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IEEE TRANSACTION ON IMAGE PROCESSING

Advanced Scalability for Light Field Image Coding

Hadi Amirpour, Member, IEEE, Christine Guillemot, Fellow, IEEE,
Mohammad Ghanbari, Life Fellow, IEEE, and Christian Timmerer, Senior Member, IEEE

Abstract—Light field imaging, which captures both spatial
and angular information, improves user immersion by enabling
post-capture actions, such as refocusing and changing view
perspective. However, light fields represent very large volumes
of data with a lot of redundancy that coding methods try to
remove. State-of-the-art coding methods indeed usually focus on
improving compression efficiency and overlook other important
features in light field compression such as scalability. In this
paper, we propose a novel light field image compression method
that enables (i) viewport scalability, (ii) quality scalability, (i)
spatial scalability, (iv) random access, and (v) uniform quality
distribution among viewports, while keeping compression effi-
ciency high. To this end, light fields in each spatial resolution are
divided into sequential viewport layers, and viewports in each
layer are encoded using the previously encoded viewports. In
each viewport layer, the available viewports are used to synthesize
intermediate viewports using a video interpolation deep learning
network. The synthesized views are used as virtual reference
images to enhance the quality of intermediate views. An image
super-resolution method is applied to improve the quality of the
lower spatial resolution layer. The super-resolved images are
also used as virtual reference images to improve the quality
of the higher spatial resolution layer. The proposed structure
also improves the flexibility of light field streaming, provides
random access to the viewports, and increases error resiliency.
The experimental results demonstrate that the proposed method
achieves a high compression efficiency and it can adapt to the
display type, transmission channel, network condition, processing
power, and user needs.

Index Terms—Light field, compression, scalability, random
access, deep learning.

I. INTRODUCTION

IGHT field imaging is a promising technology for pro-

viding an immersive experience to the users [1]. Unlike
traditional photography that integrates angular information into
a 2D image, light field imaging collects both spatial and
angular information, resulting in a grid of 2D views, enabling
functionalities such as changing viewport, synthesizing new
views, and immersive navigation within the captured scene.
However, light fields come with a huge amount of data for
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Fig. 1: light fields are typically represented by multiview
images. (u,v) represents the view location while (x,y) denotes
the pixel location in each view.

transmission and/or storage, making their compression and
transmission a challenging task. Therefore, a highly efficient
light field compression method is required to deal with these
images for transmission/storage. Light field compression meth-
ods are mainly categorized into two groups [2]: (i) transform-
based coding and (ii) predictive-based coding methods.

The Discrete Cosine Transform (DCT) [3], Discrete Wavelet
Transform (DWT) [4], Karhunen Loeve Transform (KLT) [5],
and Graph Fourier Transform (GFT) [6] are among the trans-
formations that have been applied to light fields to reduce
their redundancy in the transform domain. Such a transform-
based solution has been adopted in the 4D transform mode,
also known as the Multidimensional Light field Encoder
(MuLE) [3] of JPEG Pleno. The 4D redundancy of light fields
is exploited by applying a 4D-DCT transform to 4D spatio-
angular blocks. Rizkallah et al. [7] propose a graph-transform
based light field compression method using a rate-distortion
optimized graph coarsening and partitioning algorithm.

Predictive-based coding approaches are typically based on
(i) non-local spatial prediction, (ii) inter-view prediction,
and (iii) view synthesis methods. Non-local spatial predic-
tion approaches have been used to reduce the redundancy
within a lenslet image [8], [9]. High Efficiency Video Coding
(HEVC) [10] or Versatile Video Coding (VVC) [11] coding
standards have also been used to reduce the redundancy
between light field views thanks to inter-view prediction
methods. Light field views are reordered as a pseudo video
sequence (PVS) and the generated PVS is fed into the video
codec. A predefined scan order such as raster and spiral [12],
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Fig. 2: An example of converting multiview images of a light
field into a PVS using the serpentine scan order.

[13] is typically used to generate a PVS. Fig. 2 depicts the con-
version of the multiview images to a PVS using the serpentine
scan order. Wang et al. [14] analyze the relationship of the
inter-view prediction structure with the coding performance
and propose an efficient prediction structure for light field
coding.

In synthesized-based approaches, a sparse set of light field
views is first encoded and used to synthesize (predict) the
remaining views using view synthesis methods, including (i)
Depth Image Based Rendering (DIBR), as in the Warping,
merging and Sparse Prediction encoder (WaSP) [15], which
has been adopted in the JPEG Pleno coding standard, or in
[16], (ii) transform-assisted [17], and (iii) learning-based view
synthesis [18], [19] approaches.

