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Abstract—Image synthesis in the context of radio interfero-
metric data can be expressed as a signal reconstruction from
incomplete Fourier measurements. Most imaging techniques for
radio interferometry lie in minimizing the least square error
between the reconstructed image and the observed data assuming
an additive white gaussian noise. In this paper, we derive an
expectation-maximization based imaging algorithm that handles
the presence of outliers in the observed data. Subsequently, we
propose a new generic image synthesis algorithm based on the
expectation-maximization algorithm, leading to a computation-
ally efficient method.

Index Terms—Radioastronomy, expectation-maximization, im-
age restauration

I. INTRODUCTION

Radio interferometers produce images of the sky from the
correlation between multiple sensors, bringing new insights
into various scientific domains such as solar monitoring,
planetology, and astrophysics. A new generation of large-scale
radio interferometers, such as the LOFAR or the SKA, are de-
signed with the promise to improve further the resolution and
sensitivity of radio astronomical images over large bandwidth
using multiple sensors, resulting in a large collecting area and
high-resolution imaging. Nevertheless, these technological ad-
vances bring several signal processing challenges to exploit the
scientific potential of such instruments fully. As an example,
the SKA will gather a large amount of data which will have to
be processed in parallel. It will thus be necessary to process
and store the useful data with tight computational time and
storing constraints.

Image synthesis can be expressed as a signal reconstruction
from incomplete Fourier measurements and leads to an ill-
posed inverse problem [1], [2]. The particularity of radio
interferometric data lie in the coverage of the Fourier space
(UV-coverage) that depends on the sensors coordinates as
well as the observation time. In particular, large-scale radio
interferometers will improve the UV coverage, increasing
the amount of data to process. The resulting deconvolution
problem can be solved using greedy algorithms and has led
to numerous methods based on the CLEAN algorithm [3]. On
the other hand, methods based on convex optimization and
the theory of compressed sensing are developed, assuming a
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sparse representation of the image in the wavelet domain [2],
[4], [5]. Both methods are closely related to the maximum
likelihood estimate of the image assuming visibilities probed
under Gaussian noise. Sparse representation of the signal has
been at the heart of radio interferometric imaging synthesis
algorithm. In fact, from the very early days of interferom-
etry and the Hogbom CLEAN algorithm [6] to the actual
multiscale CLEAN [3] used in current radio interferometers,
CLEAN methods that assume sparsity in the pixels coefficients
have been of undoubtful efficiency. Furthermore, the rise of
compressed sensing (CS) in the early 2000 has brought a
new paradigm, considering explicit sparse prior in the wavelet
domain of the sky image [2], [5], [7]. The Expectation-
Maximization (EM) algorithm is a versatile tool for maximum
likelihood estimation (MLE) in latent data models from which
a wide range of signal processing methods have been derived
[8]. Furthermore, the potentiality of online and federated vari-
ants of the EM algorithm makes it a suitable choice for large-
scale radio interferometric data. Notably, a computationally
efficient EM algorithm had been proposed in the context of
image restoration for sparse signal in the wavelet domain
corrupted by a white Gaussian noise [9].

However, Radio-interferometric data cannot be appropri-
ately modeled using white Gaussian noise. In fact, the new
generation of large-scale radio interferometers, such as the
SKA, will be able to detect weaker signals thanks to sensors
being more and more sensitive, increasing the chances of
having data corrupted by outliers. Namely, despite the efforts
made to build such instruments in radio-quiet zones (in which
radio transmissions are rare or restricted), man-made radio
waves still significantly impact observation in radioastronomy
[10]. Moreover, the generalization of large-scale telecommu-
nication networks and the growing use of satellites makes
RFI modeling and mitigation a significant challenge in array
signal processing. More generally, the presence of outliers in
the observed data can significantly affect the performances of
imaging algorithms, leading to poor reconstructions. Likewise,
image synthesis and calibration are intertwined, and calibration
errors propagate and degrade the reconstructed images [11].
Theoretical and experimental analyses have been conducted
to demonstrate the suitability of non-Gaussian heavy-tailed
distribution to model the presence of outliers in the radioas-
tronomy context [12], [13]. From this observation, multiple



calibration algorithms that account for the possible presence
of outliers have been derived [12], [14]. An iterative hard
thresholding algorithm for wavelet coefficient estimation based
on the Lorentzian cost function to tackle the presence of
outliers has been proposed in [15] but has not been applied to
radio interferometric data.

