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Résumé – La comparaison d’objets structurés tels que les graphes est une opération fondamentale pour de nombreuses tâches d’apprentissage. À
cette fin, la distance de Gromov-Wasserstein (GW) , basée sur le Transport Optimal (TO), s’est avérée efficace pour comparer de telles entités. GW
opère sur les graphes, vus comme des mesures de probabilité sur des espaces décrits par les relations de connectivité de leurs noeuds. Au coeur du
TO réside l’idée de conservation de masse, qui impose un couplage entre tous les noeuds des deux graphes considérés. Nous soutenons dans ce
papier que cette propriété peut être préjudiciable pour des tâches telles que l’apprentissage de dictionnaire (AD), et nous la relaxons donc en
proposant une nouvelle divergence issue de GW. Cette dernière amène des avantages computationnels immédiats et induit naturellement une
nouvelle méthode d’AD, pertinente pour l’apprentissage non supervisé de représentations et la classification de graphes.

Abstract – Comparing structured objects such as graphs is a fundamental operation involved in many learning tasks. To this end, the Gromov-
Wasserstein (GW) distance, based on Optimal Transport (OT), has been successful in providing meaningful comparison between such entities.
GW operates on graphs, seen as probability measures over spaces depicted by their nodes connectivity relations. At the core of OT is the idea of
mass conservation, which imposes a coupling between all the nodes from the two considered graphs. We argue in this paper that this property can
be detrimental for tasks such as graph dictionary learning (DL), and we relax it by proposing a new semi-relaxed Gromov-Wasserstein divergence.
The latter leads to immediate computational benefits and naturally induces a new graph DL method, shown to be relevant for unsupervised
representation learning and classification of graphs.

1 Introduction

Learning from datasets containing non-vectorial objects such
as graphs is a difficult task that involves many areas of data
analysis such as signal processing [4] or more recently graph
neural networks (GNN) [11]. Recently a novel way to model
graphs has been proposed based on Optimal Transport (OT).
These OT methods either consist in embedding the graphs in
a space endowed with Wasserstein geometry [5], or rely on
the Gromov-Wasserstein (GW) distance [3, 7]. The latter aims
at comparing probability distributions whose supports lie on
different metric spaces, by finding a matching of these distri-
butions being as close as possible to an isometry. Limitations
of GW based approaches include both the computational com-
plexity [NP-hard non convex quadratic program 6] and the need
to choose a probability mass function over the graph nodes, lea-
ding to suboptimal choices. In order to address these drawbacks,
we introduce a new OT based divergence between graphs called
the semi-relaxed Gromov-Wasserstein (srGW) divergence,
faster to optimize (see Section 2.1) and providing a new dictio-
nary learning method with discriminant denoising properties
useful for graphs classification.

2 Semi-relaxed Gromov-Wasserstein

2.1 Gromov-Wasserstein distance
We model a graph G with n nodes as a couple (C,h) where

C ∈ Rn×n is a matrix encoding the relation between nodes (e.g.
adjacency) and h ∈ Σn in the probability simplex with N-bins,
refers to a distribution modeling their relative importance within
the graph (e.g. uniform or normalized degrees). Then given two
observed graphs G = (C,h) and G = (C,h), of respective
orders n and m (n ̸= m), The GW distance between G and G is
defined as :

GW2
2(C,h,C,h) = min

T1m=h
T⊤1n=h

∑
ijkl

∣∣Cij − Ckl

∣∣2 TikTjl (1)

with T ∈ Rn×m
+ , a coupling. The optimal coupling T ⋆ acts

as a probabilistic matching of nodes which tends to associate
pairs of nodes that have similar pairwise relations in C and
C respectively, while preserving masses h and h through its
marginals. GW defines a distance between graphs, invariant to
measure preserving isometries [3], such as nodes permutation.

