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Abstract: Surface water contamination by pathogen bacteria remains a threat to public health in the
rural areas of developing countries. Fecal indicator bacteria (FIB) like Escherichia coli (E. coli) are
widely used to assess water contamination, but their behavior in tropical ecosystems is poorly docu-
mented. Our study focused on headwater wetlands which are likely to play a key role in stream water
purification of fecal pollutants. Our main objectives were to: (i) evaluate decay rates (k) of the total,
particle-attached and free-living E. coli; (ii) quantify the relative importance of solar radiation exposi-
tion and suspended particles deposition on k; and (iii) investigate E. coli survival in the deposited sed-
iment. We installed and monitored 12 mesocosms, 4500 mL each, across the main headwater wetland
of the Houay Pano catchment, northern Lao People’s Democratic Republic (Lao PDR), for 8 days. The
four treatments with triplicates were: sediment deposition-light (DL); sediment deposition-dark (DD);
sediment resuspension-light (RL); and sediment resuspension-dark (RD). Particle-attached bacteria
predominated in all mesocosms (97 ± 6%). Decay rates ranged from 1.43 ± 0.15 to 1.17 ± 0.13 day−1

for DL and DD treatments, and from 0.50 ± 0.15 to −0.14 ± 0.37 day−1 for RL and RD treatments.
Deposition processes accounted for an average of 92% of E. coli stock reduction, while solar radiation
accounted for around 2% over the experiment duration. The sampling of E. coli by temporary resus-
pension of the deposited sediment showed k values close to zero, suggesting potential survival or
even growth of bacteria in the sediment. The present findings may help parameterizing hydrological
and water quality models in a tropical context.

Keywords: fecal indicator bacteria; Lao PDR; Mekong basin; water purification; survival rates;
mesocosms; solar radiation; sedimentation; particle deposition; particle resuspension

1. Introduction

One in four people globally drink water contaminated with fecal matter [1]. Surface
water contamination by fecal pathogenic microorganisms is indeed a threat for public
health worldwide [2]. Diarrheal diseases including gastroenteritis, mostly caused by
water-borne pathogens, were responsible for the deaths of 1.6 million people in 2017 [3].
This major public health issue especially affects developing countries in the intertropical
band, where populations rely directly on local resources and have poor access to clean
water, sanitation, and hygiene [4]. For instance, rural communities in the Mekong basin
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depend directly on small tributaries and natural canal systems to fulfil their domestic water
needs [5]. In Lao People’s Democratic Republic (Lao PDR), temporary camps, gardens,
and fishponds can be found in the riparian zones where contamination levels were found
to be high [6,7]. Moreover, riparian zones in tropical systems are often characterized by
wetlands and swampy areas [6].

Ecosystems such as wetlands have multiple ecological functions, like reducing flow
velocity and filtering pollutants and fecal pathogens from surface water, resulting in the
reduction of suspended particles and pollutant loading to downstream environments, and
thereby improving water quality [8,9]. Wetlands, widespread in the humid tropics, are
common landscape features in the Mekong basin [10,11], and provide multiple ecosystem
services including food production [12,13], flood control [14], habitat biodiversity [15], and
water purification [16]. If large wetlands of fluvial plains are quite well studied [17,18], the
functioning of those located along or nearby mountainous headwater streams are little
studied, hence still poorly understood. Headwater wetlands, although representing a
limited proportion of the drainage area of catchments, are likely to strongly affect the
hydrological behavior [19] and biogeochemical characteristics of mountain streams [20,21].
In a study based on a large data set consisting of 35 developing countries, it has been shown
that upstream watershed conditions including wetlands can significantly influence down-
stream water quality [22]. To be able to effectively reduce the risk on human health [23],
it is imperative to improve our understanding of environmental factors controlling fecal
pathogens in tropical aquatic systems like headwater wetlands.

There is a growing scientific community interested in the main mechanisms involved
in pathogens reduction within wetlands, mainly documented in temperate regions [9,24,25].
The fecal contamination of water bodies is typically assessed by measuring levels of fecal
indicator bacteria (FIB), e.g., Escherichia coli (E. coli) [26,27]. To our knowledge, little infor-
mation exists on the survival of FIB in tropical headwater wetlands, which are generally
characterized by high and stable temperatures, dense riparian vegetation, high ecologi-
cal diversity, and long water residence time [28]. All these characteristics can influence
the E. coli decay rates. Several studies pointed out the potential of E. coli to survive and
possibly even proliferate in secondary and tertiary habitats such as soils and streambed
sediments under tropical conditions [29–33]. Given the potential persistence of E. coli
in the environment and its frequent use as a FIB, a further understanding of its decay
mechanisms is needed to evaluate the environmental microbial contamination to which
the rural population may be exposed.

Several studies have identified solar radiation as one of the most important factors
controlling and reducing E. coli concentration in surface water bodies [34–36]. It has been
demonstrated that bacteria are susceptible to ultraviolet wavelengths within the solar spec-
trum wavelengths causing direct DNA damage [36–38]. When exposed to solar radiation,
FIB can get inactivated by entering a state in which they maintain some metabolic activity
but lose their culturability [38]. The “viable non-culturable state” is a state of dormancy of
bacteria characterized by a very low metabolic activity [39]. In relatively shallow aquatic
ecosystems like wetlands, solar radiation can have a direct impact on bacterial decay rates
within water column [40,41]. However, dense vegetation cover may dampen the net impact
of radiations. Furthermore, bacterial attachment to suspended particles can also play a key
role in protecting bacteria from the photo-inactivation [42]. Bacteria attached to suspended
particles at the top of the water column can access nutrients [43] and be subject to settle
in the bottom of a wetland. This deposition process is thought to be one of the major
mechanisms of bacterial removal [44] and is therefore widely used to decontaminate water
in constructed wetlands [45]. However, some studies in freshwater ecosystems [46,47] and
marine ecosystems [29] showed the ability of E. coli to survive longer in sediments than in
the water column. Thus, the bottom sediments of wetlands could potentially serve as a
reservoir of FIB, which could be released into the water column during erosive stormflow
events [6,48]. Various other environmental factors were also shown to impact E. coli decay
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rate in water, such as temperature [49,50], nutrients availability [51], dissolved organic
carbon availability [52], salinity [53], and predation [54].

