briand, Elie and Hu [5] when Gt ≡ H, 0 ≤ t ≤ T .

Definition 2.1. A solution of conditional RBSDE (2.1) is a triple of processes (Y,Z,K) ∈ S2×H2×A2
G

satisfying (2.1).

Remark 2.1. As the example displayed in the Introduction of [5] shows that, we can not expect to obtain
the uniqueness of the solution if we allow K ∈ A2. As a result, we restrict ourself to find the term K of
the solution in the space A2

G instead of A2.

We introduce the basic assumptions of parameters (ξ, f, S) of conditional RBSDE. Let the mapping

f : Ω× [0, T ]× R× Rd → R,

be P⊗B(R)⊗B(Rd) -measurable, where P stands for the σ-algebra of F-progressive subsets of Ω× [0, T ].
Suppose that these parameters satisfy

(H1)



(i) There exists a constant µ > 0 such that, for all (t, ω) ∈ [0, T ]× Ω, (y, z), (y′, z′) ∈ R1+d,
|f(t, y, z)− f(t, y′, z′)| ≤ µ(|y − y′|+ |z − z′|), P-a.s.,

and

E[
∫ T
0
|f(t, 0, 0)|2dt] <∞.

(ii) The barrier process S is in S2.
(iii) The terminal condition ξ ∈ L2(Ω,FT ,P) such that E[ξ − ST |GT ] ≥ 0, P-a.s.

The remainder of this section is devoted to the study of the well-posedness of the solution of conditional
RBSDE (2.1) under the Assumption (H1).

2.2 The uniqueness of the solution

Since the termK of the solution is required to be G-adapted (see Remark 2.1), we first derive its expression
in terms of the conditional expectation with respect to partial information G by using Skorohod lemma.

Proposition 2.1. Suppose that (Y,Z,K) ∈ S2 × H2 × A2
G is a solution of conditional RBSDE (2.1).

Then the term K has the following representation: for t ∈ [0, T ] and each ω ∈ Ω,

(KT −Kt)(ω) = sup
t≤s≤T

(
E[ξ|GT ] + E[

∫ T

0

f(r, Yr, Zr)dr|GT ]− E[

∫ s

0

f(r, Yr, Zr)dr|Gs]

+ E[

∫ s

0

ZrdWr|Gs]− E[

∫ T

0

ZrdWr|GT ]− E[Ss|Gs]
)−

(ω).

(2.2)
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Proof. From (2.1), we get

E[Yt|Gt] =
(
Y0 − E[

∫ t

0

f(s, Ys, Zs)ds|Gt] + E[

∫ t

0

ZsdWs|Gt]
)
−Kt, 0 ≤ t ≤ T,

which implies that

E[Yt|Gt]− E[ξ|GT ]

=
(
E[

∫ T

0

f(s, Ys, Zs)ds|GT ]− E[

∫ t

0

f(s, Ys, Zs)ds|Gt] + E[

∫ t

0

ZsdWs|Gt]− E[

∫ T

0

ZsdWs|GT ]
)

+KT −Kt.

(2.3)
By putting

xt =
(
E[ξ|GT ] + E[

∫ T

0

f(s, Ys, Zs)ds|GT ]− E[

∫ T−t

0

f(s, Ys, Zs)ds|GT−t]

+ E[

∫ T−t

0

ZsdWs|GT−t]− E[

∫ T

0

ZsdWs|GT ]− E[ST−t|GT−t]
)

(ω),

yt =E[YT−t − ST−t|GT−t](ω), kt = (KT −KT−t)(ω),

we have from (2.3) that yt = xt + kt, t ∈ [0, T ]. Moreover, the reflection and flat conditions in (2.1)

mean that yt ≥ 0,
∫ T
0
ytdkt = 0. Note that xt is continuous with respect to t ∈ [0, T ] and x0 ≥ 0, from

Skorohod Lemma, we get kt = sup0≤s≤t x
−
s , i.e., (2.2).

Remark 2.2. When the available information G is chosen to be full, i.e., Gt = Ft, 0 ≤ t ≤ T , then the
representation (2.2) will reduce to Proposition 2.2 in [8]. When the available information G is chosen to
be deterministic scenario, i.e., Gt = H, 0 ≤ t ≤ T , the expression (2.2) has been used to construct the
solution of BSDEs with linear mean reflection in [5] (see Subsection 3.3 therein).

With the help of Proposition 2.1, we get the following a priori estimate of the solution.

Theorem 2.1. For i = 1, 2, let (Y i, Zi,Ki) ∈ S2 ×H2 ×A2
G be a solution of conditional RBSDE (2.1)

associated with parameters (ξi, f i, Si) satisfying the Assumption (H1). Then there exists a constant C
only depending on T and µ such that, for any t ∈ [0, T ],

E
[

sup
0≤s≤T

|Y 1
s − Y 2

s |2 +

∫ T

0

|Z1
s − Z2

s |2ds+ sup
0≤s≤T

|(K1
T −K1

s )− (K2
T −K2

s )|2
]

≤CE
[
|ξ1 − ξ2|2 +

∫ T

0

|f1(s, Y 2
s , Z

2
s )− f2(s, Y 2

s , Z
2
s )|2ds+ sup

0≤s≤T
|S1
s − S2

s |2
]
.

Proof. For simplicity of the notations, we denote

(∆Y,∆Z,∆K) = (Y 1 − Y 2, Z1 − Z2,K1 −K2), ∆ξ = ξ1 − ξ2,
∆f(s) = f1(s, Y 2

s , Z
2
s )− f2(s, Y 2

s , Z
2
s ), ∆S = S1 − S2.

Step 1. We show that

E
[
|∆Yt|2 +

∫ T

t

|∆Ys|2 + |∆Zs|2ds+ |∆KT −∆Kt|2
∣∣∣Gt]

≤CE
[
|∆ξ|2 +

∫ T

t

|∆f(s)|2ds+ sup
t≤s≤T

|∆Ss|2
∣∣∣Gt], t ∈ [0, T ], P-a.s.

(2.4)
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For any β > 0, applying Itô’s formula to eβt|∆Yt|2 we get

eβt|∆Yt|2 +

∫ T

t

eβs(β|∆Ys|2 + |∆Zs|2)ds

=eβT |∆ξ|2 + 2

∫ T

t

eβs∆Ys · [f1(s, Y 1
s , Z

1
s )− f1(s, Y 2

s , Z
2
s )]ds+ 2

∫ T

t

eβs∆Ys ·∆f(s)ds

+ 2

∫ T

t

eβs∆Ysd∆Ks − 2

∫ T

t

eβs∆Ys∆ZsdWs

≤eβT |∆ξ|2 +

∫ T

t

eβs|∆f(s)|2ds+
1

8

∫ T

t

eβs|∆Zs|2ds+ (1 + 2µ+ 8µ2)

∫ T

t

eβs|∆Ys|2ds

+ 2

∫ T

t

eβs∆Ysd∆Ks − 2

∫ T

t

eβs∆Ys∆ZsdWs.

(2.5)

Choosing β = 2 + 2µ+ 8µ2, it follows from (2.5) that

eβtE[|∆Yt|2|Gt] + E[

∫ T

t

eβs|∆Ys|2ds|Gt] +
7

8
E[

∫ T

t

eβs|∆Zs|2ds|Gt]

≤E[eβT |∆ξ|2|Gt] + E[

∫ T

t

eβs|∆f(s)|2ds|Gt] + 2E[

∫ T

t

eβs∆Ysd∆Ks|Gt]

≤E[eβT |∆ξ|2|Gt] + E[

∫ T

t

eβs|∆f(s)|2ds|Gt] + eβT
(1

ε
E[ sup
s∈[t,T ]

|∆Ss|2|Gt] + εE[|∆KT −∆Kt|2|Gt]
)
,

(2.6)
where the last inequality follows from

2E[

∫ T

t

eβs∆Ysd∆Ks|Gt] = 2E[

∫ T

t

eβs(∆Ys −∆Ss)d∆Ks|Gt] + 2E[

∫ T

t

eβs∆Ssd∆Ks|Gt]

=2E[

∫ T

t

eβsE[∆Ys −∆Ss|Gs]d∆Ks|Gt] + 2E[

∫ T

t

eβs∆Ssd∆Ks|Gt]

≤2E[

∫ T

t

eβs∆Ssd∆Ks|Gt] ≤ eβT
(1

ε
E[ sup
s∈[t,T ]

|∆Ss|2|Gt] + εE[|∆KT −∆Kt|2|Gt]
)
.

(2.7)

Since ∆KT −∆Kt = ∆Yt −∆ξ −
∫ T
t
f1(s, Y 1

s , Z
1
s )− f1(s, Y 2

s , Z
2
s ) + ∆f(s)ds+

∫ T
t

∆ZsdWs, we get

E[|∆KT −∆Kt|2|Gt]

≤C(T, µ)
(
E[|∆Yt|2|Gt] + E[|∆ξ|2|Gt] + E[

∫ T

t

|∆Ys|2 + |∆Zs|2ds|Gt] + E[

∫ T

t

|∆f(s)|2ds|Gt]
)
.

(2.8)

Substituting (2.8) into (2.6), choosing ε small enough, we get

E[|∆Yt|2|Gt] + E[

∫ T

t

|∆Ys|2 + |∆Zs|2ds|Gt] + E[|∆KT −∆Kt|2|Gt]

≤CE
[
|∆ξ|2 +

∫ T

t

|∆f(s)|2ds+ sup
s∈[t,T ]

|∆Ss|2
∣∣∣Gt].