In this paper, we propose an EM-based imaging algorithm
redthat considers a robust cost function based on the Student-t
distribution and profits from the efficiency of the EM algorithm
presented in [9] requiring O(N log N) per iteration, where N
is the number of available visibilities.

Numerical simulations display the impact of such modeliza-
tion and the performances of the proposed algorithms.

II. RADIO INTERFEROMETRIC DATA MODEL

Radio interferometers measure the spatial coherence of
the electric field for all the pairs of antennas that compose
the sensor array. Such measurements are called visibilities
and can be linked to the electromagnetic radiation of the
observed celestial sources. The van Cittert-Zernike theorem
connects the measured visibilities with the spatial Fourier
transform of the emitted radiation across the celestial sphere.
More precisely, it states that, considering unpolarized, non-
coherent monochromatic sources in the far-field of the radio
interferometer, the measured visibilities can be identified as
samples of the 2D Fourier transform of the image [1],
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The Fourier plane is refered to as the uv plane and its
coordinates are expressed using the antennas coordinates and
the observation wavelength. Given two antennas positionned at
T, and 74 and an observation wavelength A, the associated uv
coordinate is written (u,v, w) = “2"¢. Radio-interferometric
data are samples of the 2D Fourier transform of the celestial
image at continuous coordinates. To be able to leverage
the power of the FFT, most radio interferometric imaging
algorithms consider a gridding step to interpolate the measured
visibilities in a uniform grid [2], [3], [5]. Subsequently, a
discrete data model for gridded radio interferometric data can
be expressed from the van Cittert-Zernike theorem,
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III. AN EM ALGORITHM FOR RADIO INTERFEROMETRIC
IMAGING

The general inverse problem related to the imaging prob-
lem in radioastronomy can be written as a linear model by
representing the image in lexicographic order [2], [4], [5],

y=Hx+n,

H = SF, )

where H € CN*M represent the forward operator and
n ~ CN(0,0%I) is an additive noise. This observation model
assumes spatially incoherent sources (Van-Cittert Zernike the-
orem) and a narrow field of view [1], [2]. Nevertheless, such

a model can be used in wide field imagers, dividing the
sky into multiple facets of narrow field [16]. The visibility
vector, y € CV*1 is expressed as a masked Fourier transform
of the vectorized image of the sky in the field of view,
x € CMx1 The forward operator, H is expressed as a
product of a sampling matrix, S € CV>M and a Fourier basis
F ¢ CM*M _We choose to add a regularization of the form
of an L; norm that promotes sparse solutions in the image
domain.

R(z) = afz]. )

The proposed algorithms can be transposed to sparse priors
in the wavelet domain. Thus, the imaging problem consists
at estimating the image, =, under a Gaussian noise with a
sparsity constraint. We derive in this section an EM algorithm
based on [9] to solve the associated regularized maximum
likelihood estimation problem in O(N log(N)) cost. To do so,
we consider as complete data space & = (z,y), where z is
a noisy complete Fourier transform of the image as presented
in the following. We consider a decomposition of the global
noise affecting the visibilities,

n=_Se+b, (5)

where e,~ CN(0,02I) and b,~ CN(0,%,). Thus the ob-
served data can be written as,

y=Sz+b. (6)
where,
z=Fx+e. @)

The condition on the covariance matrices for the noise decom-
position to be valid reads,

¥, =01 - 02887, (8)

For 3, to be positive semidefinite, its eigenvalues must be
greater or equal to zero, leading to the condition o2 < 02/)\;
on o2 where )\; is the highest eigenvalues of S. Since S
is a sampling matrix, its highest eigenvalue is Ay = 1. The
condition on o2 thus reads o2 < o2

The surrogate function associated to the expectation step of
the EM algorithm is written as,

Q(z|x™) = E. y.ztm [log p(2z,y;)]
(m) ~ Fz|3_.,

€))

o ||z

where 2™ = E.|yztm [2] and ||vH2 = v3 1y . Since
both z and y are considerered complex multlvarlate gaussian,
the conditional distribution of z given y is also a complex
multivariate gaussian, leading to the following expression,

2
3(m) _ g m) ‘L;sT(y — Hz™). (10)
o
The M — step of the imaging EM algorithm reads,
2™ = argmax Q(z|z™) + R(z), (11)



leading to the following update,

w(m-‘rl) — 7:1 (FHZ(’HL)) , (12)

where 7, is a soft-thresholding function that promotes sparsity
in the solution based on iterative soft thresholding methods
(171,

To(x) = sign(x) x max(0, |z — «) (13)

The computational load of the E-Step and M-step defined
by equations (10) and (12) are dominated by the multiplication
by a Fourier matrix, thus leading to efficient implementations
of O(Nlog(N)) cost using an FFT.