In this study, our first hypothesis is that if most E. coli in the water column are present
in the attached form, the settling down of suspended particles should be a major process
for reducing the bacterial load in the stream water. Our second hypothesis is that in humid
tropical conditions, the effect of light should be strongly attenuated by the dense vegetation
cover typical of humid environments. Hence, considering a mountainous headwater
wetland located within the Houay Pano catchment (northern Lao PDR), whose land use is
representative of humid tropical agroecosystems of South-East Asia [55], the objectives of
this study were: (i) to evaluate decay rates of the total, particle-attached, and free-living
E. coli, (ii) to quantify the relative importance of solar radiation exposition and suspended
particles deposition on decay rates, and (iii) to investigate the survival of E. coli in the
deposited bottom sediment.

The majority of FIB decay experiments were conducted under laboratory-controlled
conditions [41,42,56,57], which take into account a selected range of physical, chemical,
and biological factors found in natural environments. In this study, in order to obtain decay
rates estimates as realistic as possible, we adopted an experimental approach based on
measurements and using in situ mesocosms. The latter were filled with contaminated
water collected from the Houay Pano stream and were installed in the water column of the
wetland, hence exposed to natural diurnal cycle variations.

2. Materials and Methods
2.1. Study Area

The experiment was carried out in the Houay Pano catchment (19◦51′ N–102◦10′ E),
located 10 km south of Luang Prabang, northern Lao PDR (Figure 1a). The 60-ha Houay
Pano catchment is a sub-catchment of the Houay Xon, a tributary of the Mekong River.
Slopes in the catchment range from 0% to 171% with an average of 54% [6]. This exper-
imental site is part of the Multiscale TROPIcal CatchmentS (M-TROPICS) critical zone
observatory [55] which operates under the umbrella of the Observatoires de la Zone Critique:
Applications et Recherche (OZCAR) [58]. This catchment is representative of the mountainous
agroecosystems of South-East Asia. The climate is tropical wet and dry climate, abbrevi-
ated “Aw climate” in the Köppen-Geiger-Pohl system, and characterized by a monsoon
regime, with two contrasted seasons: a dry season from November to May and a rainy
season from June to October. The mean annual temperature is 23.4 ◦C. The mean annual
rainfall is 1366 mm (CV = 0.23), about 71% (CV = 0.09) of which, falls during the rainy
season [55]. The headwater wetland (0.19 ha) is located in the central part of the Houay
Pano catchment (Figure 1b). The wetland drains 32.5 ha and is permanently fed by ground-
water [59]. It is a typical upland headwater wetland, colonized by 2–4 m high Napier grass
(Pennisetum purpureum Schumach.), and surrounded with teak tree plantations, fallow land,
and secondary forest [59].

In spite of the relatively small suspended particles size (median is between 6 and
24 µm) measured in the upstream inflow [60], this wetland is known to have a high sedi-
ment trapping efficiency [61], due to hydro-morphological conditions that favor particles
settling [62]: low water line slope gradient (3.5%), limited hydraulic radius of the wetted
area (0.02–0.2 m), low to very low apparent stream flow velocity (close to 0.001 m s−1), and
high vegetation cover (Napier grass).

It should be noted that, if Napier grass cover is high year round, it is sometimes cut
to be used as fodder, or occasionally replaced by vegetable plants such as watercress [63].
At the end of the dry season, the Napier grass cover is also sometimes accidentally or
deliberately burnt by farmers. As a result, the global solar radiation reaching the water
surface is likely to vary according to agricultural practices and land use. During this study,
the canopy density of Napier grass (i.e., the percentage of the vertical projection area of
vegetation on the ground) along the wetland was between 45 and 100%.
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Figure 1. Geographical location of (a) the Houay Pano catchment in northern Lao PDR, and (b) location of the study site in
the headwater wetland; (c) photo of the transect within the wetland where the mesocosms exposed to natural light (L), the
mesocosms kept in the dark (D), and the bamboo bridge, were installed 9–16 August 2019.

2.2. Experimental Design

Fifteen mesocosms (51 cm high and 27 cm in diameter transparent plastic buckets)
were installed across the main headwater wetland of the Houay Pano catchment for a
monitoring period of 8 days (Figure 1c).

Mesocosms were divided into 4 treatments (3 replicates per treatment):

• Two of these treatments, i.e., suspended particles deposition in the light (DL) and
suspended particles deposition in the dark (DD), were designed to quantify the decay
rate of E. coli under wetland-like hydrodynamic conditions enabling the fall of sus-
pended particles (i.e., absence or very low turbulence in the water column), with and
without daylight (DL and DD respectively), to simulate the strong attenuation of the
transmitted luminous flux to the water surface by dense vegetation cover (Figure 2).
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• Two other treatments, i.e., sediment resuspension in the light (RL) and sediment
resuspension in the dark (RD), were aimed to evaluate the possible survival or even
growth of E. coli in the deposited sediment. To this end, bacteria that had been
deposited at the bottom of the mesocosm with the solid particles were resuspended
by a daily 1-min manual stirring of the water column using sterile gloves, preceding
each sampling. Here the cases with and without daylight (RL and RD respectively)
were also tested.
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Figure 2. Boxplots of solar intensity (W m−2) measured between 11 am and 3 pm for two days
(24 and 25 October 2020) within the headwater wetland in Houay Pano catchment, northern Lao
PDR, characterized with high Napier grass (Pennisetum purpureum Schumach.) cover (i.e., 100% at the
measurement site) at 4 different heights: 380 cm, 100 cm, 3 cm, and inside of a covered top mesocosm.
The red crosses indicate the means. The central horizontal bars are the medians. The lower and
upper limits of the box are the 25th and 75th percentiles, respectively. The lower and upper lines of
the boxes are the 10th and 90th percentiles. Points above or below the upper and lower limits are
considered as outliers.