GW has also been extended to graphs with node attributes
(C,F ,h), where F ∈ Rn×d is a matrix of node features, thanks



GW(C, h, C, h) = 0.219 srGW(C, h, C) = 0.05 srGW(C, h, C) = 0.113

FIGURE 1 – Comparison of the GW matching (left) and asymmetric srGW matchings (middle and right) between graphs C and C
with uniform distributions. Nodes of the source graph are colored based on their clusters. The OT from the source to the target
nodes is represented by arcs colored depending on the corresponding source node color. The nodes in the target graph are colored
by averaging the (rgb) color of the source nodes, weighted by the entries of the OT plan.

to the Fused Gromov-Wasserstein distance (FGW) [8]. FGW bet-
ween such two graphs looks for an OT minimizing a weighted
mean of parameter α ∈ [0, 1], between a GW cost on structures
and a linear OT cost on features. Most applications of GW can
be extended with FGW to attributed graphs.

2.2 Semi-relaxed Gromov-Wasserstein divergence
We argue that enforcing unknown distributions over the source

G and target G, as GW does, can be suboptimal in several cases.
To this end we propose to find a correspondence between them
while optimizing the weights h on the second graph. Thus we
introduce the semi-relaxed Gromov-Wasserstein divergence ex-
pressed as :

srGW2
2(C,h,C) = min

h∈Σm

GW2
2(C,h,C,h) (2)

This means that we search for a reweighing of the nodes of G
leading to a graph with structure C with minimal GW distance
from G [3, 7]. Explicitly, the problem (2) reads :

srGW2
2(C,h,C) = min

T1m=h,T≥0

∑
ijkl

|Cij −Ckl|2TikTjl (3)

with T ∈ Rn×m
+ . From an optimal T ⋆ of problem (3), the

optimal weights h
⋆

expressed in problem (2) can be recovered
by computing T ⋆’s second marginal, i.e h

⋆
= T ⋆⊤1n.

A first interesting property of srGW is that since h is opti-
mized in the simplex Σm, its optimal value h

⋆
can be sparse.

As a consequence, parts of the graph G can be omitted in the
comparison. This behavior is illustrated in the Figure 1, where
two graphs with uniform distributions and structures C and C
forming respectively 2 and 3 clusters are matched. The GW
matching (left) between both graphs forces nodes of different
clusters from C to be transported on one of the three clusters
of C, leading to a high GW cost where clusters are not preser-
ved. Whereas srGW provides a reasonable approximation of
the structure of the left graph by finding a subgraph within the
target structure, forming a graph with as many clusters than the
left graph. For a deeper inspection of the theoretical properties
of this divergence, the reader is referred to [10].

2.3 Optimization and algorithms
The optimization problem in equation 3 is a non-convex qua-

dratic program similar to the one of GW with the important

Algorithm 1 CG solver for srGW
1: repeat
2: G(t) ← Compute gradient w.r.t T of (2) applied at T (t).
3: X(t) ← minX1m=h⟨X,G(t)⟩ with X ≥ 0.
4: T (t+1) ← (1− γ⋆)T (t) + γ⋆X(t) with γ⋆ ∈ [0, 1] from

exact-line search.
5: until convergence.

difference that the linear constraints are independent. Conse-
quently, we propose to solve (3) with a Conditional Gradient
(CG) algorithm. This algorithm, provided in Alg. 1, consists
in solving at each iteration (t) a linearization ⟨X,G⟩ of the
problem (3) where G is the gradient of the objective in (3). The
solution of the linearized problem provides a descent direction
X⋆ − T , and a linesearch whose optimal step can be found
in closed form to update the current solution T [8]. The main
source of efficiency of our algorithm comes from the compu-
tation of the descent directions. In the GW case, one needs to
solve an exact linear OT problem, while in our case, one just
needs to independently find the minimum on the rows of G,
within O(mn) operations, significantly reducing the computing
time [10].

As illustrated in Figure 1, srGW naturally leads to sparse
solutions in h. To compress even more the localization over
a few nodes of C, we can promote the sparsity of h which is
equivalent to promoting the group-sparsity of the couplings at
the column level. To this end, we propose to add a penalization
Ω(T ) =

∑
j(
∑

i Tij)
1/2 =

∑
j h

1/2

j to the problem 3 leading
to :

min
T1m=h,T≥0

∑
ijkl

|Cij − Ckl|2TikTjl + λΩ(T ) (4)

where λ ∈ R∗
+. The resulting minimal value will be referred as

srGW2
g,2(C,h,C;λ). As Ω defines a concave function on the

positive orthant R+, we propose to solve for this problem by
using Alg 1 within the Majorisation-Minimisation framework
described in [1], without changing the overall complexity.