Dib et al. [20] use a transform-assisted view synthesis
method to compress light fields. A subset of views is first
inter-coded and then used to synthesize the next subset of
views using the Fourier Disparity Layer (FDL) representation.
The prediction residuals are then inter-coded and used to
enhance the quality of synthesized views and refine the FDL
representation. Ahmad et al. [21] divide light field views into
two groups, namely, key views and decimated views. Key
views are encoded using MV-HEVC. They are then used to
synthesize the decimated views using the shearlet transform.
The residuals of synthesized views are then encoded as a single
PVS.

Hou et al. [18] propose a bi-level compensation approach
which uses the learning-based view synthesis Deep Neural
Network (DNN) proposed in [22] for light field compression.
The four corner views are inter-coded first and after decoding,
they are fed to the DNN to synthesize the remaining views.
The residuals between the synthesized views and their cor-
responding target views are reordered as a PVS and inter-
coded. Jia et al. [23] propose a light field compression method
based on a Generative Adversarial Network (GAN). They
first generate a PVS by sparsely sampling light field views
following a chessboard pattern. The intermediate views are
then synthesized from the decoded PVS views using the
GAN. The residuals between synthesized views and their
corresponding target views are then inter-coded to enhance
the quality of the synthesized views. Hu et al. [19] propose
an adaptive two-layer light field compression method based on
Graph Neural Network (GNN) reconstruction. Low- and high-
frequency components are encoded using different approaches.
The high-frequency view components are converted into a PVS

and encoded using HEVC. The low-frequency components
of the views are resampled in the angular dimension and
the selected views are inter-coded. The discarded views are
synthesized using the GNN. Bakir et al. [24] use VVC’s
temporal scalability structure to encode key views which are
then fed to a GAN to synthesize the remaining views.

Some approaches provide a form of scalability when coding
light fields. Conti et al. [25] propose a viewport scalable
coding solution for 3D light fields based on an inter-layer
prediction scheme that exploits the redundancy between multi-
view and lenslet representations. Li et al. [26] propose a three
layers disparity-compensated scheme for scalable coding of
lenslet images. Garrote ef al. [27] propose a scalable scheme
based on the wavelet transform for lenslet image coding.
Conti et al. [28], [29] propose a light field coding solution
with field of view scalability, which supports region of interest
enhancement. Komatsu ez al. [30] propose a light field coding
using weighted binary images with the support of quality
scalability. Ruefenacht er al. [31] propose a scalable light field
coding approach based on the base-anchored representation,
including scalable compression of the disparity information
itself.

In this paper, we propose a flexible light field compression
method that can be adapted to the user’s needs by supporting
the following functionalities: (a) viewport scalability, (b) spa-
tial scalability, (c) quality scalability, (d) random access, and
(e) uniform quality distribution. The proposed framework ex-
tends the method described in [32] in several ways. It first adds
spatial scalability based on a single image super-resolution
approach which is shown to give a very high rate-distortion
performance for each target spatial resolution. The flexibility
of the encoding structure has been increased by adding spatial
scalability in addition to the viewport and quality scalabilities.
This increased flexibility allows us to better address the various
trade-offs between encoding efficiency, random access, and
the different forms of scalability. A comprehensive analysis
is carried out using a light field dataset with a large parallax
which is more challenging in terms of encoding efficiency as
well as low parallax light fields.

In a nutshell, we first downscale light field views to a lower
resolution to make two spatial layers: (i) Spatial Layer 1 (SL1)
and (ii) Spatial Layer 2 (SL2). Views in each spatial layer
are divided into Viewport Layers (V Ls). Fig. 3 depicts the
structuring of 5 x 5 light field views into spatial and viewport
layers. In each V' L, the available views are used to synthesize
intermediate views and the synthesized views are used as
virtual reference images to predict their corresponding views.
To encode views in S Ly, super-resolution is applied to their
corresponding encoded viewports in SL; and they are also
added to the reference image list.

The remainder of the paper is organized as follows. The
theoretical background for light field imaging is introduced
in Section II. The functionalities supported by our proposed
method are introduced in Section III. Section IV presents the
proposed light field encoding method. Experimental results are
provided in Section V and Section VI presents the concluding
remarks.
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Fig. 3: Light field view structuring in spatial and viewport layers.