We used an additional set of three mesocosms (control) to verify the absence of external
contamination during the experiment (raindrops splash, dry atmospheric deposits, etc.).

Open top mesocosms (covered in case of rainfall event to avoid external contamination
and concentration dilution) were used for the treatments with natural sunlight cycle
exposure (DL, RL, and control). Covered top mesocosms using two layers of plastic
covers wrapped in aluminum foil with ventilation holes to ensure the aeration inside the
mesocosm were used for the treatments in the dark (DD and RD).

Mesocosms were randomly distributed by series of replicates, along a transect perpen-
dicular to the stream flowing within the headwater wetland (Figure 1c). The mesocosms
were installed in the center of the wetland, spaced one meter apart, held straight with
bamboo rods, and driven 10 cm deep into the streambed sediment (Figure 1c).

A field worker was permanently present on the study site throughout the experiment
duration, in order to ensure that no external source would contaminate the mesocosms
(e.g., wild animals), and to avoid any change in mesocosm water balance by closing all the
mesocosms during rainfall events. Before the start of the experiment, a bamboo bridge
was built to facilitate the setup of the experiment and to access the mesocosms without
contaminating them (Figure 1c).

2.3. Mesocosms Preparation

We used stream water to ensure the presence of nutrients, particles, and predators
found in natural aquatic environment. We collected Houay Pano stream water in the Ban
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Laksip village (Figure 1) approximately 10 cm below the water surface, 6 h before the
installation of mesocosms. Approximately 70 L of water were collected into 4 sterilized 20 L
buckets. The water from the 4 buckets was then mixed in a single large barrel in the vicinity
of the experiment site, and vigorously stirred to ensure a homogenized distribution of the
bacteria and of the suspended particles concentration in water before being distributed
using a sterile 1000 mL test tube in the 12 mesocosms used for the four treatments. Each
mesocosm was filled with 4500 mL of water.

For the three control mesocosms, we used groundwater collected within the Houay
Pano catchment. We pumped groundwater from 6 piezometers located inside and on the edge
of the wetland and characterized by low E. coli concentration (436± 102 MPN 100 mL−1) when
compared to water collected from Houay Pano stream (435,506± 215,275 MPN 100 mL−1).
The biogeochemical background of the groundwater was comparable to that of the water
collected in Houay Pano stream. The water was homogenized in a second barrel and
4500 mL were distributed in each of to three control mesocosms.

2.4. Analytical Methods: Concentrations of E. coli, TSS, DOC, and Turbidity

We collected 30 mL water samples from each mesocosm, daily over 8 days (D0,
D1, D2, D3, D4, D5, and D7), 1 cm beneath the water surface using 50-mL sterile plastic
syringes. We stored the samples at ambient temperature and in the dark until measurement.
We analyzed these samples within 6 h, by taking a subsample of 10 mL to determine
the turbidity using a turbidity meter (EUTECH Instruments TN-100). We took another
subsample of 10 mL to determine total E. coli concentration [E. coli]total (=particle-attached
+ free-living E. coli), and free-living E. coli concentration [E. coli]free. We calculated particle-
attached E. coli concentration ([E. coli]att) from the difference between [E. coli]total and
[E. coli]free. To determine [E. coli]total and [E. coli]free, we used 5 mL of raw water for total
E. coli counts, and we filtered 5 mL of raw water through cellulose esters filters (Millipore,
0.3 µm, 47 mm) to separate the free-living E. coli in the collected filtrate from the particle-
attached E. coli remaining on the filter [64]. The method used for measuring [E. coli]total and
[E. coli]free is the standardized microplate method (ISO 9308-3). This technique is based
on a 48-h incubation at 44 ◦C of each sample, at four dilution rates (1:2, 1:20, 1:200, 1:2000
for treatments; and 1, 1:2, 1:20, 1:200 for control), in a culture medium specific for E. coli
on a 96-well microplate (MUG/EC, Biokar Diagnostics). We determined [E. coli]total and
[E. coli]free expressed in terms of most probable number per 100 mL (MPN 100 mL−1), by
counting the number of positive wells for each microplate, and by applying a statistical
analysis based on Poisson’s law [65].

We collected 80 mL water samples every other day (D0, D2, D4, and D7), 1 cm beneath
the water surface using 50-mL sterile plastic syringes, and we stored them at ambient
temperature and in the dark until measurement within 6 h after sampling. We filtered the
water sample through a pre-weighted cellulose acetate filter (Whatman, 0.2 µm, 47 mm).
To measure the total suspended sediment concentration ([TSS]), we used 20 mL of the
collected filtrate. Then, we dried the retained matter on the filter at 105◦ during 24 h, and we
calculated [TSS] by dividing the difference in weights of the filter before and after filtration,
by the filtered volume (APHA, 1998). To determine the concentration of dissolved organic
carbon ([DOC]) in water samples, we used a duplicate of a 30 mL of the collected filtrate.
30-mL [DOC] samples were stored in pre-combusted (450 ◦C, overnight) glass tubes, sealed
with a Teflon lined cap, after preservation with 36 µL 85% phosphoric acid (H3PO4). [DOC]
was then measured with a Shimadzu TOC-V CSH analyzer, using potassium phthalate
calibration standards over the measurement range (0–450 µmol C L−1).