Step 2. We show that

E[ sup
0≤t≤T

|∆Yt|2] + E[ sup
0≤t≤T

|∆KT −∆Kt|2] ≤ CE
[
|∆ξ|2 +

∫ T

t

|∆f(s)|2ds+ sup
t∈[0,T ]

|∆St|2
]
.

From Proposition 3.1, we have, for i = 1, 2,

Ki
T −Ki

t = sup
t≤s≤T

(
E[ξi|GT ] + E[

∫ T

0

f i(r, Y ir , Z
i
r)dr|GT ]− E[

∫ s

0

f i(r, Y ir , Z
i
r)dr|Gs]

+ E[

∫ s

0

ZirdWr|Gs]− E[

∫ T

0

ZirdWr|GT ]− E[Sis|Gs]
)−
,
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which implies that

|∆KT −∆Kt| ≤E[
∣∣∆ξ∣∣|GT ] + µE[

∫ T

0

|∆Yr|+ |∆Zr|dr|GT ] + E[

∫ T

0

|∆f(r)|dr|GT ]

+ µ sup
0≤s≤T

E[

∫ T

0

|∆Yr|+ |∆Zr|dr|Gs] + sup
0≤s≤T

E[

∫ T

0

|∆f(r)|dr|Gs]

+ sup
0≤s≤T

E[ sup
0≤s≤T

∣∣ ∫ s

0

∆ZrdWr

∣∣|Gs] + E[
∣∣ ∫ T

0

∆ZrdWr

∣∣|GT ] + sup
0≤s≤T

E[ sup
0≤s≤T

∣∣∆Ss∣∣|Gs].
(2.9)

Thus, from (2.9), Doob’s martingale inequality and Burkholder-Davis-Gundy inequality, there exists a
constant C only relying on T and µ such that

E[ sup
0≤t≤T

|∆KT −∆Kt|2]

≤CE[
∣∣∆ξ∣∣2] + CE[

∫ T

0

|∆Yr|2 + |∆Zr|2dr] + CE[

∫ T

0

|∆f(r)|2dr] + CE[ sup
0≤s≤T

∣∣∆Ss∣∣2].
(2.10)

Then, it follows from (2.4) and (2.10) that

E[ sup
0≤t≤T

|∆KT −∆Kt|2] ≤ CE[
∣∣∆ξ∣∣2 +

∫ T

0

|∆f(r)|2dr + sup
0≤t≤T

∣∣∆St∣∣2]. (2.11)

On the other hand, since

∆Yt = E[∆ξ|Ft] + E[

∫ T

t

f1(s, Y 1
s , Z

1
s )− f1(s, Y 2

s , Z
2
s ) + ∆f(s)ds|Ft] + E[∆KT −∆Kt|Ft],

from (2.4) and (2.11) we have

E[ sup
0≤t≤T

|∆Yt|2] ≤ CE[
∣∣∆ξ∣∣2 +

∫ T

0

|∆f(r)|2dr + sup
0≤t≤T

∣∣∆St∣∣2].

Finally, combining Step 1 and Step 2 we get the desired result.

Similar to the proof of Theorem 2.1, we have the following result.

Corollary 2.1. Let the Assumption (H1) hold and (Y,Z,K) ∈ S2×H2×A2
G be a solution of conditional

RBSDE (2.1). Then there exists a constant C only depending on T and µ such that, for any t ∈ [0, T ],

E
[
|Yt|2 +

∫ T

t

[|Ys|2 + |Zs|2]ds+ |KT −Kt|2
∣∣∣Gt] ≤ CE[|ξ|2 +

∫ T

t

|f(s, 0, 0)|2ds+ sup
t≤s≤T

|Ss|2
∣∣∣Gt], P-a.s.,

and

E
[

sup
0≤t≤T

|Yt|2 +

∫ T

0

|Zt|2]dt+ |KT |2
]
≤ CE

[
|ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds+ sup
0≤t≤T

|St|2
]
.

As a byproduct of Theorem 2.1, we obtain the following uniqueness result directly.

Theorem 2.2. Let the parameter (ξ, f, S) satisfy the Assumption (H1). Then conditional RBSDE (2.1)
has at most a solution (Y,Z,K) in S2 ×H2 ×A2

G.

2.3 The existence of the solution

We first focus on the particular case when f do not depend on (y, z), i.e., f(s, y, z) ≡ f(s). In this
case, we construct explicitly the unique solution via Snell envelope approach, i.e., an associated optimal
stopping problem with partial information. For each t ∈ [0, T ], we denote by Tt,T the set of G-adapted
stopping times of values in [t, T ].
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Proposition 2.2. Let the parameter (ξ, f, S) satisfy the Assumption (H1) and f(s, y, z) ≡ f(s). Then
conditional RBSDE (2.1) has a unique solution (Y,Z,K) ∈ S2 ×H2 ×A2

G.

Proof. For each t ∈ [0, T ] and τ ∈ Tt,T , we denote by (yτ , zτ ) ∈ S2 × H2 the unique solution of the
following BSDE

yτs =
[
ξI{τ=T} + SτI{τ<T}

]
+

∫ τ

s

f(r)dr −
∫ τ

s

zτr dWr, s ∈ [t, τ ].

Then we consider an optimal stopping problem: for each t ∈ [0, T ],

Y t := esssup
τ∈Tt,T

E[yτt |Gt] = esssup
τ∈Tt,T

E
[[
ξI{τ=T} + SτI{τ<T}

]
+

∫ τ

t

f(s)ds
∣∣∣Gt]. (2.12)

Obviously, the value process Y of the optimal stopping is G-adapted. It follows from (2.12) that

Y t + E
[ ∫ t

0

f(s)ds|Gt
]

= esssup
τ∈Tt,T

E
[[
ξI{τ=T} + SτI{τ<T}

]
+

∫ τ

0

f(s)ds
∣∣∣Gt].

Thus, {Y t + E
[ ∫ t

0
f(s)ds|Gt

]
}t∈[0,T ] is the Snell envelope of the process {Ht}t∈[0,T ], where

Ht := E
[
ξI{t=T} + StI{t<T} +

∫ t

0

f(s)ds
∣∣∣Gt],

that is, it is the smallest continuous G-supermartingale that dominates the process H. The continuity
property of Y follows from the fact that the process H is continuous on [0, T ) and the jump at T is
nonnegative. Then it follows from the Doob-Meyer decomposition theorem that, there exists a continuous
process K ∈ A2

G and uniformly integrable G-martingale M such that

Y t + E
[ ∫ t

0

f(s)ds|Gt
]

= E
[
ξ +

∫ T

0

f(s)ds|GT
]

+KT −Kt − (MT −Mt). (2.13)

Since Y is G-adapted, from (2.13) we get

Y t = E
[
ξ +

∫ T

t

f(s)ds|Gt
]

+ E[KT −Kt|Gt
]
. (2.14)

On the other hand, it follows from (2.12) and the classical optimal stopping theory (see, for example,
Proposition B.11 in [20] or Theorem D.13 in [19]) that Y t ≥ E[St|Gt], t ∈ [0, T ], and∫ T

0

(Y t − E[St|Gt])dKt =

∫ T

0

(
Y t + E[

∫ t

0

f(s)ds|Gt]− E[St +

∫ t

0

f(s)ds|Gt])dKt = 0. (2.15)

Along with the process K obtained above, the following BSDE

Yt = ξ +

∫ T

t

f(s)ds+KT −Kt −
∫ T

t

ZsdWs, t ∈ [0, T ], (2.16)

has a unique solution (Y,Z) ∈ S2×H2. Notice that Y t = E[Yt|Gt] because of (2.14) and (2.16), combining
(2.16) with (2.15) we show that (Y,Z,K) is a solution of conditional RBSDE (2.1). The uniqueness follows
from Theorem 2.2.

We now turn to the general generator case and show the existence of the solution combining
Proposition 2.1, Proposition 2.2 and contraction arguments.

Theorem 2.3. Suppose that the parameter (ξ, f, S) satisfies the Assumption (H1). Then conditional
RBSDE (2.1) has a unique solution (Y,Z,K) ∈ S2 ×H2 ×A2

G.
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Proof. We only need to prove the existence of the solution since the uniqueness has been obtained in
Theorem 2.2. For any given (U, V ) ∈ S2×H2, it follows from Proposition 2.2 that the following equation

Yt = ξ +

∫ T

t

f(s, Us, Vs)ds+KT −Kt −
∫ T

t

ZsdWs, t ∈ [0, T ],

E[Yt − St|Gt] ≥ 0, ∀ t ∈ [0, T ], a.s.,

∫ T

0

E[Yt − St|Gt]dKt = 0,

(2.17)

exists a unique solution (Y,Z,K) ∈ S2 ×H2 ×A2
G. Moreover, using Proposition 2.1 it holds

KT −Kt = sup
t≤s≤T

(
E[ξ|GT ] + E[

∫ T

0

f(r, Ur, Vr)dr|GT ]− E[

∫ s

0

f(r, Ur, Vr)dr|Gs]

+ E[

∫ s

0

ZrdWr|Gs]− E[

∫ T

0

ZrdWr|GT ]− E[Ss|Gs]
)−
.

(2.18)

Thus, using (2.18) and (2.17) we may define a mapping from Banach space S2 ×H2 to itself as

Φ : (U, V )→ (Y, Z),

and only need to show that it is a contraction mapping. For (U1, V 1), (U2, V 2) ∈ S2 ×H2, we denote

(Y 1, Z1) = Φ(U1, V 1), (Y 2, Z2) = Φ(U2, V 2),

∆Y = Y 1 − Y 2, ∆Z = Z1 − Z2, ∆U = U1 − U2, ∆V = V 1 − V 2, ∆K = K1 −K2.