II. LIGHT FIELDS

A light field is a quantized representation of the 7D plenop-
tic function [33], i.e.,

P:P(¢u97$7y727A7t) (1)

where all light rays at every possible location (z, y, 2), at every
possible direction (6, ¢), at any time (t), over any range of
wavelengths (A\) are recorded. The light field representation
can be simplified based on some assumptions. First, light rays
are considered time-invariant, and monochromatic, resulting
in removing time (¢) and wavelength (\) dimensions. Second,
the light rays are assumed to travel in a free space, which
leads to removing another dimension. Therefore, a light field
is represented by a 4D function as follows:

LF = P(z,y,u,v) 2

where (u,v) represents the view location, and (X,y) denotes
the pixel location in each view. A two-plane parameterization
can be used to model light fields, and they are represented as
multiview images as shown in Fig. 1. To acquire light fields,
multi-array or lenslet cameras are used. For lenslet cameras,
the spatial and angular domains are multiplexed into a single
2D image, known as a lenslet image. The lenslet image can
be converted into a multiview representation [34].

IIT. FUNCTIONALITIES IN LIGHT FIELD COMPRESSION

In this section, we highlight the functionalities supported by
our proposed light field coding method.

A. Viewport scalability

Viewport scalability for light fields is provided by grouping
light field views into different layers. In this way the adaptation
to (i) capturing device, (ii) display, (iii) network condition, (iv)
processing power, and (v) storage capacity is enhanced. For
example, 2D displays might require the central view, while
3D/stereo displays need only the central view and two of its
side views. For light field displays, layers can be transmitted,
decoded, and displayed one after another. PVS-based methods
make all the views dependent on each other to highly utilize
redundancy among the views and increase the compression

efficiency. However, to access an arbitrary view, e.g., the
central view on a 2D display, all light field views should
be encoded, transmitted, and decoded. This will lead to both
bandwidth and processing power wastage as well as decoding
delay [35]. Monteiro et al. [36] divide the light field views
into multiple viewport layers and encode the views in each
layer by using the previously encoded/decoded views in the
same layer or in prior layers as references.

B. Quality scalability

Through quality scalability, the adaptation to the network
condition is provided. In this way, light fields are encoded in
two (or more) quality layers and the quality of light fields can
be improved by transmitting enhancement layers when enough
bandwidth or processing power is available. In synthesizing
views, some approaches introduced in the previous section,
e.g., [18], [21] encode their residuals as a quality enhancement
layer to improve the quality of the synthesized image.

C. Spatial scalability

To address various devices and display resolutions it is
important to provide spatial scalability. In this regard, images
are encoded at two (or more) spatial resolutions. The lower
resolution is encoded as the base layer and it is used as a
reference to encode the higher resolution(s), i.e., enhancement
layer(s).

D. Viewport random access

Navigation between various viewports is another important
factor to be considered in light field encoding solutions.
Since light field views in an inter-view prediction are highly
dependent on each other, navigation between different views
may require a huge amount of views to be decoded which can
have a high cost on decoding delay, bandwidth requirement,
and processing power. To avoid these problems, random access
to the image views should be considered in light field cod-
ing [37], [35]. Therefore, JPEG Pleno defines various metrics
within its light field coding common test conditions [38]. The
random access metric (RA) is defined as:

RA = Total amount of encoded bits required to access a view (3)
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Fig. 4: Quality variation when a user navigates between the top-left and top-right views.

The random access penalty metric (RA)) is considered as the
maximum RA among all views as:

RA,= max RA (€]

all views

The relative random access penalty metric (RRA,) is defined
as:

RRA RA (3)

_ 7
P 7 Total amount of encode bits to decode the full light field

In PVS-based light field coding solutions, RRA,, is equal
to 1, which means to access a view, the whole encoded light
field should be transmitted and the whole bitstream should
be decoded (to access, e.g., the last view). In encoding light
fields, some compression methods focus on improving random
access to arbitrary views [39], [40], [41], [42], [36], [43], [37].

E. Uniform quality distribution

Light field views in a given number of encoded bits should
have similar quality at any view. It is undesirable to provide
light field views in a way that users face different quality
levels when navigating between viewports. Fig. 4 illustrates
the quality variation when a user navigates between the top-
left and top-right views in case there is a significant difference
between the quality of those image views.

IV. SCALABLE LIGHT FIELD CODING

To address the above-mentioned functionalities, a flexible
light field compression method is proposed in this paper. To
provide spatial scalability, a light field LF is spatially down-
scaled to a lower resolution (x% in each direction). Therefore,
the light field views are provided in two spatial layers; (i) SL;
(low resolution), and (ii) S Ly (original resolution).