2.5. Environmental Variables: Rainfall, Temperatures and Global Solar Radiation

A permanent meteorological station, Campbell BWS200 with ARG100—0.2 mm ca-
pacity tipping-bucket (Campbell Scientific, Logan, Utah, USA), set up downstream of the
swamp recorded rainfall at 1-min intervals. A meteorological station installed in the wet-
land recorded sediment temperature (◦C) at 6-min intervals, using Campbell T108s probes
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inserted 7.5 cm deep in the wetland sediment (T1). The air temperature (◦C) was also
recorded at 6-min intervals using a Campbell CS215 probe. The water column temperature
(◦C) in the wetland was recorded at 6-min intervals with an AquiStar CT2X probe.

The global solar radiation (W m−2) averaged at 6 min intervals was recorded using a
pyranometer Campbell CS300.

In order to evaluate the solar intensity attenuation by the Napier grass cover (i.e., 100%
at the center of the wetland where the experiment was conducted) and to check the dark
conditions inside the mesocosms, we measured the solar radiation intensities at 3 different
heights above the wetland bottom sediments (380 cm, 100 cm and 3 cm) and inside the
mesocosm (Figure S1). The global solar radiation (W m−2) averaged at 6-min intervals
were recorded during two days using 4 pyranometers: SP110 (Campbell CS300) at 380 cm
height; RG100 Solems at 100 cm height; Li200X (LI-COR PY34392) at 3 cm height; and
RG100 Solems inside the mesocosm.

2.6. Apparent Decay Rates, T50 and T90 Values

In this study, what we refer to as ‘apparent’ decay rate (k) accounts for the net
equilibrium between the increase and the decrease in E. coli concentration due to possible
bacteria growth, bacteria mortality, and suspended particles attachment and settlement,
i.e., deposition process. The apparent decay rates of E. coli for each of the four treatments
were estimated by fitting an exponential equation to the bacterial concentration measured
over time. The equation has been expressed as a first order kinetic decay proposed by [66]:

Ct = Ci · e−kt (1)

ln Ct = ln Ci– kt (2)

where Ct is the measured concentration of E. coli at time t in MPN 100 mL−1, Ci is the
measured initial concentration of E. coli in MPN 100 mL−1, k is the decay rate in day−1, and t
is the elapsed time in days. The k value was determined for both the free-living and particle-
attached fractions of E. coli concentration and for the total E. coli concentration. Average k
and standard errors were calculated for the triplicates of each treatment. When outliers
due to external contaminations were detected, values of k were obtained after excluding
the outliers in order to reduce the variance due to external contamination following the
possible submersion of a mesocosm.

The time (hours) required for initial bacterial concentration to decrease by 50% and
90% is T50 (E. coli population half-life) and T90, respectively. The previous equation can be
written as:

T50 = − ln(0.5)
k∗24

(3)

T90 = − ln(0.1)
k∗24

(4)

2.7. E. coli Stock Variations

In order to estimate the respective contributions of solar radiation and particle de-
position to bacterial apparent decay during the experiment, we applied a simple balance
method. In this approach, only solar radiation-related decay and suspended particles depo-
sition were assumed to be involved. Therefore, E. coli stocks at the start of the experiment
(So) and after a period of time ∆t (St) in the water column were compared between the DL
and DD treatments. So was obtained by multiplying a normalized initial concentration
(Co = 500,000 MPN 100 mL−1) by the initial volume of water (Vo = 4500 mL). St was calcu-
lated by multiplying the final volume of water (Vt) by the final E. coli concentration (Cf) in
DL and DD treatments. Cf was obtained using Equation (1) considering the fitted value of
the apparent decay rates (Table 1). The number of decayed E. coli in the water column was
deduced from the difference between So and St at each sampling date ∆t. The total number
of decayed E. coli in the water column (Nt) was calculated considering that DL treatment
cumulates the decay effects of both solar radiation and particle deposition. The number of
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decayed E. coli due to deposition (nD
t ) only was obtained from the DD treatment. Finally,

the number of decayed E. coli due to solar radiation
(
nL

t
)

was deduced from the difference
between Nt and nD

t . A Monte Carlo approach was then used to quantify the uncertainties in
nD

t and nL
t calculations (e.g., [67]). The details of the equations that describe the E. coli stock

variations, and their associated uncertainties, are given in the Supplementary Materials.

Table 1. Average apparent decay rates k (day−1) ± standard error (day−1) of replicates per treatment
for total E. coli and for the free-living and particle-attached fractions of E. coli measured in mesocosms
installed in the headwater wetland of the Houay Pano catchment, northern Lao PDR, from 9 August
to 16 August 2019: Resuspension—Light (RL); Deposition—Light (DL); Resuspension—Dark (RD);
Deposition—Dark (DD).

Treatments RL DL RD DD

Total 0.50 ± 0.15 1.43 ± 0.15 −0.14 ± 0.37 1.17 ± 0.13
Attached 0.49 ± 0.15 1.41 ± 0.15 −0.15 ± 0.38 1.18 ± 0.13

Free 1.20 ± 0.13 1.53 ± 0.19 0.28 ± 0.35 1.36 ± 0.32

3. Results

The results are presented by first describing the environmental context in the head-
water wetland of the Houay Pano catchment during the experiment duration, followed
by our main findings as we monitor the temporal variations of physico-chemical and
microbiological variables in the mesocosms [68]. Based on the observations, we calculated
the E. coli decay rates, T50 and T90 values, as well as E. coli stock variations.