Classical arguments suggest that, for any β > 0, we have

E[eβt|∆Yt|2|Gt] + E[

∫ T

t

βeβs|∆Ys|2ds+

∫ T

t

eβs|∆Zs|2ds|Gt]

=E[

∫ T

t

2eβs∆Ys
(
f(s, U1

s , V
1
s )− f(s, U2

s , V
2
s )
)
ds|Gt] + E[

∫ T

t

2eβs∆Ysd∆Ks|Gt]

≤E[

∫ T

t

2eβs∆Ys
(
f(s, U1

s , V
1
s )− f(s, U2

s , V
2
s )
)
ds|Gt] (from (2.7) with ∆S ≡ 0)

≤4µ2E[

∫ T

t

eβs|∆Ys|2ds|Gt] +
1

2
E[

∫ T

t

eβs
(
|∆Us|2 + |∆Vs|2

)
ds|Gt].

(2.19)

By choosing β = 4µ2 + 1, we have

E[eβt|∆Yt|2|Gt] + E[

∫ T

t

eβs|∆Ys|2ds+

∫ T

t

eβs|∆Zs|2ds|Gt]

≤1

2
E[

∫ T

t

eβs
(
|∆Us|2 + |∆Vs|2

)
ds|Gt],

(2.20)

which implies that Φ is a strict contraction mapping on H2 ×H2 with the norm

‖(Y,Z)‖2β = E
∫ T

0

eβt(|Yt|2 + |Zt|2)dt.

On the other hand, from (2.18) we have

|∆KT −∆Kt| ≤µE
[ ∫ T

0

(|∆Ur|+ |∆Vr|)dr
∣∣∣GT ]+ µ sup

0≤s≤T
E
[ ∫ T

0

(|∆Ur|+ |∆Vr|)dr
∣∣∣Gs]

+ sup
0≤s≤T

E
[

sup
0≤s≤T

|
∫ s

0

∆ZrdWr|
∣∣∣Gs]+ E

[
|
∫ T

0

∆ZrdWr|
∣∣∣GT ]. (2.21)
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Since ∆Yt = E[
∫ T
t
f(s, U1

s , V
1
s )− f(s, U2

s , V
2
s )ds|Ft] + E[∆KT −∆Kt|Ft], from (2.21) we have

|∆Yt| ≤ µE
[ ∫ T

0

(|∆Us|+ |∆Vs|)ds
∣∣∣Ft]+ µE

[
E[

∫ T

0

(|∆Us|+ |∆Vs|)ds|GT ]
∣∣∣Ft]

+ µE
[

sup
0≤s≤T

E[

∫ T

0

(|∆Ur|+ |∆Vr|)dr|Gs]
∣∣∣Ft]+ E

[
sup

0≤s≤T
E[ sup

0≤s≤T
|
∫ s

0

∆ZrdWr|
∣∣Gs]∣∣∣Ft]

+ E
[
E[|
∫ T

0

∆ZsdWs||GT ]
∣∣∣Ft].

(2.22)

Then it follows from Doob’s martingale inequality, (2.22) and (2.20) that

E[ sup
0≤t≤T

|∆Yt|2] ≤ CE[

∫ T

0

|∆Us|2 + |∆Vs|2ds].

As a result, Φ is continuous from S2 ×H2 to itself. Combining with (2.20), Φ has a unique fixed point
(Y,Z) ∈ S2 ×H2. The existence of K follows directly from (2.17) and (2.18).

Remark 2.3. We obtain the well-posedness of the solution of conditional RBSDE (2.1) when the reflec-
tion condition is linear in y. It seems more interesting to consider such equation with nonlinear reflection
condition similar to the study of BSDEs with general mean reflection in [5] (see, Section 4 therein). In
fact, we can extend Theorem 2.3 to the general nonlinear conditional reflection situation

`(t,E[Yt|Gt]) ≥ 0, 0 ≤ t ≤ T,

with some increasing (in y) continuous function `. The proof is similar to Theorem 9 in [5] by introducing
an operator Lt defined as

Lt : L2(GT ) 7→ L2(GT ;R+), Lt(X) = essinf
{
η : η ≥ 0, a.s.,GT -measurable, `(t,X + η) ≥ 0

}
.

For the study of BSDEs with another general nonlinear conditional reflection condition E[`(t, Yt)|Gt] ≥
0, 0 ≤ t ≤ T, we will leave it for the future research.

3 The connection between optimal stopping problems and linear
conditional RBSDEs

In this section, we study the connection between conditional RBSDE (2.1) and the related optimal
stopping problems when the generator f(t, y, z) is linear in (y, z). First of all, from the proof of Proposition
2.2, we get the following connection when the generator f does not depend on (y, z), i.e., f(s, y, z) ≡ f(s).

Corollary 3.1. Let (Y, Z,K) be the solution of the following conditional RBSDE
Yt = ξ +

∫ T

t

f(s)ds+KT −Kt −
∫ T

t

ZsdWs, t ∈ [0, T ],

E[Yt − St|Gt] ≥ 0, ∀ t ∈ [0, T ], a.s.,

∫ T

0

E[Yt − St|Gt]dKt = 0.

Then, we have, for all t ∈ [0, T ],
E[Yt|Gt] = esssup

τ∈Tt,T
E[yτt |Gt],

where, for each τ ∈ Tt,T , (yτ , zτ ) is the unique solution of the following BSDE

yτs =
[
ξI{τ=T} + SτI{τ<T}

]
+

∫ τ

s

f(r)dr −
∫ τ

s

zτr dWr, s ∈ [t, τ ].

Moreover, the optimal stopping τ∗ ∈ Tt,T is given by

τ∗t = inf
{
s ∈ [t, T ] : E[Ys − Ss|Gs] = 0

}
∧ T.
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In particular, if partial information G is chosen to be deterministic scenario, i.e., Gt = H, 0 ≤
t ≤ T , in Corollary 3.1, then we get the following connection between BSDEs with mean reflection and
deterministic stopping time problems. In this case, the set of G-adapted stopping times Tt,T = [t, T ].

Example 3.1. Let (Y,Z,K) be the solution of the following BSDE with mean reflection
Yt = ξ +

∫ T

t

f(s)ds+KT −Kt −
∫ T

t

ZsdWs, t ∈ [0, T ],

E[Yt − St] ≥ 0, ∀ t ∈ [0, T ], a.s.,

∫ T

0

E[Yt − St]dKt = 0.

Then we have, for all t ∈ [0, T ],
E[Yt] = sup

τ∈[t,T ]

E[yτt ],

where, for each τ ∈ [t, T ], (yτ , zτ ) is the unique solution of the following BSDE

yτs =
[
ξI{τ=T} + SτI{τ<T}

]
+

∫ τ

s

f(r)dr −
∫ τ

s

zτr dWr, s ∈ [t, τ ],

and the optimal time τ∗ ∈ [t, T ] is given by τ∗t = inf
{
s ∈ [t, T ] : E[Ys] = E[Ss]

}
∧ T.

We now generalize Corollary 3.1 to the linear generator case, in which we specify a class of partial
information G. For simplicity, the underlying Brownian motion is chosen to be two-dimensional, i.e.,
W = (W 1,W 2) and recall that the filtration F is generated by W . Let

U =

(
λ1 λ2
λ3 λ4

)
,

be a constant orthogonal matrix (i.e., UUT is the identity matrix). Then the process W̃ = (W̃ 1, W̃ 2)
defined as

(W̃ 1, W̃ 2)T = U · (W 1,W 2)T = (λ1W
1 + λ2W

2, λ3W
1 + λ4W

2)T ,

is also a Brownian motion. It is easy to check that the filtration generated by W̃ is still F. Let G be the
sub-filtration generated by W̃ 1 (i.e., λ1W

1 + λ2W
2).

Remark 3.1. When the Brownian motion W is d-dimensional, one can similarly construct a new Brow-
nian motion W̃ through a d×d constant orthogonal matrix. Then the sub-filtration G is generated by some
components of this new Brownian motion W̃ . We consider two dimensional situation only to simplify the
notations. On the other hand, it is easy to check that the number of such orthogonal matrix is infinity,
which means that our results can be applied to a large class of partial information problems.

Suppose that the generator f has the following linear form

f(s, y, z1, z2) = asy + λ1bsz
1 + λ2bsz

2 + cs = asy + bs(λ1, λ2) · (z1, z2)T + cs,

where both a and b are G-adapted and bounded processes, the process c is F-adapted and belongs to H2.

Theorem 3.1. Let (Y,Z1, Z2,K) be the unique solution of the following conditional RBSDE
Yt = ξ +

∫ T

t

[asYs + bs(λ1, λ2) · (Z1
s , Z

2
s )T + cs]ds+KT −Kt −

∫ T

t

(Z1
s , Z

2
s ) · d(W 1,W 2)Ts , t ∈ [0, T ],

E[Yt − St|Gt] ≥ 0, ∀ t ∈ [0, T ];

∫ T

0

E[Yt − St|Gt]dKt = 0.