To support viewport scalability, both spatial layers are
divided into multiple viewport layers, each containing a subset
of views. (i) SL,V Ly consists of only the central view of the
spatial layer x. (ii) SL,V Ly consists of four corner views of
the spatial layer x. (iii) SL,V L,, (3 < m < n) comprises
the views that are equidistant from views in viewport layers
1 to m-1 in the spatial layer x, i.e., SL,V Ly to SL,V L,,_1.
A view is equidistant from two other views if it is the same
distance from them. For instance, as shown in Fig. 5, V L3

an equidistant view from views a and b

Fig. 5: VL3 comprises the views that are equidistant from
views in VL and V' Ly. [ | represents the view of V Ly, [ ]
represents views of V' Lo, and | | represents views of V L.

comprises the views that are equidistant from views in VL,
and V Lo.

The maximum number of viewport layers (n) is determined
by the angular resolution of light fields. For example, a light
field of 5 x 5 views will be decomposed into four viewport
layers (n = 4), a light field of 9 x 9 views will be decomposed
into five viewport layers (n = 5), and a light field with 17 x
17 angular resolution will be decomposed into six viewport
layers (n = 6) for each spatial resolution. Fig. 3 shows the
way a light field with an angular resolution of 5 X 5 views
is structured into two spatial resolution layers, SLq and SLo,
and four viewport layers per each spatial layer.

A. Compression of SL

We encode views at different viewport layers in different
way. (i) SL1V Lq: the central view is intra-coded, hence it can
be accessed independently. (ii) SL,V Ls: views in the second
layer are encoded independently of each other, however, using
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Fig. 6: (a) The top-left and top-right views in V L, of spatial layer SL; are used as inputs to synthesize the top view in V' L3 of
that layer. (b) The residual images between the ground truth top view in V L3 and these three images are shown. The residual
between the ground truth top view and the synthesized view has less information. (c) These views (i.e., top-left, top-right, and
synthesized views) are used as reference images in the reference list of the standard codec VVC to compress the top view in
V' L3. The encoding efficiency of these three reference images shows a significant gain when the synthesized view is used as

a reference image.

inter-coding taking the central view as a reference image. (iii)
SLiVL, (3 < m < n): the remaining views are encoded
using a predictor based on a view interpolation method as
described in the following.

In video frame interpolation methods, the optical flow
between two input frames, i.e., a per pixel translational dis-
placement, is estimated and subsequently, the intermediate
frame guided by motion is synthesized. DNNs are promis-
ing techniques to generate intermediate frames or — in our
case — views. Many video frame interpolation methods using
DNNs have been introduced [44], [45]. In this paper, we
use RIFE [46] for view interpolation as it allows real-time
flow estimation without any limit on the maximum number
of interpolated views, which makes it flexible to support a
varying number of viewport layers (cf. Section V-F).

Fig. 6.a illustrates the use of RIFE to synthesize the top view
in the 3"¢ viewport layer (SL;V L3) from two input images,
i.e., the top-left and top-right views of the second viewport
layer (SL1V Ly). The residual images between the ground
truth top view in SL1V L3 and these three images are also
shown in Fig 6.b. It is seen that the synthesized view has more
correlation with the target view and, thus, it can serve as a
better reference for predicting the top view in the 3"¢ viewport
layer (S L1V L3). We therefore use these three views, i.e., top-
left, top-right, and synthesized views, as reference images in
the reference lists of the standard video codec VVC [11] to
inter-code the top view in the 3"¢ viewport layer (SL;V Ls).
The Rate-Distortion (RD) performance (see Fig. 6.c) shows a
significant improvement when the synthesized view is used as

the reference.

When a synthesized view is used for prediction, it is added
as a virtual reference frame to the Decoded Picture Buffer
(DPB), which stores pictures for future use as reference,
and into the two Reference Picture Lists (RPLs), i.e., RPLO
and RPL1 [11]. To encode such “intermediate” view, four
references are thus needed for inter-coding: (i) the central
the synthesized view. It should be noted that the synthesized
view corresponds to a first level of quality in all the viewport
layers, a second level of quality being obtained by transmitting
a prediction residue.

B. Compression of SLo

An upscaled view of SL; can be used as an additional
reference to inter-code its corresponding view in SLsy. The
views of the second spatial layer are encoded in a different
way depending on the viewport layer to which they belong
to. (i) SLaV Ly: the central view of the second spatial layer
is inter-coded using the upscaled central view in SL1V L, as
the reference image. (ii) SLoV Lsy: the views of the second
viewport layer of the second spatial layer are encoded inde-
pendently of each other but using inter-coding, taking (a) the
central view in SLs and (b) the upscaled version of the co-
located view in SL1V Ly as reference images. (iii) SLaV Ly,
(3 £ m < n): three references are used for inter-coding views
in SLoV L,,: (a) the central view in SLs, (b) the synthesized
view, and (c) the upscaled version of the co-located view in
SL,.
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Reference frame 1

Bitstream

Reference frame 2

————
Reference frame 3

Inter coding

Fig. 7: Encoding workflow for the top view located in SLoV Ls.