3.1. Environmental Variables

We measured the solar radiation intensities at 3 different heights above the wetland
bottom sediments and inside the mesocosms to evaluate the solar intensity attenuation by
the Napier grass cover and to check the dark conditions inside the mesocosms (Figure S1).
Solar radiation measured at 380 cm height, which is above the vegetation height (Figure S1),
ranged between 40 and 1068 W m−2 while at 100 cm, which is inside the vegetation, it
ranged between 3 and 170 W m−2 (Figure 2). At 3 cm height (under the vegetation), the
solar radiation varied between 0 and 91 W m−2 (Figure 2). Solar radiations were highly
attenuated inside the wetland vegetation, which blocks an important part of the radiation
from reaching the water column and bottom sediment. Inside the mesocosm, the solar
radiation were almost completely blocked and dark conditions prevailed (Figure 2).

We monitored, during the experiment duration, three main environmental variables
including rainfall, global solar radiation, and the temperature of the air, swamp water,
and swamp sediment (Figure 3). Three rainfall events over the experiment duration were
observed on 9, 10, and 12 August 2019, with a daily cumulative rainfall of 12.2, 12.6, and
8.4 mm, respectively (Figure 3a). The temperatures measured during the experiment
followed diurnal cycles. Air temperature varied between 24 and 36 ◦C. Likewise, diurnal
temperature variations were also observed in wetland sediment with highest temperatures
up to 29 ◦C recorded during the daytime. Wetland water temperature remained stable
around 25 ◦C (Figure 3b). The global solar radiation followed diurnal cycles with peaks
recorded in the middle of the day with a maximum value of 1160 W m−2 (Figure 3c).

3.2. Physico-Chemical and Microbiological Variables

[TSS] and turbidity decreased over time (Figure 4a–d). Two different trends are noted.
In both light and dark conditions, RD and RL showed stable [TSS] the first 4 days of an
average around 0.39 ± 0.20 g L−1 and 0.43 ± 0.23 g L−1, respectively, and a slight decrease
during the rest of the experiment to reach 0.27 ± 0.04 g L−1 and 0.22 ± 0.07 g L−1, respec-
tively. The mesocosms left to deposition processes in DD and DL showed a rapid decrease
of [TSS] from the first day of experiment until the end of the experiment, reaching values
around 0.02 g L−1. [DOC] increased between the first and the third day of the experiment
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in the four treatments (Figure 4e,f). [DOC] increased the most in light conditions, with
values ranging from 0.08 to 0.12 mg L−1 in RL and 0.08 to 0.19 mg L−1 in DL and decreased
during the rest of the experiment.
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Figure 3. Temporal variations of environmental variables in the headwater wetland of the Houay
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(◦C) recorded in the swamp sediment, in the swamp water, and in the air; (c) solar radiation (W m−2).
The vertical black arrows above the upper y axis represent the days of sampling to measure turbidity
and [E. coli] and the red arrows represent the days of sampling to measure [DOC] and [TSS] in
addition to turbidity and [E. coli].

On the first day, [E. coli]free in the four treatments ranged from 9700 to 51,600 MPN
100 mL−1 (Figure 4g,h). [E. coli]free decreased over the course of the experiment to reach
0 MPN 100 mL−1 on the fourth day in DD and DL, and on the last day in RL. However, the
decrease of [E. coli]free in RD was slower over time and reached 66 ± 88 MPN 100 mL−1 on
day 6 but increased again to 2470 ± 975 MPN 100 mL−1 on the last day of the experiment.

On the first day, [E. coli]total in the four treatments ranged from 330,000 to 505,000 MPN
100 mL−1 (Figure 4i,j). The changes over time varied from one treatment to another. We
can dissociate two distinct trends. The first group corresponds to DD and DL, showing
an important [E. coli]total decrease during the experiment. The [E. coli]total at the end
of the experiment was 226 ± 25 MPN 100 mL−1 for DD and 50 ± 58 MPN 100 mL−1

for DL. Within these two treatments, we also dissociated the faster [E. coli]total decrease
in the mesocosm exposed to solar radiation (DL) as compared to the mesocosm left in
the dark (DD). The second group corresponds to RD and RL, showing a more stable
dynamic when compared with DD and DL. Within these two treatments, the mesocosm
exposed to light (RL) showed a stable [E. coli]total and a slight decrease at the last day of
the experiment, while the mesocosm in dark (RD) showed a slight [E. coli]total increase. At
the end of the experiment, [E. coli]total was 38,763 ± 44,890 MPN 100 mL−1 for RD and
24,221 ± 33,238 MPN 100 mL−1 for RL.

3.3. Apparent Decay Rates and T50 and T90 Values

The apparent decay rates of total E. coli concentration for mesocosms left to deposit
(k = 1.43 day−1 in DL and 1.17 day−1 in DD) were higher than in mesocosms subject to
resuspension (k = 0.50 day−1 in RL and −0.14 day−1 in RD). Likewise, the apparent decay
rates for mesocosms exposed to solar radiation (RL and DL) were higher than mesocosms
left in the dark (RD and DD). However, in contrast to the majority of treatments, it is
important to note the specific behavior of E. coli concentration tending to be stable and
slightly increasing in RD mesocosms (Table 1).
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Figure 4. Temporal variations of physico-chemical and microbiological variables in the mesocosm
installed in the headwater wetland of the Houay Pano catchment, northern Lao PDR, from 9 August
to 16 August 2019. Left side panels are for Resuspension—Dark (RD) and Deposition—Dark (DD),
whereas right panels are for Resuspension—Light (RL) and Deposition—Light (DL). (a,b) Turbidity:
turbidity (NTU); (c,d) [TSS]: total suspended sediment concentration (g L−1); (e,f) [DOC]: dissolved
organic carbon concentration (mg L−1); (g,h) [E. coli]free: free-living E. coli concentration (MPN
100 mL−1); (i,j) [E. coli]total: total E. coli concentration (MPN 100 mL−1).