3 Learning the target structure

A dataset of K graphs D = {(Ck,hk)}k∈[[K]] is now consi-
dered, with heterogeneous structures and a variable number of
nodes, denoted by {nk}k∈[[K]]. We propose to learn the graph



Algorithm 2 Stochastic update of the dictionary atom C

1: Sample a minibatch of graphs B := {(C(k),h(k))}k.
2: Get OT {T ⋆

k }k∈B from srGW(Ck,hk,C) with Alg.1.
3: Get gradient ∇̃C of srGW with fixed {T ⋆

k }k∈B and (optio-
nally) perform a projected gradient step on chosen set S :

C ← ProjS(C − η∇̃C) (5)

dictionary C ∈ Rm×m from the observed data, by optimizing :

min
C∈Rm×m

1

K

K∑
k=1

srGW2
2(Ck,hk,C). (6)

This problem is denoted as srGW Dictionary Learning. It
can be seen as a srGW barycenter problem [6] where we look
for a graph structure C for which there exists node weights
(h

⋆

k)k∈[[K]] leading to a minimal GW error. Then the embedded
graph (C,h

∗
k) comes down to a projection of the input graph

(Ck,hk) in the GW sense (by minimizing the weights h in
srGW ) and the optimal weights h

∗
k relates to the embedding

of this input. Interestingly this DL model requires only to solve
the srGW problem to compute the embedding h

⋆

k of (Ck,hk),
since it can be recovered from the solution T ⋆

k of the problem 3,
with h

⋆

k = T ⋆⊤
k 1nk

.
We solve the non-convex optimization problem 6 with an

online algorithm similar to the one first proposed in [2] for
vectorial data and adapted by [9] for graph data. The core of
the stochastic algorithm is depicted in Algorithm 2. Since the
embedding h

⋆

k is a by-product of computing the different srGW,
we do not need an iterative solver to estimate it. Consequently,
it leads to a speed up on CPU of 2 to 3 orders of magnitude
compared to our main competitors (see Section 4) whose DL
methods, instead, require such iterative scheme.

4 Numerical experiments
We first illustrate the behavior of our srGW DL on the dataset

of social networks IMDB-B in Figure 2, for a learned dictio-
nary C of 10 nodes. The projection of the left graph onto the
dictionary results in a subgraph with 4 nodes, which highlight
key components within the input graph, i.e 3 clusters of variable
proportions and a central node.

To further emphasize the relevance of our factorizations, we
benchmarked our embeddings on the task of graphs classifi-
cation considering three types of datasets : i) social networks
from IMDB-B and IMDB-M; ii) graphs with discrete features
representing chemical compounds from MUTAG and cunei-
form signs from PTC-MR; iii) graphs with continuous fea-
tures, namely BZR, COX2, PROTEINS and ENZYMES. We
learn our dictionaries on each dataset validating their shapes
M ∈ {10, 20, ..., 50}, the vanilla srGW is distinguished from
its regularized version srGWg whose additional parameter is
validated within {1., 0.1, 0.01, 0.001}. We benchmark our em-
beddings with those produced by the SOTA GW based DL

Data sample (colored by T) Projected ̄C, h̄ ⋆ Dictionary ̄C

FIGURE 2 – Illustration of the embedding on a sample (Ck,hk)
from the IMDB-B dataset on the estimated dictionary C. We
show the input graph with nodes colored using correspondences
from the srGW OT plan (left), the embedded graph (C,h

∗
k)

(center) and C with uniform mass (right).
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FIGURE 3 – Averaged ratios of input and corresponding embed-
ded graph sizes using benchmarked DL methods. For srGWg

we fixed here λ = 0.01 .

method GDL [9] and its regularized version GDLλ. All dictio-
naries are learned over 100 epochs with the same learning rate
0.01 and batch size 32, using Adam optimizer.

We analyse if both unsupervised DL methods, produce repre-
sentations which help to discriminate between graphs. As their
resulting graph subspace is endowed with the GW geometry, we
perform classification as a downstream task, using SVM with
GW kernels computed on embedded graph, e.g. {(C,h

∗
k)}k

for srGW DL. For all experiments we mimic the benchmark
proposed in [9], where FGWK refers to GW kernels between
raw input graphs, and other methods are SOTA graph kernels
unrelated with OT. We perform 10-fold nested cross-validations
repeated over 10 train/test splits, using same folds across me-
thods, and same validated values for SVM’s hyperparameters.