The views in SLoV L, 3 < m < n) are synthesized
similar to the views in SIL1VL,, (3 < m < n). That is,
views in SLoV Ly to SLoV L, are used to synthesize
those views which are equidistant from them in SL;V L,
using RIFE. To upscale images, DNN based super-resolution
methods have shown a significant gain over the traditional
methods. Some methods have been proposed specifically for
light field super-resolution [47], [48], [49]. However, they
typically use all or a set of low resolution light field views for
the super-resolution task, which impairs the random access
functionality (cf. Section V-F). To avoid this problem, we
use a conventional single image super-resolution method in
this paper, i.e., DASR [50]. It should be noted that in SLo,
for the first quality level, intermediate views can be either
(i) synthesized using a view interpolation method or (ii)
reconstructed by applying a super-resolution approach to the
co-located view in SL;. To produce the second quality level,
they are enhanced by adding the prediction residue to the
above-mentioned reference images. Fig. 7 shows the encoding
workflow for the top view in SLoV Ls. The co-located view
in SLq, i.e., the top view located in SL,V L3, is upscaled
using DASR and it is added to the reference list. The central
view in SLo, i.e., the view located in SL,V L, is also added
to the reference list. Finally, two views that the top view is
equidistant from them, i.e., the top-left and top-right views of
the second viewport layer (SL2V L), are used as inputs of
RIFE, and the output of RIFE, i.e., the synthesized view, is
also added to the reference list. The top view is inter-coded
and the prediction residue is added to the bitstream as the
quality enhancement layer.

C. Bit Allocation and Quality Distribution

The bit allocation to different layers and views is flexible,
allowing users to allocate bits in a way that meets their needs.
In this paper, we allocate bits to provide uniform quality

distribution among the views. To this end, we encode SL,1V L;
with a base QP, and consider its quality as the reference quality
(gc1). We then empirically determine QPs for the views in
SL1V Ly in a way that similar quality to the reference quality
is achieved for views in SL1V Lo, i.e., |quicw —Gc1| < €, where
€ is a threshold. When views in SL1V L,, (3 < m < n) are
synthesized, the prediction residue is encoded if the quality of
the synthesized view (i.e., interpolated view) does not meet the
uniform quality distribution criterion, i.e., |gyicw—¢c1| £ €. QP
is empirically determined for the prediction residue to achieve
|qview —qc1| < €. For SLoV Ly, we consider the super-resolved
image of SL1V L as the first quality level and we encode
the prediction residue with the base QP to provide quality
scalability for SLoV L; and its final quality is referred to as
qc2- For the views in SLyV Lo, we consider the super-resolved
image of co-located views in SLyV Ly as the first quality level
and we encode the prediction residue if |gyicw — ge2| £ € by
determining empirically QP to meet |¢yicw — qe2| < €.

For views in SLyV L, (3 < m < n), the reconstruction
quality of the interpolated (synthesized) view and upscaled im-
age by super-resolution is measured and their maximum value
is calculated (qyiew) for each view. ;e 1S then compared
with the reconstructed quality of the central view (g.2). If the
difference between qyie, and g2 is not less than or equal to
the threshold (€), i.e., |quiew — qe2| £ €, the prediction residue
is added to ensure |gyiew — qe2| < € and consequently uniform
quality distribution is guaranteed. Adding an enhancement
layer is equivalent to providing quality scalability. Note that
in this paper, the quality enhancement layer is not provided
for views in SL1V Ly and SL;V Lo, which can be provided
depending on the user’s need. Additionally, in this paper, for
the views that the uniform quality distribution is satisfied
with the interpolated or super-resolved images, the quality
enhancement layer is not provided. However, the flexibility of
the proposed method allows for a quality enhancement layer
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TABLE I: Light field test images taken from the Stanford dataset [39] and JPEG Pleno dataset [38].