Algorithm 1 EM Imager
input: y, S, F,02,0°
output: &

initialize: & < x

1: while stop criterion not reached do

2: E-Step : 2™ obtained from (10)

3: M-Step : £+ obtained from (12)
4: end while

IV. A ROBUST IMAGING ALGORITHM

We present in this section an EM algorithm for imaging in
the context of radio interferometric data affected by outliers.
Robust noise distribution can efficiently model the presence
of outliers. Amongst them, the Student-t is a distribution of
choice, leading to robust estimates. We therefore consider a
Student-t distributed noise for the measured visibilities,
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The number of degree of freedom (DoF) of the Student-
t distribution, v, is assumed known, and the parameters to
estimate are & = (x,02). Notice however that data-driven
methods to get an estimate the DoF of the Student-t can be
implemented [18]. The log-likelihood of the model can then
be expressed,

t ~CN(0,0°T). (14)

n, =

N
1
L(y,0)=C+> 3 log 02—
n=1

v+1

(15)

1
log (1 + ﬁ‘yn - (Hx)n|2> .

Direct maximization of the likelihood is not tractable and we
propose to develop a SAGE algorithm to perform maximum
likelihood estimation of the image and noise parameters. In
practice, the SAGE consists in defining multiple spaces of
parameters and their corresponding complete data spaces in
which EM procedures are performed. Thereby, we define two
sets of complete data from which we derive a SAGE procedure
[19]. For each hidden data space we compute the expectation
of the log-likelihood of the complete data given the observed
incomplete data in the E-step as a surrogate function that is
maximized in the M-step. Thus the set of complete data is

defined so that the likelihood of its associated parameters leads
to closed form maximizations. The first set of complete data
is analogous to the one presented in section III and is used to
solve the imaging problem,

M = (y,z,m0,...,7n). (16)

Notice that the the global noise can be written n = Q V2%
with © = diag(7y,...,7n) and n|Q ~ CN(0,0°I) . Thus,
for a given Q = diag(m,...,7n), the global noise can be
decomposed as the sum of two Gaussian components,

nio =Se+n'. (17)

The measured visibilities, given €2, can thus be written,
Yo =Sz+n' (18)
z=Fx +e, 19)

where e ~ CN(0,02T).
The associated EM algorithm is then expressed,
2™ = argminEgpn , o | — log p(fm;w)} . Q0
x

The surrogate function for the first set of complete data reads,

Q(01|0§m)) X ]Eg[luy,e(ww [Ing(z‘(Tn)nSN; 9)]
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where 2 = Egn)y,00m [z] and is computed during the E-
Step using the rules of conditional expectations, given that
p(2|(Tw)n<n,y) is a multivariate complex Gaussian distribu-
tion. The latter reads,

PN
z2=Fz+ 55 Q '(y- Hz), (22)
o
where 0" = diag(f'l(m), e %](Vm)) and,
1
F0m) = s (23)

vto 2y, — (Hatm), >

Considering a sparse regularization on the image, the M —
Step is similar to the one presented in section III, leading to
the following update for the image,

2"~ T, (FU'z).

We choose as the second set of complete data, used to derive
an estimate of o2,

(24)

e =(y,mi,.. ). (25)
The E — Step of the associated EM procedure reads,
Q(82]65™) o Egizy gim l0g p(yl (7 )n<n; 6)]
1. HA (m) .
o<§(y—H:B) Q (y— Hz) (26)
+log(0?)
where @ = diag(f'l(m), e %](Vm)) and,
) — v @7)

v+ o2y, — (Ha), >



The M — Step leads to direct maximization,

o(m+1) 1 N (m) ~
o =~ ((y (y—H w))~
Here again, the computational complexity of an iteration lie
in a multiplication by a Fourier matrix and is implemented
in O(Nlog(N)). In fact, the added normalisation step rep-
resented by the diagonal matrix, €2, can be expressed as a
point-wise multiplication with a vector of O(N) cost.