(3.1)
Then, we have, for all t ∈ [0, T ],

E[Yt|Gt] = esssup
τ∈Tt,T

E[yτt |Gt], (3.2)
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where, for each τ ∈ Tt,T , (yτ , z1,τ , z2,τ ) is the unique solution of the following BSDE

yτs =
[
ξI{τ=T}+SτI{τ<T}

]
+

∫ τ

s

[ary
τ
r+br(λ1, λ2)·(z1,τr , z2,τr )T+cr]dr−

∫ τ

s

(z1,τr , z2,τr )·d(W 1,W 2)Tr , s ∈ [t, τ ].

(3.3)
Moreover, an optimal stopping τ∗ ∈ Tt,T is given by

τ∗t = inf
{
s ∈ [t, T ] : E[Ys − Ss|Gs] = 0

}
∧ T. (3.4)

Proof. Let t ∈ [0, T ] be arbitrarily fixed. In order to show (3.2) and (3.4), we only need to show that
(i) For all τ ∈ Tt,T , E[Yt|Gt] ≥ E[yτt |Gt];
(ii) With τ∗t given in (3.4), it holds E[Yt|Gt] = E[y

τ∗
t
t |Gt].

(i) For each τ ∈ Tt,T , from (3.1) and (3.3), (∆Y,∆Z1,∆Z2) := (Y − yτ , Z1 − z1,τ , Z2 − z2,τ ) satisfies

∆Yt = ∆Yτ +

∫ τ

t

[as∆Ys + bs(λ1, λ2) · (∆Z1
s ,∆Z

2
s )T ]ds+Kτ −Kt −

∫ τ

t

(∆Z1
s ,∆Z

2
s ) · d(W 1,W 2)Ts ,

with the terminal condition ∆Yτ = Yτ −
[
ξI{τ=T} + SτI{τ<T}

]
. Let Γ be the unique solution of the

following SDE{
dΓs =asΓsds+ bsΓs(λ1, λ2)d(W 1,W 2)Ts = asΓsds+ bsΓsdW̃

1
s , s ∈ [t, T ],

Γt =1.
(3.5)

Then we have Γs = exp{
∫ s
t

(ar − 1
2b

2
r)dr +

∫ s
t
brdW̃

1
r } ∈ Gs, s ∈ [t, T ]. Using Itô’s formula to Γs∆Ys, we

have

∆Yt = E[Γτ∆Yτ +

∫ τ

t

ΓsdKs|Ft] ≥ E[Γτ∆Yτ |Ft], (3.6)

which implies that

E[∆Yt|Gt] ≥ E
[
Γτ∆Yτ |Gt

]
= E

[
E[Γτ∆Yτ |Gτ ]|Gt

]
= E

[
ΓτE[∆Yτ |Gτ ]|Gt

]
. (3.7)

Notice that E[Ys−Ss|Gs] ≥ 0, s ∈ [0, T ], we have E[Ys− ξI{s=T}−SsI{s<T}|Gs] ≥ 0, from which it holds

E[∆Yτ |Gτ ] = E[Yτ − ξI{τ=T} − SτI{τ<T}|Gτ ] ≥ 0.

Then it follows from (3.7) that E[∆Yt|Gt] ≥ 0, i.e., E[Yt|Gt] ≥ E[yτt |Gt].

(ii) From (3.4) we can check

E[∆Yτ∗
t
|Gτ∗

t
] = E[

(
Yτ∗

t
− Sτ∗

t

)
· I{τ∗

t <T} +
(
Yτ∗

t
− ξ
)
· I{τ∗

t =T}|Gτ∗
t
] = 0. (3.8)

Combining (3.8), noting that inequalities (3.6) and (3.7) with τ = τ∗t turn to be equalities since Kτ∗
t

= Kt,

we get E[Yt|Gt] = E[y
τ∗
t
t |Gt].

Remark 3.2. From Corollary 3.1 and Theorem 3.1, we conclude that the link between conditional RB-
SDEs and optimal stopping problems can be obtained in two special cases:
(1) When f(s, y, z) ≡ f(s), partial information G needs no requirement except the basic assumption;
(2) When f is linear in (y, z), partial information G may need some specific structure as given above.
The study of the link between conditional RBSDEs and optimal stopping problems with general nonlinear
driver f and partial information G is left for the further research.

With the help of Theorem 3.1, we can show that comparison theorem holds for linear conditional
RBSDE (3.1).
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Corollary 3.2. (Comparison Theorem) Suppose that (ξi, S
i), i = 1, 2, satisfy the Assumption (H1). Let

(Y i, Zi,Ki), i = 1, 2, be the unique solution of conditional RBSDE
Y it = ξi +

∫ T

t

[asY
i
s + bs(λ1, λ2)Zis + cis]ds+Ki

T −Ki
t −

∫ T

t

ZisdWs, t ∈ [0, T ],

E[Y it − Sit |Gt] ≥ 0, ∀ t ∈ [0, T ];

∫ T

0

E[Y it − Sit |Gt]dKi
t = 0.

If the following conditions hold:
(1) For the terminal conditions ξ1 and ξ2, E[ξ1|GT ] ≥ E[ξ2|GT ],
(2) For the processes c1 and c2, E[c1t |Gt] ≥ E[c2t |Gt], for t ∈ [0, T ],
(3) For the barriers S1 and S2, E[S1

t |Gt] ≥ E[S2
t |Gt], for t ∈ [0, T ],

then for each t ∈ [0, T ], we get
E[Y 1

t |Gt] ≥ E[Y 2
t |Gt], P-a.s.

Proof. From Theorem 3.1, we get, for t ∈ [0, T ], i = 1, 2,

E[Y it |Gt] = esssup
τ∈Tt,T

E[yit|Gt], (3.9)

where (yi, zi) is the unique solution of the following BSDE

yis = [ξiI{τ=T} + SiτI{τ<T}] +

∫ τ

s

[ary
i
r + br(λ1, λ2)zir + cir]dr −

∫ τ

s

zirdWr, s ∈ [t, τ ].

Similar to the proof of Theorem 3.1, we get

E[∆yt|Gt] = E[Γτ∆yτ +

∫ τ

t

Γs∆csds|Gt], (3.10)

where Γ is the solution of SDE (3.5), ∆yt = y1t − y2t , ∆yτ = (ξ1 − ξ2)I{τ=T} + (S1
τ − S2

τ )I{τ<T} and
∆cs = c1s − c2s. Since

E[Γτ∆yτ |Gt] = E[ΓτE[∆yτ |Gτ ]|Gt] ≥ 0, E[

∫ τ

t

Γs∆csds|Gt] = E[

∫ τ

t

ΓsE[∆cs|Gs]ds|Gt] ≥ 0,

it follows from (3.10) that
E[y1t |Gt] ≥ E[y2t |Gt], for each τ ∈ Tt,T ,

from which we can conclude the desired result by using (3.9).

Remark 3.3. As the Example 3.3 in [15] shows that we can not expect to compare Y 1 and Y 2 pointwisely
in Corollary 3.2. It seems reasonable to compare these two terms under the conditional expectation with
respect to the partial information G.

4 Backward recursive reflected control problems with partial
information

In this section, inspired by Example 1.2 in Introduction, we consider backward recursive reflected control
problems with partial information (BRR problems, for short), where the payoff is given by controlled
conditional RBSDEs. Throughout this section, we adopt the partial information G introduced in Section
3. For simplicity of notation, we choose the orthogonal matrix U to be an identity matrix (i.e., λ1 =
λ4 = 1, λ2 = λ3 = 0) and thus the partial information G is generated by the first component W 1 of the
Brownian motion W = (W 1,W 2). Let V be a nonempty compact subset of Rk. An admissible control
v : [0, T ]× Ω→ V is an G-adapted process such that

E
[ ∫ T

0

|vt|2dt
]
<∞,
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and we denote by V the set of all admissible controls. Herein, G represents the information available to
the controller, which is usually incomplete in most situations.

We consider two types of weak formulations of BRR problems: linear case and convex case, for
both the state equation is described by the following SDE

Xt = x0 +

∫ t

0

σ(s,Xs)dWs, t ∈ [0, T ], x0 ∈ R2, (4.1)

where the coefficient σ : [0, T ]×R2 → R2×2 is Lipschitz in x and σ(t, 0) is uniformly bounded with respect
to t ∈ [0, T ]. It is well known that SDE (4.1) has a unique solution X ∈ S2.

Remark 4.1. If we choose

σ(t, (x1, x2)T ) =

(
σ1x1 0

0 σ2x2

)
,

with σ1 and σ2 are two given constants, then SDE (4.1) can be applied to model the price of two stocks
with zero return rate (see equation (1.5)), namely, Xt = (X1

t , X
2
t ) stands for the price of the first and

second stocks at time t. In this situation, G represents the price information of the first stock, which is
the only one observed by the investor.

On the other hand, the structure of this partial information G can be linked to the large-population
problems (see, e.g., [1, 2, 12, 17]) with representing the information of common noise.

Let the function b : [0, T ]× R2 × V → R be uniformly bounded and continuous with respect to v.
For each given v ∈ V, we define a probability measure Pv on (Ω,GT ), which is equivalent to P and whose
density function is given by

dPv

dP

∣∣∣
GT

= exp
{∫ T

0

b(t,E[Xt|Gt], vt)dW 1
t −

1

2

∫ T

0

|b(t,E[Xt|Gt], vt)|2dt
}
. (4.2)

Herein, we assume that the controller will use the probability measure Pv instead of P to measure the
performance of the related payoffs. It seems natural that the probability measure Pv chosen by the
controller should rely on the available information G and the conditional unbiased estimate of the state
E[Xt|Gt] based on this information.