Dataset Name Angular resolution | Spatial resolution | QP1 QP> QP3 QPs
Bunny 17 x 17 1024 x 1024 30 22 17 15
Jelly Beans 17 x 17 1024 x 512 31 17 15 13
Stanford [39] Chess 17 x 17 1400 x 800 31 18 16 15
Lego Bulldozer 17 x 17 1536 x 1152 30 18 17 16
Eucalyptus Flowers 17 x 17 1280 x 1536 30 18 17 16
Amethyst 17 x 17 768 x 1024 30 18 17 16
Greek 9x9 512 x 512 35 25 18 15
JPEG Pleno [38] Sideboard 9x%x9 512 x 512 44 35 29 21
Tarot 17 x 17 1024 x 1024 37 28 22 20

for all views according to the user’s needs.

V. EXPERIMENTAL RESULTS

In this Section, we first introduce the test condition that we
used in this paper. We then provide experimental results for
compression efficiency and other functionalities that have been
discussed in the previous sections.

A. Test Condition

To evaluate the performance of the proposed method, we
have selected six light fields from the Stanford! dataset [39]
and three light fields from the JPEG Pleno? dataset [38]
to cover light fields from large to narrow parallaxes. The
characteristics of these images are summarized in Table. I. The
Stanford light field views were converted to 8-bits YUV420
format and the JPEG Pleno light field views were converted
to 10-bits YUV444 format to match the coding conditions of
the baseline codecs selected for comparison. VITM Encoder
Version 10.23, was used as the standard encoding software
for VVC. We encode light fields at four quality levels. The
base QPs used to encode each light field test image at four
quality levels are also summarized in Table. I. QPoffsets for
each viewport layer are selected in a way that the quality of
encoded views remains similar to each other. In this paper,
€, was set to 1dB, which means that the quality difference
of all views and the central view at each quality level is less
than 1dB. For video interpolation, RIFE*, and for video super-
resolution, DASRS were used without fine tuning.

B. Compression Efficiency and Quality Distribution

To evaluate the compression efficiency of the proposed
method, we consider three points in its workflow: (i) SL;:
the compression efficiency of the first spatial resolution after
applying the bicubic upsampling, (ii) SL; + SR: the com-
pression efficiency of the first spatial resolution after applying
super-resolution, and (iii) SLo: the compression efficiency
of the overall proposed method. We compare the encoding
efficiency of these three points with the JPEG Pleno anchor
(x265) [38], MV-HEVC [51], and Shearlet Transform Based

'http://lightﬁeld.stanford.edu/lfs.html; last access: Nov. 26, 2021.

Zhttp://plenodb.jpeg.org/If/pleno_lf; last access: Nov. 26, 2021.

3https://vegit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM; last access: Nov.
26, 2021.

4https://github.comlhzwer/arXiv202O—RIFE; last access: Nov. 26, 2021.

Shttps://github.com/LongguangWang/DASR; last access: Nov. 26, 2021.

Prediction (STBP) approach [21] for Stanford light fields, and
with the JPEG Pleno Verification model 2.1 (4D Prediction)
(VM2.1) [38] for JPEG Pleno light fields. Note that different
baseline codecs have been selected for each dataset since they
perform differently on each of them. VM2.1 performs well
on the JPEG Pleno dataset, which mainly includes light fields
with a narrow disparity. However, it does not perform well
for large disparity light fields such as those of the Stanford
dataset. On the other hand, STBP, which is based on MV-
HEVC, provides limited compression efficiency for narrow
disparity light fields [21]. Fig. 8 shows the RD curves using
the mean PSNR of the Y component of all the views as the
objective metric.

For the Fucalyptus Flower light field, which has lots of
fine geometry, the proposed method fails to outperform the
state-of-the-art scheme. This might happen because of the inef-
ficiency of video frame interpolation or super-resolution DNNs
for these images or the lack of this type of image in their
training dataset. For other light fields the proposed method
(SLs) shows superior performance compared to its competi-
tors, particularly at lower bitrates. This is more significant for
a light field with simple geometry such as Jelly Beans. The
superiority of SL; + SR to SL; shows the importance of
super-resolution in improving the compression efficiency.

Note that the compression efficiency of SL; and SL;+ SR
is low for some light fields such as Sideboard and Tarot,
while it is high for some light fields such as Jelly Beans.
We have calculated the spatial complexity (E) for each light
field view using Video Complexity Analyzer (VCA®) [52] and
computed their average value (Fp,eqn). The E,eqn values for
all test light fields are shown in Fig. 9. It is observed that, with
increasing the spatial complexity, the compression efficiency
is reduced.