Ha)"O (28)

Algorithm 2 Robust EM Imager
input: y, S, F, 02

output: &, 52

initialize: & < ¢, 62 < 03

1: while stop criterion not reached do

Phase 1 — SAGE step 1 : Image estimation

2: E-Step:
3: #(m) obtained from (23) for n € [1, N]
4: 2™ obtained from (22)
5: M-Step:
6: 2+ obtained from (24)
Phase 2 — SAGE step 2 : noise variance estimation
7: E-Step:
8: #(m) obtained from (27) for n € [1, N]
9: M-Step:
10: &Q(mH) obtained from (28)

11: end while

V. NUMERICAL RESULTS

In this section, we present several numerical results to
illustrate the robustness of the proposed model and the per-
formances of the implemented imaging algorithms. The test
image used is M3, based on a H2 region in the M31 galaxy.
We chose this image for its previous use in the study of
imaging algorithm for radio interferometer [4], [20]. Likewise,
its ability to efficiently model compact and extended structures
makes of the M31 model image a good candidate to test the
sparsity prior considered in the proposed imaging algorithms.
The ground truth 256 x 256 discrete model of M31 is shown
in figure 1.

Fig. 1.

M31 model image

The UV coverage is simulated using the rascil python library
[21] and is plotted in figure 2. Subsequently, the uv plane of
the LOWBD2-CORE configuration of the SKA is simulated
and used to generate the visibilities from the ground truth
image.
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Fig. 2. UV coverage

We generate an observation as visibilities corrupted by
Gaussian thermal noise. To take into account outliers (eg
RFI) in the visibilities, 10% of the visibilities are corrupted
with a low rank Gaussian noise, as proposed in [14]. The
power of the outhers are defined by the variance of the
noise, P, = lOlog— The performances of the algorithms
are evaluated using the Normalized Mean Square Error be-
tween the estimated image and the ground truth, NMSE =
Dt ”wH’_H"§”2 for 100 monte carlo realizations. There has
been sufficient work on the convergence properties of the EM
algorithm, though it is known that an EM procedure increases
the likelihood at each iteration converging to at least a local
maxima [8], [22]. Yet, the EM algorithm is known for its slow
convergence and dependance to initialization when the space
of parameters is of high dimensions [23]. Thus we choose to
initialize the proposed EM algorithms with the dirty image to
avoid convergence to local maxima of the likelihood.

—— EM Imager
Robust EM Imager (v=2.1)

10° { —— Robust EM Imager {v=5)

—— Robust EM Imager (v=50)

1072 4

Fig. 3. Evolution of the NMSE vs the power of the outliers

Figure 3 displays the evolution of the NMSE with the power
of the outliers for various values of the DoF of the Student-t
distribution as well as for the EM imaging algorithm presented
in section 1 that does not consider the presence of outliers in
the modelization. A Student-t based imaging algorithm bring



robustness to the estimation process, leading to less bias in
the resulting image in the presence of outliers. The Student-
t based imaging algorithm gets closer to a Gaussian-based
imaging algorithm as the DoF increases. The choice of the Dof
of the Student-t distribution is crucial and can be understood
intuitively. In fact, as the DoF grows, it can be stated from the
central limit theorem that the Student-t distribution converges
towards a Gaussian distribution, thus implicitely assuming
few outliers in the observed data. Conversely low values for
the DoF implicitely assume a strong presence of outliers in
the data leading to more robuste estimate. Figure 4 shows
examples of reconstructed images for various power of the
outliers and the DoF. A significant improvement can be noticed
for the Robust EM Imager.

Robust EM
Imager

v =350

Fig. 4. Estimated images

VI. CONCLUSION

In this paper, we present a new generic method for ra-
dio interferometric imaging using EM based algorithms. We
propose a robust image synthesis method by modeling the
presence of outliers with a Student-t distribution and designing
an EM algorithm to perform maximum likelihood estimation.
Numerical simulations illustrate the robustness of the proposed
method to the presence of outliers in the observed data. The
proposed methods lead to reasonable computational costs in
the context of large scale radio interferometers and can be de-
rived in an online fashion or in a federated learning framework
by leveraging the versatility of EM based algorithms.
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