Remark 4.2. When considering the weak formulations of optimal control and game problems with full
information, it is common to introduce the probability measure Pv similar to (4.2), such as [7] and [13].
However, such structure (4.2) with partial information is still totally new.

Thanks to Girsanov Theorem, the process

dW v
t := −

(
b(t,E[Xt|Gt], vt)

0

)
dt+ dWt, t ∈ [0, T ], (4.3)

is a Brownian motion under the probability measure Pv. Next, we introduce the payoffs of linear and
convex BRR problems in Subsection 4.1 and Subsection 4.2, respectively.

4.1 Weak formulation of linear BRR problems

We first introduce the following linear conditional RBSDE
Y vt = Φ(XT ) +

∫ T

t

[αsY
v
s + βsZ

1,v
s + g(s,E[Xs|Gs], vs)]ds+Kv

T −Kv
t −

∫ T

t

(Z1,v
s , Z2,v

s )dW v
s , t ∈ [0, T ],

E[Y vt − h(t,Xt)|Gt] ≥ 0, ∀ t ∈ [0, T ], a.s.,

∫ T

0

E[Y vt − h(t,Xt)|Gt]dKv
t = 0,

(4.4)
where the mappings

α : Ω×[0, T ]→ R, β : Ω×[0, T ]→ R, g : Ω×[0, T ]×R2×V → R, h : Ω×[0, T ]×R2 → R, Φ : Ω×R2 → R,
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are measurable and satisfy the following condition

(H2)



(i) The processes α and β are G-adapted and uniformly bounded;
(ii) For each (x, v), g(·, x, v) is G-adapted; g is continuous in v and satisfies

|g(t, x, v)| ≤ C(1 + |x|), P-a.s., for all t ∈ [0, T ];
(iii) For each x, h(·, x) is F-adapted;h is continuous in (t, x) satisfying

|h(t, x)| ≤ C(1 + |x|), P-a.s., for all t ∈ [0, T ];
(iv) For each x, Φ(x) is FT -measurable; Φ is continuous in x and satisfies

|Φ(x)| ≤ C(1 + |x|), E[h(T, x)|GT ] ≤ E[Φ(x)|GT ], x ∈ R2.

For each given v ∈ V, we can check from Theorem 2.3 and (4.3) that conditional RBSDE (4.4) has a
unique solution (Y v, Zv,Kv) in S2 × H2 × A2

G under the Assumption (H2). The payoff of linear BRR
problem with admissible control v is defined as Y v0 and the aim is to maximize this recursive payoff over
all admissible controls v ∈ V, i.e.,

(Linear BRR) sup
v∈V

Y v0 . (4.5)

From (4.4), we see that Y v0 ≥ h(0, x0), for all v ∈ V, which implies that linear BRR problem (4.5) is a
type of optimization problems with an inequality-type constraint.

From Theorem 3.1, it holds that Y v0 = supτ∈T0,T y
τ,v
0 . As a result, we only need to consider the

following mixed control problem, which is equivalent to linear BRR problem (4.5),

sup
τ∈T0,T

sup
v∈V

yτ,v0 ,

where, for each (v, τ) ∈ V × T0,T , (yτ,v, zτ,v) ∈ S2 ×H2 is the unique solution of BSDE
−dyτ,vt =

[
αty

τ,v
t + βtz

1,τ,v
t + z1,τ,vt · b(t,E[Xt|Gt], vt) + g(t,E[Xt|Gt], vt)

]
dt− (z1,τ,vt , z2,τ,vt )dWt, t ∈ [0, τ ],

yτ,vτ =
[
Φ(XT )I{τ=T} + h(τ,Xτ )I{τ<T}

]
,

which can be rewritten as the following filtered BSDE
−dE[yτ,vt |Gt] =

[
αtE[yτ,vt |Gt] + βtE[z1,τ,vt |Gt] + E[z1,τ,vt |Gt] · b(t,E[Xt|Gt], vt) + g(t,E[Xt|Gt], vt)

]
dt

− E[z1,τ,vt |Gt]dW 1
t , t ∈ [0, τ ],

E[yτ,vτ |Gτ ] =E
[
Φ(XT )I{τ=T} + h(τ,Xτ )I{τ<T}

∣∣∣Gτ].
Using the classical comparison theorem and the stable property of BSDE, we get the results as follows.

Lemma 4.1. Under the Assumption (H2), it holds, for each fixed τ ∈ T0,T ,

sup
v∈V

yτ,v0 = ỹτ0 ,

where (ỹτ , z̃1,τ ) is G-adapted and the unique solution of the BSDE
−dỹτt =

[
αtỹ

τ
t +G(t,E[Xt|Gt], z̃1,τt )

]
dt− z̃1,τt dW 1

t , t ∈ [0, τ ],

ỹττ =E
[
Φ(XT )I{τ=T} + h(τ,Xτ )I{τ<T}

∣∣∣Gτ],
where

G(t, x, z1) := βtz1 + sup
v∈U

{
z1 · b(t, x, v) + g(t, x, v)

}
.

Moreover, an optimal control has the following feedback form

v∗t = ṽ(t, z̃1,τt ,E[Xt|Gt]),

where ṽ(t, z1, x) = argmaxv∈U
{
z1 · b(t, x, v) + g(t, x, v)

}
.
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Combining Lemma 4.1 and the classical result on relationship between RBSDEs and optimal
stopping problems (see, e.g., Theorem 3.3 in [25]), we obtain the characterization of the value of linear
BRR problem (4.5) as follows.

Theorem 4.1. Suppose that Assumption (H2) holds. Then it holds

sup
v∈V

Y v0 (= sup
τ∈T0,T

sup
v∈V

yτ,v0 = sup
τ∈T0,T

ỹτ0 ) = P0,

where (P,Q,K) is the solution of the following filtered RBSDE
Pt = E[Φ(XT )|GT ] +

∫ T

t

[
αsPs +G(s,E[Xs|Gs],Qs)

]
ds+KT −Kt −

∫ T

t

QsdW 1
s , t ∈ [0, T ],

Pt − E[h(t,Xt)|Gt] ≥ 0, ∀ t ∈ [0, T ], a.s.,

∫ T

0

Pt − E[h(t,Xt)|Gt]dKt = 0.

Moreover, an optimal stopping is given as τ∗ := inf{t ≥ 0 : Pt − E[h(t,Xt)|Gt] = 0} ∧ T.

4.2 Weak formulation of Convex BRR problems

In this subsection, we extend the above linear BRR problems to convex case. The goal is described by

(Convex BRR) sup
v∈V

Y v0 , (4.6)

where the payoff Y v0 is given by the following convex conditional RBSDE
Y vt = Φ(XT ) +

∫ T

t

f(s,E[Xs|Gs], Y vs , Z1,v
s , vs)ds+Kv

T −Kv
t −

∫ T

t

(Z1,v
s , Z2,v

s )dW v
s , t ∈ [0, T ],

E[Y vt − h(t,Xt)|Gt] ≥ 0, ∀ t ∈ [0, T ], a.s.,

∫ T

0

E[Y vt − h(t,Xt)|Gt]dKv
t = 0,

(4.7)

and X is the solution of SDE (4.1), Pv and W v is given in (4.2) and (4.3), respectively. We assume that
the terminal Φ and the barrier h satisfy the Assumption (H2), and the generator f satisfies

(H3)

{
(i) f is Lipschitz (with Lipschitz constant µ) and convex in (y, z), uniformly in (t, x, v).
(ii) f(s, 0, 0, 0, 0) is G-adapted; |f(t, x, 0, 0, v)| ≤ C(1 + |x|+ |v|), ∀ t ∈ [0, T ].

Notice that equation (4.7) has a unique solution (Y v, Zv,Kv) for each v ∈ V, since it is equivalent to
Y vt = Φ(XT ) +

∫ T

t

φ(s,E[Xs|Gs], Y vs , Z1,v
s , vs)ds+Kv

T −Kv
t −

∫ T

t

(Z1,v
s , Z2,v

s )dWs, t ∈ [0, T ],

E[Y vt − h(t,Xt)|Gt] ≥ 0, ∀ t ∈ [0, T ], a.s.,

∫ T

0

E[Y vt − h(t,Xt)|Gt]dKv
t = 0,

where
φ(t, x, y, z1, v) := f(t, x, y, z1, v) + b(t, x, v) · z1.

It is easy to check that φ satisfies (H3). Using Fenchel-Moreau Theorem, we have

φ(t,E[Xt|Gt], y, z1, vt) = esssup
(α,β)∈AG

{αty + βtz
1 − F (t,E[Xt|Gt], αt, βt, vt)}, (4.8)

where AG :=
{

(α, β) : G-predictable, [−µ, µ]× [−µ, µ]-valued and E
∫ T
0
|F (t, αt, βt, vt)|2dt <∞

}
and

F (t, x, α, β, v) := sup
(y,z1)∈R×R

{αy + βz1 − φ(t, x, y, z1, v)}.

We first establish the relationship of the solution of conditional RBSDEs between convex and linear
generators.
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Lemma 4.2. For each v ∈ V, it holds,

Y v0 = sup
(α,β)∈AG

Y v,α,β0 , (4.9)

where (Y v,α,β , Zv,α,β ,Kv,α,β) is the unique solution of the following linear conditional RBSDE

Y v,α,βt = Φ(XT ) +

∫ T

t

[
αsY

v,α,β
s + βsZ

1,v,α,β
s − F (s,E[Xs|Gs], αs, βs, vs)

]
ds

+Kv,α,β
T −Kv,α,β

t −
∫ T

t

(Z1,v,α,β
s , Z2,v,α,β

s )dWs, t ∈ [0, T ],

E[Y v,α,βt − h(t,Xt)|Gt] ≥ 0, ∀ t ∈ [0, T ];

∫ T

0

E[Y v,α,βt − h(t,Xt)|Gt]dKv,α,β
t = 0.