C. Scalability

In this paper, to support spatial scalability, the light fields
are compressed at two spatial resolutions. Therefore, the final
bitstream consists of two parts: (i) bsr,: the bits allocated to
compress the lowest resolution, and (i) bsr, the bits allocated
to compress the highest resolution. The allocated bits to each
spatial layer are also divided into multiple viewport layers (i.e.,
{bvL,s-,bvr,}) to support viewport scalability and uniform
quality distribution. Finally, the allocated bits to each viewport
layer are used to improve the quality of viewports in that

6https://cd—athena.github.io/VCA/; last access: Jul. 20, 2022
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super-resolution, and S Lo represents the compression efficiency of the overall proposed method.
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Fig. 9: The average spatial complexity of views (E,eqn) for
light field test images.

layer, in other words, to support quality scalability. Fig. 10
shows the bits allocated to spatial and viewport layers the
encoded Bunny light field. It is observed that with increasing

the number of encoding bits, the larger portion of the whole
bitstream is allocated to SL,. It is also observed that at the
higher number of encoding bits, the smaller portion of each
spatial resolution is allocated to the first viewport layer of
each spatial layer, i.e., SL1V Ly and SL,V L,, which have
been differentiated from the other viewport layers in Fig. 10.
To subjectively analyze the scalability of the proposed method,
Fig. 11 shows the Fucalyptus Flower light field when the
whole light field is encoded at 0.04 bits per pixel (bpp).
The central view of SL;, before and after applying super-
resolution, as well as the central view of SL, are compared
with the original central view. It is shown how applying super-
resolution and adding an enhancement layer improves the
quality of the decoded central view.

D. Random Access

Random access to an arbitrary view decreases memory
footprint and bandwidth requirements. The bitrates required
to access views and their maximum (RA,) are shown in
Fig. 12. RRA, is also shown in Fig. 12 as embedded plots.
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larger portion of the whole bitstream is allocated to .S Ls.

It is seen that at the higher number of encoding bits, where
random access is crucial, only a small portion of the whole
bitstream is required to access an arbitrary view. Note that
the flexibility of the proposed method allows to address the
trade-off between the compression efficiency and random
access. For instance, if the synthesized views are removed
from the reference list and only the super-resolved images
are used as virtual reference images to encode views in S L,
random access is improved while the compression efficiency is
reduced. It should be mentioned that the baseline codecs, i.e.,
JPEG Pleno anchor (x265), MV-HEVC, STBP, and VM2.1
(4D Prediction) show low random access performance since
they are highly dependent on the inter-view prediction between
the different views. JPEG Pleno anchor (x265) converts all
views into a single PVS and encodes them sequentially; thus,
it does not provide random access to views. Similarly, in STBP,
the prediction residuals of all views are converted to a PVS
and compressed with a video encoder, which makes all views
dependent on each other and significantly impairs the random
access performance. VM2.1 (4D Prediction), which is based
on WaSP, is also highly dependent on the amount of reference
views that are warped and merged using one optimal least-

squares merger. Fig. 13 compares the performance of RRAp
of the proposed method with the one of MV-HEVC for the
Bunny light field. It is shown that the proposed method
achieves a better random access performance compared to MV-
HEVC. The superiority is more significant at higher number
of encoding bits, where random access is more crucial.

E. Error Resiliency

Compressed data is always vulnerable to channel errors and
bandwidth constraints. However, our proposed method can
synthesize all views even with a small portion of the whole
bitstream, i.e., bsr,vr, and bsr,vr,. When corner views
are available in the first spatial layer, all other views can be
synthesized and super resolved to generate the whole image
views but at a lower quality. For example, as shown in Fig. 10,
at bpp3, with only bsr, v, +bsr, v, = 1.7%+2.3% = 4%
of the whole bitstream, all other views can be synthesized.
To show how much quality improvement can be achieved by
additionally downloading each layer (and loosing next layers),
we plot quality vs. downloaded bits for the Bunny light field
in Fig. 14. It is seen that the proposed method is resilient



IEEE TRANSACTION ON IMAGE PROCESSING

(a)

(b)

Fig. 11: Subjective evaluation of the scalability of the proposed method for the Fucalyptus Flowers test image when the
whole test image is encoded at 0.04 bpp. (a) central view, (b) [top-left] SL1, (b) [top-right] SL; + SR, (b) [bottom-left] S Lo,

(b) [bottom-right] Original image.

to channel errors and can retrieve image views even when a
significant portion of a bitstream is lost.

F. Flexibility

Due to its high flexibility, the proposed approach can
address different trade-offs including compression efficiency,
random access, uniform quality distribution, and error re-
siliency with adaptive bit allocation to different layers. In
this paper, the bits were empirically allocated among different
layers in a way that they yield image views with similar qual-
ities. For example, Fig.15a shows the standard deviation for
PSNR of views of the Bunny light field for SL,, SL; + SR,
and SLy points. The scatter plot for the absolute difference
between PSNR of each view and PSNR of the central view (for
SLs) is also shown in Fig.15b to validate the uniform quality
distribution. It is seen that the criterion of |gyiew — gc| < 1dB
for all views has been met. However, the bits can be allocated
in a way to yield a higher compression efficiency or random
access performance.