Classification performances measured by means of accuracy
are reported in Table 1. All variants of srGW DL lead to more
discriminant graph representations than those of GDL, while
consistently improving performances provided by FGWK ope-
reting on raw graphs represented by their adjacency matrix.
Notably srGWg consistently outperforms all benchmarked me-
thods.

Moreover, our srGW DL naturally leads to embedded graphs
of variable resolutions, contrary to GDL, with considerably
small number of nodes relatively to their input representations.
This behavior illustrated on IMDB-B in the figure 3 helps to
drastically reduce the runtimes required to compute the GW
pairwise matrices used in SVM, especially while promoting



TABLE 1 – Classification performances on real datasets : We highlight the 1st (resp. 2nd) best method in bold (resp. italic). Unfilled
values (-) when methods are specific to certain type of graph features.

No attribute Discrete attributes Real attributes
Categories Models IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES PROTEIN

OT DL srGW (ours) 72.1(4.1) 49.2(3.6) 89.1(5.9) 64.5(7.8) 88.0(4.2) 77.7(2.7) 72.3(5.7) 72.9(5.1)
srGWg (ours) 73.2(4.3) 51.3(3.4) 90.3(5.4) 64.5(6.9) 88.5(3.9) 79.8(1.8) 73.6(4.3) 74.1(4.8)

GDL 70.1(3.3) 49.1(4.6) 87.4(5.0) 56.4(6.5) 85.9(4.3) 77.4(3.1) 70.7(3.9) 71.6(3.9)
GDLλ 71.5(4.1) 50.1(4.8) 88.1(7.8) 59.5(8.4) 86.5(5.4) 78.1(4.4) 71.5(4.2) 72.9(5.8)

OT kernel FGWK 70.8(3.5) 48.9(3.9) 82.6(7.2) 56.2(8.9) 85.6(5.2) 77.0(4.2) 72.2(4.0) 72.4(4.7)
Kernels SPK 56.2(2.9) 39.1(4.9) 83.3(8.0) 60.6(6.4) - - - -

WLK - - 86.4(8.0) 63.1(6.6) - - - -
HOPPERK - - - - 84.5(5.2) 79.7(3.5) 46.2(3.8) 72.1(3.1)
PROPAK - - - - 80.0(5.1) 77.8(3.8) 71.8(5.8) 61.7(4.5)

TABLE 2 – GW Kernel computation times (in ms) on different
graph embeddings and input graphs, averaged over all corres-
ponding pairs of graphs (499500 symmetric pairs in IMDB-B).

Models Runtimes (ms)
min max

srGW (ours) 4.7 11.1
srGWg (ours) 1.7 3.7

GDL 19.1 19.9
FGWK 24.7

sparsity of our embeddings, as reported in Table 2. Therefore,
the coupled discriminant denoising abilities and computational
efficiency of our methods show that it could even be considered
as a pre-processing step for GW based analysis.

5 Conclusion
We introduce a new OT based divergence between structured

data by relaxing the mass constraint on the second distribution
of the GW problem. After designing efficient solvers to estimate
this divergence, called the semi-relaxed Gromov-Wasserstein
(srGW), we suggest to learn a unique structure to describe a
dataset of graphs in the srGW sense. This novel modeling can
be seen as a Dictionary Learning approach where graphs are em-
bedded as a subgraph of a single atom. Numerical experiments
highlight the interest of our methods for graph unsupervised
representation learning whose evaluation is conducted through
classification of graphs.

We believe that this new divergence will unlock the potential
of GW for graphs with unbalanced proportions of nodes. The
associated fast numerical solvers allow to handle large size
graph datasets, which was not possible with current GW solvers.
Also, as relaxing the second marginal constraint in the original
optimization problem gives more degrees of freedom to the
underlying problem, one can expect dedicated regularization
schemes, over e.g. the level of sparsity of h, to address a variety
of application needs. Finally, our method can be seen as a special
relaxation of the subgraph isomorphism problem. It remains to
be understood theoretically in which sense this relaxation holds.
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