(4.10)

Proof. We denote

c1s(α, β) := φ(s,E[Xs|Gs], Y vs , Z1,v
s , vs)− αsY vs − βsZ1,v

s , c2s(α, β) := −F (s,E[Xs|Gs], αs, βs, vs).

For each (α, β) ∈ AG, from (4.8) we have c1s(α, β) ≥ c2s(α, β). Then using Corollary 3.2 we obtain

Y v0 ≥ Y
v,α,β
0 , for each (α, β) ∈ AG. (4.11)

On the other hand, from (4.8) there exists (αε, βε) ∈ AG (see, e.g. Lemma 3.1 in [22] for the construction
of such (αε, βε)) such that

φ(s,E[Xs|Gs], y, z1, vs) ≤ αεsy + βεsz
1 − F (s,E[Xs|Gs], αεs, βεs , vs]) + ε.

Then using Theorem 2.1, we get

E
[

sup
0≤s≤T

|Y vs − Y v,α
ε,βε

s |2 +

∫ T

0

|Zvs − Zv,α
ε,βε

s |2ds+ sup
0≤s≤T

|(Kv
T −Kv

s )− (Kv,αε,βε

T −Kv,αε,βε

s )|2
]
≤ Cε2,

from which we conclude that Y v0 ≤ Y
v,αε,βε

0 +Cε
1
2 . Combining this and (4.11), we finally show (4.9).

Using Lemma 4.2, the convex BRR problem (4.6) can be transformed to the supremum of a family
of linear BRR problems

sup
v∈V

Y v0 = sup
v∈V

sup
(α,β)∈AG

Y v,α,β0 = sup
(α,β)∈AG

(
sup
v∈V

Y v,α,β0

)
. (4.12)

For each fixed (α, β) ∈ AG, we get from Corollary 3.2 and Theorem 2.1 that

sup
v∈V

Y v,α,β0 = Y
α,β

0 , (4.13)

where (Y
α,β
, Z

α,β
,K

α,β
) is the unique solution of the following linear conditional RBSDE

Y
α,β

t = Φ(XT ) +

∫ T

t

[
αsY

α,β

s + βsZ
1,α,β

s − F (s,E[Xs|Gs], αs, βs)
]
ds+K

α,β

T −Kα,β

t

−
∫ T

t

(Z
1,α,β

s , Z
2,α,β

s )dWs, t ∈ [0, T ],

E[Y
α,β

t − h(t,Xt)|Gt] ≥ 0, ∀ t ∈ [0, T ];

∫ T

0

E[Y
α,β

t − h(t,Xt)|Gt]dK
α,β

t = 0,

and F (s, x, α, β) := infv∈U F (s, x, α, β, v).
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Remark 4.3. Compared with Theorem 4.1, the proof of the conclusion (4.13) seems more direct since
the term involving in z of the generator in (4.10) does not depend on the control v, different from the
situation considered in (4.4). As a result, we can use the comparison theorem of conditional RBSDEs
(Corollary 3.2) directly.

Combining with (4.12) and (4.13), similar to the proof of Lemma 4.2, we obtain the following
characterization of the value of convex BRR problem (4.6) via the associated convex conditional RBSDE.

Theorem 4.2. The value of convex BRR problem (4.6) has the representation

sup
v∈V

Y v0 = Y 0,

where (Y , Z,K) is the unique solution of the following convex conditional RBSDE
Y t = Φ(XT ) +

∫ T

t

f(s,E[Xs|Gs], Y s, Z
1

s)ds+KT −Kt −
∫ T

t

(Z
1

s, Z
2

s)dWs, t ∈ [0, T ],

E[Y t − h(t,Xt)|Gt] ≥ 0, ∀ t ∈ [0, T ];

∫ T

0

E[Y t − h(t,Xt)|Gt]dKt = 0,

and the convex generator f is defined as follows

f(t,E[Xt|Gt], y, z1) := esssup
(α,β)∈AG

{αty + βtz
1 − F (t,E[Xt|Gt], αt, βt)}.

5 Backward recursive reflected control and zero-sum stochastic
differential game problems with full information

In contrast to the study of weak formulations of linear and convex control problems in Section 4, strong
formulations of the general (requiring neither linear nor convex) BRR problems and a class of zero-sum
stochastic differential games will be considered respectively in this section, but under full information
framework, i.e., G = F. Moreover, for both cases the state equations are driven by controlled stochastic
functional differential equations, and both payoffs are described by the solution of the related RBSDEs.

For BRR problems, we show the value of the strong formulation is the same to that of weak
ones. Such idea was firstly introduced by Bouchard, Elie, Moreau [4] to address a type of linear control
problems without any constraints on the recursive payoffs. Combining with nonlinear Snell envelope
theory, we generalize the equivalent result between strong and weak formulations obtained in [4] to a
type of nonlinear control problems with constrained payoffs. Then we characterize the value of strong
formulation of BRR problems via the associated RBSDEs. Moreover, we extend the study of the general
BRR problems to a type of zero-sum stochastic differential games and obtain the closed form of the saddle
point with the help of the solution of the corresponding RBSDE under the well-known Isaacs condition.

In this section, the underlying probability space (Ω,F ,P) is chosen to be a Wiener space, namely,
Ω = C0([0, T ];Rd) is the set of all continuous functions from [0, T ] to Rd with value 0 at initial time, F is
the complete Borel σ-field on Ω, P is the Wiener measure such that the canonical processes Ws(ω) = ω(s),
s ∈ [0, T ], ω ∈ Ω, is a d-dimensional standard Brownian motion.

5.1 Strong formulation of BRR problems with full information

We formulate the strong version of BRR problems with full information. In this situation, the set V of
admissible controls in Section 4 turns out to be

VF :=
{
v
∣∣∣v is V -valued F-adapted process such that E

[ ∫ T

0

|vt|2dt
]
<∞

}
. (5.1)

We denote by X the space of continuous functions from [0, T ] to Rd endowed with the uniform norm
‖X‖t = sup0≤s≤t |Xt|, t ∈ [0, T ]. Let the measurable functions b : [0, T ] × X × V → Rd and σ :
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[0, T ]× X→ Rd×d satisfy

(A1)



(i) For each v ∈ V and continuous progressively measurable process x, (b(t, x, v))0≤t≤T and
(σ(t, x))0≤t≤T are progressively measurable.

(ii) There exists a constant C > 0 such that, for every t ∈ [0, T ], x, x′ ∈ X, v ∈ V,
|b(t, x, v)− b(t, x′, v)|+ |σ(t, x)− σ(t, x′)| ≤ C‖x− x′‖t.

(iii) b is continuous in v and uniformly bounded.
(iv) σ is uniformly bounded and invertible, and its inverseσ−1 is also uniformly bounded.

The controlled state is described by the following stochastic functional differential equation (SFDE)

Xv
t = x0 +

∫ t

0

b(s,Xv, vs)ds+

∫ t

0

σ(s,Xv)dWs, t ∈ [0, T ]. (5.2)

Under the condition (A1), it is well known (see, e.g., Theorem 2.1 in [26] (Page 348 therein)) that SFDE
(5.2) exists a unique solution Xv ∈ S2 for each v ∈ VF.

Remark 5.1. Noting that the coefficients b and σ at each time t depend on the entire path of the state
Xv from 0 to t rather than only the current time t, such SFDE is non-Markovian.

On the other hand, the boundedness assumption of b, σ and σ−1 can be relaxed to the linear growth
condition, such as |b(t, x, v)| ≤ C(1+‖x‖t), (t, x, v) ∈ [0, T ]×X×V . We impose those stronger assumption
as in (A1) in order to avoid more technique details and focus on the novelty of our approach.

We introduce the associated constrained recursive payoff. Let

f : [0, T ]× X× R× Rd × V → R, h : [0, T ]× X→ R, Φ : X→ R,

satisfy

(A2)



(i) For each (y, z, v) ∈ R× Rd × V and continuous progressively measurable process x,
f(·, x, y, z, v), h(·, x) and Φ(x) are progressively measurable;

(ii) f is continuous in (t, v) and there exists a constant C > 0 such that, for all t ∈ [0, T ], v ∈ V,
x, x′ ∈ X, (y, z), (y′, z′) ∈ R× Rd,

|f(t, x, y, z, v)− f(t, x′, y′, z′, v)| ≤ C(‖x− x′‖t + |y − y′|+ |z − z′|);
(iii) h is continuous in (t, x) and there exists a constant C > 0 such that |h(t, x)| ≤ C(1 + ‖x‖t);
(iv) There exists a constant C > 0 such that, |Φ(x)| ≤ C(1 + ‖x‖T ); h(T, x) ≤ Φ(x), x ∈ X.