RIFE is capable of interpolating intermediate viewports
without any limits on the maximum number of interpolated
views at the same inference time. In this paper, it is used
to interpolate only one intermediate view, ie., equidistant
intermediate views. However, with interpolating more than
one intermediate view, each viewport layer may contain more
views, and the number of viewport layers and the inference
time for interpolation may be reduced. This will allow us
to have flexibility in the number of viewport layers (n). For

example, we encode only the first and second viewport layers
in the first spatial layer (i.e., SL1V L; and SL1V Ls), and
we then use corner views in SL1V Ly as inputs of RIFE to
interpolate all intermediate views between the corner views
without adding any quality enhancement layer. In this way, we
need to run RIFE at most thrice to access any arbitrary view in
SL, and additionally DASR once to access any arbitrary view
in S Lo without any need to encode/decode any enhancement
layer (See Fig.16a). Note that in this structure, the number
of viewport layers (i.e., four viewport layers for SL; and
one viewport for SLy) is independent of the light field’s
angular resolution. The compression efficiency of the above-
mentioned structure (SL; + SR (2)) for the Bunny light field
is shown in Fig. 16b. It is seen that this structure shows lower
performance in terms of compression efficiency; however, it
results in fast access to any arbitrary view. Additionally, since
the quality enhancement layer is not applied to views, the
average standard deviation of PSNR of views for all quality
levels is increased from 0.24 for SLs to 1.04 for SL1+SR(2).

Light field super-resolution (LFSR) approaches [53], [54],
[55] may result in views with higher reconstruction qual-
ity compared to single image super-resolution (SISR) ap-
proaches [50], [56] since they better preserve angular con-
sistency. However, it should be noted that LFSR approaches
usually utilize all or a huge set of low resolution views as
inputs to super resolve all of them, which harms the random
access performance and viewport scalability. To evaluate the
impact of super-resolution on the performance of the proposed
method, we take the 5 x 5 central views of the T'arot light field
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In this way, error resiliency is achieved in the case of channel
errors and/or bandwidth constraints.
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the corner views without adding any quality enhancement layer. In this way, RIFE is run at most thrice to access any arbitrary
view in SL;. Additionally, DASR is run once to access any arbitrary view in SLo without any need to encode/decode any
enhancement layer. (a) The example structure for a 5 x 5 light filed. (b) The compression efficiency of the Bunny light field

using this structure.

and encode SL; with the proposed method (Section IV-A). For
super-resolution, we select EDSR [56] as an SISR approach
and LFT [55] as an LFSR approach from BasicLFSR’, an
open-source light field super-resolution toolbox. EDSR and
LFT have been selected since they have been both trained with
the same light fields allowing a fair comparison. We super
resolve views using EDSR and encode views in SLo using
the proposed method (Section IV-B). When EDSR is replaced
with LFT, all views in SL1 are used as inputs of LFT and the
output of LFT will be all views that have been super resolved.
Therefore, SL, comprises only one viewport layer with LFT
approach. We show the compression efficiency and random
access performance of both methods in Fig. 17. It is seen that
utilizing the LFSR approach for super-resolution improves the
compression efficiency at the cost of reduced random access

7https://github.com/ZhengyuLiang24/BasicLFSR

performance.

G. Future Directions

RIFE has been trained for video frame interpolation and
its training for light field view synthesis may improve its
efficiency for the view synthesis. Both RIFE and DASR have
been trained with uncompressed images but we deploy them
to interpolate and super resolve compressed images. Fine
tuning these DNNs with compressed images may improve their
accuracy.

VI. CONCLUSION

In this paper, we propose a novel light field compres-
sion method based on video interpolation and image super-
resolution techniques. Light field views are compressed in
two spatial layers to support spatial scalability. Views at each
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spatial layer are divided into various viewport layers. The pre-
viously encoded views are used to synthesize their equidistant
intermediate views and the synthesized views are then used as
virtual reference frames to inter-code the intermediate views
and improve their quality. A super-resolution method is applied
to the compressed views at the lowest resolution and they
are used as additional reference images to inter-code their
corresponding views at the highest resolution. In addition to
the spatial, viewport, and quality scalabilities, the proposed
structure improves the flexibility of light field compression,
provides random access to the viewports, and increases error
resiliency.
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