Similarly, the particle-attached fraction of E. coli showed the same dynamics in terms
of apparent decay rates in all four treatments. However, more accentuated apparent decay
rates of free-living E. coli were noted in DL (k = 1.53 day−1), DD (k = 1.36 day−1), RL
(k = 1.20 day−1), and RD (k = 0.28 day−1) in a decreasing order. Contrarily to the particle-
attached fraction, dynamics of free-living E. coli in RD mesocosms tended to decrease over
the incubation period (k = 0.28 day−1) (Table 1).

The time required to achieve T50, i.e. 50% reduction of [E. coli]total, was the longest in
RD followed by RL ranging respectively between 117.8 and 33.4 hours, and the shortest
for DL followed by DD ranging respectively between 11.6 and 14.2 hours. The particle-
attached fraction of E. coli showed similar T50 values in all four treatments. The T50 in RD
and RL is divided by two for [E. coli]free, ranging respectively between 59.4 and 13.9 hours.
As for the DL and DD, the T50 is similar to the [E. coli]total, ranging respectively between
10.9 and 12.2 hours (Table 2).
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Table 2. T50 (h) and T90 (h) values for total E. coli and for the free-living and particle-attached frac-
tions of E. coli measured in mesocosms installed in the headwater wetland of the Houay Pano
catchment, northern Lao PDR, from August 9 to August 16, 2019: Resuspension—Light (RL);
Deposition—Light (DL); Resuspension—Dark (RD); Deposition—Dark (DD).

Treatments RL DL RD DD

T50 T90 T50 T90 T50 T90 T50 T90

Total 33.4 111 11.6 38.6 117.8 391.2 14.2 47.2
Attached 33.9 112.8 11.8 39.2 110.9 368.4 14.1 46.8

Free 13.9 46 10.9 36.1 59.4 197.4 12.2 40.6

The same dynamics were noted for the time required to achieve T90, i.e. 90% reduction
of [E. coli]total, which was the longest in RD followed by RL, varying respectively between
391.2 and 111 hours, and the shortest for DL followed by DD, varying respectively between
38.6 and 47.2 hours. The particle-attached fraction of E. coli showed similar T90 values
in all four treatments. The T90 in RL and RD is divided by two for [E. coli]free, varying
respectively between 197.4 and 46 hours. As for the DL and DD, the T90 is similar to the
[E. coli]total, varying respectively between 40.6 and 36.1 hours (Table 2).

3.4. E. coli Stock Variations

The E. coli stock variations approach allowed us to estimate the respective contribution
of each factor separately, deposition and solar radiation, to bacterial apparent decay over
the duration of the experiment (Figure 5). The deposition accounted for the decrease
in initial E. coli number by an average of 64% at day 1 of the experiment, by 89% at
day 2, and by more than 96% from day 3 till the end of the experiment. Solar radiation
accounted for the decrease in initial E. coli number of around 7% at day 1, 4% at day 2,
and the contribution continuously decreased till the end of the experiment (Figure 5). The
deposition process accounted for an average of 92% of the decayed E. coli number over the
experiment duration, while solar radiation accounted for around 2%. The remaining 6% is
the residual fraction of decayed E. coli in the experiment (Figure S2).
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Figure 5. Temporal variations of estimated decayed E. coli number (MPN) due to particle deposition
(yellow boxplots) and to solar radiation (green boxplots). The red crosses indicate the means,
and the central horizontal bars are the medians. The lower and upper limits of the box are the
first and third quartiles, respectively. The lower and upper lines of the boxes are the 10th and
90th percentiles, respectively.

4. Discussion

Most studies on factors impacting E. coli in the environment have been carried out in
laboratory conditions [41,42,56,57]. No comparable in situ studies for wetland ecosystems
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in a tropical humid context, such as that of the montane northern Lao PDR presented in
this paper, were found in the scientific literature. This experiment provided an opportunity
to study the factors controlling the apparent decay rates of E. coli in a tropical headwater
wetland: (i) E. coli concentrations in the Houay Pano stream were usually high (mean initial
concentration in this study >400,000 MPN 100 mL−1) and changes in concentration along
the incubation period could therefore be easily observed; (ii) the wetland configuration
allowed installing 15 mesocosms to study the effect of both the natural solar radiation, and
the suspended particles deposition; (iii) the artificial resuspension process, prior to each
sample collection allowed us to access the dynamics of deposited bacteria in the bottom
sediment. Even though the multiple processes are more complex and interactive under
natural conditions, the outcomes from the semi-controlled environmental conditions of
our study are important for determining the effect and the relative importance of the two
factors tested here, particle deposition and solar radiation, on the apparent decay rates.