The constrained payoff Y v0 with the admissible control v is described by the following controlled RBSDE
Y vt = Φ(Xv) +

∫ T

t

f(s,Xv, Y vs , Z
v
s , vs)ds+Kv

T −Kv
t −

∫ T

t

Zvs dWs, t ∈ [0, T ],

Y vt ≥ h(t,Xv), ∀ t ∈ [0, T ], a.s.,

∫ T

0

[Y vt − h(t,Xv)]dKv
t = 0,

where Φ and f stands for the terminal and instantaneous payoff, respectively, h is the constraint condition
of the payoff. The functionals Φ, f and h are allowed to rely on the entire history state rather than only
the current value, which seems more realistic. For each v ∈ VF, it is clear that there exists a unique
solution (Y v, Zv,Kv) ∈ S2×H2×A2 under the condition (A2). The aim of the controller is to maximize
this payoff Y v0 over all admissible controls, i.e.,

(Strong BRR-F) sup
v∈VF

Y v0 . (5.3)

In order to address the strong BRR-F problem (5.3), we introduce the weak formulation of this
problem and then show their values coincide. We denote by X the unique solution of the following SFDE

Xt = x0 +

∫ t

0

σ(s,X)dWs, t ∈ [0, T ]. (5.4)
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It is clear that E[‖X‖pT ] ≤ C(1 + |x0|p), for all p ≥ 2. For each given admissible control v ∈ VF, we define
a probability measure Pv on (Ω,F), which is equivalent to P and whose density function is given by

dPv

dP

∣∣∣
FT

= exp{
∫ T

0

σ−1(t,X)b(t,X, vt)dWt −
1

2

∫ T

0

|σ−1(t,X)b(t,X, vt)|2dt}.

Thanks to Girsanov Theorem, the process

dW v
t := −σ−1(t,X)b(t,X, vt)dt+ dWt, t ∈ [0, T ],

is a Brownian motion under the probability measure Pv. Moreover, X is the weak solution of the following
SFDE

Xt = x0 +

∫ t

0

b(s,X, vs)ds+

∫ t

0

σ(s,X)dW v
s , t ∈ [0, T ].

The aim of this weak formulation of BRR-F problem is given by

(Weak BRR-F) sup
v∈VF
Yv0 , (5.5)

where (Yv,Zv,Kv) is the solution of the following controlled RBSDE
Yvt = Φ(X) +

∫ T

t

f(s,X,Yvs ,Zvs , vs)ds+KvT −Kvt −
∫ T

t

Zvs dW v
s , t ∈ [0, T ],

Yvt ≥ h(t,X), ∀ t ∈ [0, T ], a.s.,

∫ T

0

[Yvt − h(t,X)]dKvt = 0.

Then we have the following relationship between the strong BRR-F problem (5.3) and weak ones (5.5).

Theorem 5.1. Under the Assumptions (A1)-(A2), it holds

sup
v∈VF
Yv0 = sup

v∈VF
Y v0 .

Proof. We denote by T F
t,T the set of F-stopping times with values in [t, T ]. It follows from the nonlinear

Snell envelope theory (see, e.g., Theorem 3.3 in [25]), for each v ∈ VF, t ∈ [0, T ],

Y vt = esssup
τ∈T F

t,T

yτ,vt , (5.6)

where, for each τ ∈ T F
t,T , (yτ,v, zτ,v) is the unique solution of the following BSDE

yτ,vs =
[
Φ(Xv)I{τ=T} + h(τ,Xv)I{τ<T}

]
+

∫ τ

s

f(r,Xv, yτ,vr , zτ,vr , vr)dr −
∫ τ

s

zτ,vr dWr, s ∈ [t, τ ].

From (5.6), we have
Y v0 = sup

τ∈T F
0,T

yτ,v0 . (5.7)

Similarly, we get
Yv0 = sup

τ∈T F
0,T

yτ,v0 , (5.8)

where, for each τ ∈ T F
0,T , (yτ,v, zτ,v) is the unique solution of the following BSDE

yτ,vt =
[
Φ(X)I{τ=T} + h(τ,X)I{τ<T}

]
+

∫ τ

t

f(s,X, yτ,vs , zτ,vs , vs)ds−
∫ τ

t

zτ,vs dW v
s , t ∈ [0, τ ].

Step 1. We show that for each (τ, v) ∈ T F
0,T × V1, there exist (τ1, v1), (τ2, v2) ∈ T F

0,T × VF such that

yτ,v0 = yτ1,v10 , yτ,v0 = yτ2,v20 , (5.9)
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where V1 ⊆ VF is the set of simple processes v, i.e.,

v(t, ω) =

N−1∑
i=0

ζi(ω) · I{ti<t≤ti+1}, (5.10)

where π = {0 = t0 < t1 < · · · < tN = T} is a partition of [0, T ], ζi is Fti -measurable bounded V -valued
random variable, i = 0, 1, 2, · · · , N − 1.

For each v ∈ V1 with the form (5.10), we identify ζi as a Borel measurable function ω → ζi(ω) =
ζi(ω·∧ti), and we define

v1(t, ω) =

N−1∑
i=0

ζi(ω
ζ) · I{ti<t≤ti+1},

where wζ is defined recursively as follows, for i = 0, 1, 2, · · · , N − 1, t ∈ (ti, ti+1],

ωζ0 = 0, ωζt = ωt −
i−1∑
k=0

∫ tk+1

tk

σ−1(s,X)b(s,X, ζk(ωζtk))ds−
∫ t

ti

σ−1(s,X)b(s,X, ζi(ω
ζ
ti))ds. (5.11)

It is easy to check that v1 ∈ VF. Comparing SFDEs

Xv
t = Xv

ti +

∫ t

ti

b
(
s,Xv, ζi(Ws∧ti)

)
ds+

∫ t

ti

σ(s,Xv)dWs, t ∈ [ti, ti+1],

with

Xt = Xti +

∫ t

ti

b
(
s,X, ζi(W

v1
s∧ti)

)
ds+

∫ t

ti

σ(s,X)dW v1
s , t ∈ [ti, ti+1],

we obtain the law of (Xv, v,W ) under P and that of (X, v1,W
v1) under Pv1 coincide from the uniqueness

of the weak solution of SFDE (see, e.g., Theorem 4.2 of Chapter 4 in [18]). For each τ ∈ T F
0,T , we define

τ1(ω) := τ(ωζ), (5.12)

where ωζ is given in (5.11). Since ω → τ(ω) = τ(W·) can be identified as a Borel measurable function,
then τ1(ω) = τ(W v1

· ) is a stopping time, i.e., τ1 ∈ T F
0,T . Using the discrete-time approximation (see, e.g.,

Lemma A.4 in [4]) for the following BSDEs with h̃(t, x) := Φ(x)I{t=T} + h(t, x)I{t<T},

yτ,v0 =h̃(τ,Xv) +

∫ T

0

I{t≤τ} · f(t,Xv, yτ,vt , zτ,vt , v(t))dt−
∫ T

0

I{t≤τ} · zτ,vt dWt,

yτ1,v10 =h̃(τ1, X) +

∫ T

0

I{t≤τ1} · f(t,X, yτ1,v1t , zτ1,v1t , v1(t))dt−
∫ T

0

I{t≤τ1} · z
τ1,v1
t dW v1

t ,

we get
yτ,v0 = lim

n→∞
yn,τ,v0 , yτ1,v10 = lim

n→∞
yn,τ1,v10 , (5.13)

where (yn,τ,v, zn,τ,v) and (yn,τ1,v1 , zn,τ1,v1) is defined recursively, respectively, as follows, for i = n −
1, · · · , 0 (with tni := iTn )

yn,τ,vtni
= E[yn,τ,vtni+1

+

∫ tni+1

tni

I{t≤τ(W )} · f(t,Xv, yn,τ,vtni
, zn,τ,vtni

, ζi(Wt∧tni ))dt
∣∣Ftni ],

zn,τ,vtni
= (tni+1 − tni )−1 · I{tni ≤τ(W )} · E[yn,τ,vtni+1

(Wtni+1
−Wtni

)
∣∣Ftni ],

yn,τ1,v1tni
= EPv1 [yn,τ1,v1tni+1

+

∫ tni+1

tni

I{t≤τ(Wv1 )} · f(t,X, yn,τ1,v1tni
, zn,τ1,v1tni

, ζi(W
v1
t∧tni

))dt
∣∣Ftni ],

zn,τ1,v1tni
= (tni+1 − tni )−1 · I{tni ≤τ(Wv1 )} · EPv1 [yn,τ1,v1tni+1

(W v1
tni+1
−W v1

tni
)
∣∣Ftni ].
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Noting that the law of (Xv,W ) under the probability measure P is the same to that of (X,W v1) under
the measure Pv1 , we obtain yn,τ,v0 = yn,τ,v10 . Then it follows from (5.13) that the first equality in (5.9)
holds, i.e., yτ,v0 = yτ1,v10 .

Similarly, we can show that the second equality in (5.9) holds. In this case, for each v ∈ V1 with
the form (5.10), we define

v2(s, ω) = ζi(ω
ζ
s∧ti), s ∈ (ti, ti+1],

where wζ is defined recursively as follows: for i = 0, 1, 2, · · · , n− 1, ωζ0 = 0,

ωζs = ωs +

i−1∑
k=0

∫ tk+1

tk

σ−1(t,Xv2)b(t,Xv2 , ζk(ωζtk))dt+

∫ s

ti

σ−1(t,Xv2)b(t,Xv2 , ζi(ω
ζ
ti))dt, s ∈ (ti, ti+1].