4.1. Particle Attachment Effect on E. coli Apparent Decay Rates

In our work, particle-attached bacteria predominated in all mesocosms during the
experiment, with a mean of 97% ± 6% in RD; 99% ± 3% in RL; 91% ± 22% in DL; and
98% ± 4% in DD. It is interesting to note that both [TSS] and turbidity were strongly
correlated (Spearman correlation, p < 0.05) with [E. coli]total in RL (r = 0.87; r = 0.79,
respectively), DL (r = 0.67; r = 0.72, respectively), and DD (r = 0.88; r = 0.93, respectively).
On the contrary, [TSS] and turbidity were not significantly correlated with [E. coli]total in
RD. It is well documented that bacteria, including E. coli, tend to be attached to particles
within the water column [69–71], and several studies have identified positive correlations
between TSS and E. coli concentration in tropical aquatic systems [64,72,73]. We observed
that k values for free-living E. coli (k = 1.53 day−1 in DL; 1.36 day−1 in DD; 0.49 day−1 in
RL; 0.28 day−1 in RD) were higher for the particle-attached E. coli (k = 1.41 day−1 in DL;
1.18 day−1 in DD; 1.20 day−1 in RL; −0.15 day−1 in RD). Yet, our [DOC] measurements
in the water column, over the incubation period, show that organic matter was not a
factor limiting the survival of bacteria inside the mesocosms (Figure 4e,f). The rapid
reduction of free-living E. coli concentration from the water column in the mesocosms
(Figure 4g,h) can be partly attributed to predation-related mortality [54,74,75], as also
stated in a study on lake water mesocosms in Germany [76]. Our results are in alignment
with previous studies that reported significantly lower decay rates for bacteria associated
with particles as opposed to free-living E. coli [50,77]. The association of FIB with particles
in water can improve their survival by providing protection against the bactericidal effects
of light [36,43,78–82]. A study investigating the effect of particle size on E. coli solar
inactivation [42], showed that 91% of E. coli were associated with particle sizes <12 µm,
and that they were inactivated on average two times faster than those associated with
the larger particle fraction between 12 and 63 µm. In Houay Pano catchment, during low
intensity floods, the median size of suspended particles ranged between 6 and 24 µm due
to the particle sorting process and reduced water velocity within the wetland [60]. The
wetland hydrodynamic configuration, given the limited hydraulic radius of the wetted
area, low flow velocity, and low slope, can significantly favor particle deposition processes.
Therefore, suspended particles, not only provide benefits to bacteria, but also are vectors for
bacterial transport settling in bottom sediment [83] thereby providing a new environment
for the cells.

4.2. Deposition Effect on E. coli Apparent Decay Rates

E. coli concentration in mesocosms left to deposition (DL and DD) decreased faster
than in mesocosms exposed to daily resuspension (RL and RD) (Figure 4i,j). The decrease
in total E. coli concentration in the water column in the absence of resuspension (DD and
DL) might be due to the process of bacterial trapping by sediment deposition, along with
the process of bacterial mortality. Under deposition conditions, there was a 96% decrease in
the total initial E. coli concentration in the first 24 h following the incubation, emphasizing
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the importance of the deposition process on the reduction of E. coli concentration within the
water column. These findings are consistent with a previous study conducted in the Houay
Pano catchment [5], which reported a rapid drop in the concentrations [TSS] and particle-
attached E. coli within a short distance (100 m) downstream from the wetland. These
observations [5] along with other reports [84] have also pointed out the filtering effect of
wetlands, where aquatic plants can trap 30 to 70% of the suspended sediments. Therefore,
it is likely that the headwater wetland represents a long-term sediment accumulation zone
within the Houay Pano catchment [61].

In re-suspension treatments (RL and RD), the observed slight increase of E. coli concen-
tration (Figure 4i,j) reflects the balance between bacterial mortality and bacterial survival
and/or growth in deposited sediments. Another study found that FIB decay rates were
much lower in sediments than in the water column, indicating a potentially important role
of sediments in harboring FIB populations [50,64]. Recent studies have demonstrated that
bottom sediments can act as a major reservoir of FIB harboring much more concentrated
populations of microorganisms than the overlying water column [85–88]. Further, bottom
sediments can be mobilized by resuspension events, contributing to the bacterial input to
surface waters [26,48,89]. In a recent microcosm study [90], E. coli concentration increased
in clayey sediment during the first 8 days of incubation before starting to decrease until
the end of the experiment which lasted for 57 days. Our results are also comparable to
that of a 50-day microcosm study of Geneva lake water contaminated with freshwater
sediments [57] that found a growth phase between the 5th and 12th days of incubation
and low decay rates of 0.29 day−1 in fine-textured sediments containing higher levels of
organic matter. In the present study, the results of the RD treatment allowed to access
E. coli in bottom sediments, suggesting that E. coli can survive, explaining the stable E. coli
concentration observed during the first 5 days in RL and RD. These results must be quali-
fied given the higher uncertainty compared to the other treatments (Figure S3). In future
studies, a longer period of observation of at least 30 days should be privileged, to allow
a better understanding of the potential E. coli survival in secondary habitats, in order to
better mitigate their potential impact on public health. Moreover, the utility of E. coli as an
environmental FIB might be challenged given its likely ability to persist and grow under
certain conditions likely to be found in tropical contexts [28,91].

4.3. Solar Radiation Effect on E. coli Apparent Decay Rates

The total E. coli apparent decay rates k obtained in the mesocosms exposed to solar
radiation ranged between 0.49 day−1 (RL) and 1.43 day−1 (DL), whereas in covered meso-
cosms, it ranged between −0.14 day−1 (RD) and 1.19 day−1 (DD) (Table 1). These results
can be compared to the values of k obtained in a study carried out by [64] in the Red River
in northern Vietnam, where the total E. coli decay rates under dark conditions ranged from
0.01 to 1.13 day−1. Hence, in the present work, a higher k was noted in RL when compared
to RD, and it was also noted in DL when compared to DD. Several studies showed that solar
radiation causes inactivation of a wide range of microorganisms present in water [80,92].
In particular, the U.V.-B part of the spectrum causes direct photo-biological damages de-
grading the nucleic acids within bacteria [36,93,94]. Both previous field observations and
laboratory experiments have pointed out the importance of solar radiation in reducing FIB
concentrations in surface waters. Research focusing on the impacts of solar radiation on
FIB like E. coli have been mainly conducted in marine aquatic environments [36,78,95]. In
a study carried out in subtropical coastal ecosystems [34], light intensity was identified
as the most significant factor affecting E. coli decay rate as compared to dark conditions.
In fact, the in situ bacterial decay rates found in [34], ranged between 1.3 and 5.1 day−1

and increased significantly with light intensity. Few studies only deal with freshwater
ecosystems [36,41]. For instance, in a study conducted in Lake Michigan, USA [40], an
exponential decrease in E. coli counts was noted in the upper 90 cm of the lake during sunny
days, contrasting with the much weaker E. coli inactivation noted during cloudy days.
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In shallow aquatic ecosystems, sunlight penetration into the water column can be
considered among the most important factors in bacterial inactivation and decline [41].
However, tropical wetlands are often characterized by dense vegetation thereby limiting
sunlight penetration [96]. Our study showed the attenuation of solar radiations by dense
vegetation within the wetland, preventing most of the light from reaching the water
column (Figures 2 and S1). Moreover, it seems important to take into account the impact
of vegetation type and density on flow reduction within wetlands, which further impacts
bacterial transport and fate.