For each τ ∈ T F
0,T , we define τ2 ∈ T F

0,T similar to the definition of τ1 given in (5.12). Using the same
arguments as above, it holds yτ,v0 = yτ2,v20 .
Step 2. We show that

sup
v∈VF

sup
τ∈T F

0,T

yτ,v0 = sup
v∈VF

sup
τ∈T F

0,T

yτ,v0 . (5.14)

For each v ∈ VF, there exists a sequence vn ∈ V1 such that E
∫ T
0
|vs − vns |2ds→ 0, as n→∞. Then from

the classical arguments, we get E[‖Xv − Xvn‖2T ] → 0. Moreover, from the stability property of BSDE,

we get yτ,v0 = limn→∞ yτ,v
n

0 . Then it holds

sup
v∈VF

sup
τ∈T F

0,T

yτ,v0 = sup
v∈V1

sup
τ∈T F

0,T

yτ,v0 . (5.15)

Similarly, we have
sup
v∈VF

sup
τ∈T F

0,T

yτ,v0 = sup
v∈V1

sup
τ∈T F

0,T

yτ,v0 . (5.16)

Using the result of Step 1 (i.e., (5.9)), (5.15) and (5.16), we obtain (5.14).
Finally, combining (5.7), (5.8) and (5.14), we get the desired result.

From Theorem 5.1, we address the strong BRR-F problem (5.3) via the weak BRR-F problem
(5.5). For this, we introduce the following Hamiltonian functional

F (t, x, y, z, v) := f(t, x, y, z, v) + zσ−1(t, x)b(t, x, v), (t, x, y, z, v) ∈ [0, T ]× X× R× Rd × V.

Under the Assumptions (A1)-(A2), F is Lipschitz in (y, z), uniformly with respect to (t, x, v) and there
exists a constant C > 0 (independent of v) such that

|F (t, x, y, z, v)| ≤ C(1 + ‖x‖t + |y|+ |z|).

We denote
G(t, x, y, z) := sup

v∈V
F (t, x, y, z, v), (t, x, y, z) ∈ [0, T ]× X× R× Rd.

Since F is continuous on the compact space V , there exists a measurable mappings v̄ : [0, T ]×X×R×Rd →
V such that

G(t, x, y, z) = F (t, x, y, z, v̄(t, x, y, z)). (5.17)

Then using comparison theorem of RBSDEs (see, for example, Theorem 4.1 in [8]) and Theorem 5.1, we
get the results as follows.

Theorem 5.2. Suppose that the Assumptions (A1)-(A2) hold. Then the value of the strong BRR-F
problem (5.3) can be characterized as follows

sup
v∈VF

Y v0 = P0,
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where (P,Q,K) is the solution of the following RBSDE
Pt = Φ(X) +

∫ T

t

G(s,X,Ps,Qs)ds+KT −Kt −
∫ T

t

QsdWs, t ∈ [0, T ],

Pt ≥ h(t,X), ∀ t ∈ [0, T ];

∫ T

0

[Pt − h(t,X)]dKt = 0.

Moreover, an optimal control v∗ ∈ VF has the following feedback form

v∗t = v̄(t,X,Pt,Qt),

where the function v̄ is given in (5.17).

Remark 5.2. When strong BRR-F problem (5.3) is of Markovian type, namely, all the involving coef-
ficients b, σ,Φ, f and h (at time t) rely on Xv

t rather than (Xv
s )0≤s≤t, such optimal control problem has

been studied by Wu and Yu [28] by using dynamic programming principle approach. Compared with their
work, the advantage of our approach is that it will allow to address such strong BRR-F problems within
non-Markovian framework. On the other hand, our approach can be applied directly to solve zero-sum
stochastic differential games as shown in the next subsection.

5.2 Zero-sum stochastic differential games with full information

In this subsection, we generalize the strong BRR-F problem (5.3) to zero-sum stochastic differential game
case. For this, let U be a nonempty compact subset of Rm. The admissible control space for Player 1 is
denoted by UF, which is defined similarly to the admissible control space VF (see (5.1)) for Player 2 with
V replacing by U . We formulate the model of the game problem. The controlled state is driven by the
following SFDE

Xu,v
t = x0 +

∫ t

0

b(s,Xu,v, us, vs)ds+

∫ t

0

σ(s,Xu,v)dWs, t ∈ [0, T ].

The payoff J(u, v) is defined by
J(u, v) = Y u,v0 , (5.18)

where (Y u,v, Zu,v,Ku,v) is the solution of the following controlled RBSDE
Y u,vt = Φ(Xu,v) +

∫ T

t

f(s,Xu,v, Y u,vs , Zu,vs , us, vs)ds+Ku,v
T −Ku,v

t −
∫ T

t

Zu,vs dWs, t ∈ [0, T ],

Y u,vt ≥ h(t,Xu,v), ∀ t ∈ [0, T ];

∫ T

0

[Y u,vt − h(t,Xu,v)]dKu,v
t = 0.

Herein, J represents the cost for Player 1 and the gain for Player 2. Thus, Player 1 aims to minimize
J(u, v) by using the control u, while Player 2 wants to maximize J(u, v) via the control v. For such
zero-sum games, we want to find a saddle point (u∗, v∗) ∈ UF × VF, i.e., for all admissible control pair
(u, v) ∈ UF × VF, it holds

J(u∗, v) ≤ J(u∗, v∗) ≤ J(u, v∗). (5.19)

The coefficients b, σ and f,Φ, h satisfy the same conditions of those (A1) and (A2) in Subsection 5.1 with
the control v replacing by a pair of controls (u, v). It is clear that the above SFDE and RBSDE exist a
unique solution (Xu,v, Y u,v, Zu,v,Ku,v) for each admissible control pair (u, v) ∈ UF × VF.

In order to find the saddle point of (5.18), we introduce an auxiliary weak formulation of this game
problem and then show that its saddle point exists, which is also a saddle point for original problem
(5.18). The state equation of the auxiliary game problem is still described by SFDE (5.4). For each given
admissible control pair (u, v) ∈ UF × VF, we define an equivalent probability measure Pu,v on (Ω,F):

dPu,v

dP

∣∣∣
FT

= exp{
∫ T

0

σ−1(t,X)b(t,X, ut, vt)dWt −
1

2

∫ T

0

|σ−1(t,X)b(t,X, ut, vt)|2dt}.
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Then the process Wu,v
t := −

∫ t
0
σ−1(s,X)b(s,X, us, vs)ds + Wt, t ∈ [0, T ], is a Brownian motion under

the probability measure Pu,v . The payoff J (u, v) of the auxiliary game problem is given by

J (u, v) = Yu,v0 , (5.20)

where (Yu,v,Zu,v,Ku,v) is the solution of the following controlled RBSDE
Yu,vt = Φ(X) +

∫ T

t

f(s,X,Yu,vs ,Zu,vs , us, vs)ds+Ku,vT −Ku,vt −
∫ T

t

Zu,vs dWu,v
s , t ∈ [0, T ],

Yu,vt ≥ h(t,X), ∀ t ∈ [0, T ];

∫ T

0

[Yu,vt − h(t,X)]dKu,vt = 0.

We have the following equivalent relation for these two game problems.

Theorem 5.3. The upper values (resp., the lower values) of game problems (5.18) and (5.20) coincide,
i.e.,

inf
u∈UF

sup
v∈VF

J(u, v) = inf
u∈UF

sup
v∈VF
J (u, v), sup

v∈VF
inf
u∈UF

J(u, v) = sup
v∈VF

inf
u∈UF

J (u, v).

We omit its proof since it is similar to that of Theorem 5.1.
From Theorem 5.3, we address the original game problem (5.18) via the equivalent auxiliary game

problem (5.20). For this, we introduce the following Hamiltonian functional

F (t, x, y, z, u, v) = f(t, x, y, z, u, v) + zσ−1(t, x)b(t, x, u, v), (t, x, y, z, u, v) ∈ [0, T ]×X×R×Rd × U × V.

Similar to most researches on stochastic differential games, we assume that the following Isaacs condition
holds:

G(t, x, y, z) := inf
u∈U

sup
v∈V

F (t, x, y, z, u, v) = sup
v∈V

inf
u∈U

F (t, x, y, z, u, v), (t, x, y, z) ∈ [0, T ]× X× R× Rd.

Obviously, G is Lipschitz in (y, z), uniformly with respect to (t, x) and there exists a constant C > 0 such
that |G(t, x, y, z)| ≤ C(1 + ‖x‖t + |y| + |z|). Since F is continuous on the compact space U × V , there
exist two measurable mappings ū (resp. v̄) : [0, T ]× X× R× Rd → U (resp. V ) such that

G(t, x, y, z) = F (t, x, y, z, ū(t, x, y, z), v̄(t, x, y, z)). (5.21)

Moreover, for all (u, v) ∈ U × V , it holds

F (t, x, y, z, ū(t, x, y, z), v) ≤ F (t, x, y, z, ū(t, x, y, z), v̄(t, x, y, z)) ≤ F (t, x, y, z, u, v̄(t, x, y, z)).

Then using comparison theorem of RBSDEs and Theorem 5.3, we get the results as follows.

Theorem 5.4. Suppose that the Isaacs condition holds. Then the value of the game problem (5.18)
exists, which can be characterized as follows

sup
v∈VF

inf
u∈UF

J(u, v) = inf
u∈UF

sup
v∈VF

J(u, v) = P0,

where (P,Q,A) is the unique solution of the following RBSDE
Pt = Φ(X) +

∫ T

t

G(s,X, Ps, Qs)ds+AT −At −
∫ T

t

QsdWs, t ∈ [0, T ],

Pt ≥ h(t,X), ∀ t ∈ [0, T ], a.s.,

∫ T

0

[Pt − h(t,X)]dAt = 0.

Moreover, the saddle point (u∗, v∗) ∈ UF × VF has the following form

u∗t = ū(t,X, Pt, Qt), v
∗
t = v̄(t,X, Pt, Qt),

where the function (ū, v̄) is given in (5.21).
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