While solar radiation can significantly affect E. coli survival, UV radiation can be
scattered by TSS [42,82] in highly turbid water following a resuspension event or surface
runoff, especially during the rainy season in tropical environments. In a study conducted
in estuarine and coastal waters in the UK [95], the bacterial decay in highly turbid water
(>200 NTU) exposed to solar radiation did not differ from their decay rates observed under
dark conditions. When assessing the effect of solar radiation on E. coli reduction, it is
therefore imperative to take into account the effect of TSS in the water column.

4.4. Relative Effects of Solar Radiation and Deposition on E. coli Apparent Decay Rates

In order to identify the relative importance of the two studied factors, namely so-
lar radiation and deposition process, in the apparent bacterial decay, we compared the
percentages of E. coli stock variations attributed to each factor at each sampling date. A
comparison of DL with DD indicates that the deposition process accounts for an average of
92% of the decayed bacterial number over the experiment duration, while 2% corresponds
to the effect of solar radiation (Figure 5 and Figure S2). In DL and DD mesocosms, the T90
value was similar when exposed to solar radiation (DL, 38 h) and when in dark (DD, 47 h),
whereas in RL and RD mesocosms, the T90 value was 111 h and 391 h respectively (Table 2).
A study in the UK [95] showed lower T90 values of 24.8 h in low-turbidity estuarine waters
in dark conditions, and 6 h when exposed to solar radiation. Although a large number
of studies have been highlighting the solar radiation effect on E. coli T90 [38,97], it is also
imperative to consider other predominant factors like TSS dynamics as well as deposition
and resuspension processes when investigating bacterial decay rates in aquatic ecosys-
tems such as tropical wetlands, which are common landscape features especially in the
mountainous area of northern Lao PDR and in the tropical South-East Asia in general [11].
Deposition processes occurring in aquatic ecosystems are rather complex, influenced by
multiple factors such as TSS concentrations, size, and settling velocity [98], presence of
dense vegetation [99], as well as hydrodynamic conditions (stream flow velocity, slope
gradient, and turbulence in water column) [100]. The importance of E. coli reduction due
to deposition depends largely on whether the bacteria are associated to particles which
are vectors for vertical migration of pathogens within the water column [83]. In our study,
more than 91% of total E. coli were attached to particles in all mesocosms over the incu-
bation period. Our findings are consistent with the studies that found that deposition
process is identified as a key process involved in pathogen reduction and is widely used to
decontaminate water in constructed wetlands. At local scales, wetlands have been shown
to contribute to the regulating ecosystem service of reducing waterborne pollutant loading
to downstream environments.

Wetlands act as a natural sanitation system [101], providing a nature-based solution
for water quality improvement. Over the last century, constructed wetlands have been
designed to include physical, biological, and chemical processes similar to those occurring
in natural wetlands. Today, constructed wetlands are recognized as a suitable alternative
wastewater treatment technology in many countries [102–106]. An accurate understand-
ing of FIB controlling factors in lentic systems like wetlands is fundamental for a better
management of natural as well as constructed wetlands, in the perspective of the effec-
tive conservation of the valuable ecosystem services that they deliver. Such an improved
understanding is especially critical in rural areas of developing tropical countries whose
populations directly rely on untreated surface waters [7].



Water 2021, 13, 2068 15 of 20

5. Conclusions

This study aimed to determine E. coli apparent decay rates, i.e., the net equilibrium
between the increase and the decrease in E. coli concentration due to possible bacteria
growth, bacteria mortality, and deposition process, in a tropical headwater wetland. The
environmental variables assessed were solar radiation and suspended particles deposition.

- Particle-attached bacteria prevailed in all mesocosms over the incubation period: over
91% of total E. coli were attached to particles.

- Apparent decay rates of free-living bacteria were higher than apparent decay rates of
particle-attached bacteria in all mesocosms.

- Apparent decay rates of total E. coli concentration in mesocosms left to deposit
ranged from 1.43 ± 0.15 to 1.17 ± 0.13 day−1 when exposed to light and dark con-
ditions, respectively. Apparent decay rates in mesocosms stirred prior to sampling
ranged from 0.50 ± 0.15 to −0.14 ± 0.37 day−1 when exposed to light and dark
conditions, respectively.

- Deposition accounted for an average of 92% of the estimated E. coli stock reduction in
the water column, while 2% of the estimated E. coli stock reduction was due to the
exposure to solar radiation.

- By resuspending the bottom sediment prior to sample collecting in RD mesocosms, we
mobilized the deposited E. coli that showed stable concentration during the first 5 days
of the experiment, suggesting a survival of bacterial population in bed sediments.

The improved understanding of factors controlling E. coli fate should be exploited to
further develop practical strategies for a better management of natural ecosystems like
wetlands. This work brings insights to improve modeling approaches in tropical contexts
by providing a range of bacterial decay rates to parameterize hydrological and water
quality models.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/w13152068/s1, Figure S1. (a) Photo of the Napier grass and solar sensor installed in the wetland
of Houay Pano catchment, northern Lao PDR; (b) diagram of the solar sensors installed at different
heights (380 cm, 100 cm, 3 cm, and inside the mesocosm) to measure the solar radiation attenuation by
Napier grass during two days (24 and 25 October 2020) in the wetland of the Houay Pano catchment.
The pyranometers used to measure solar radiation at 380 cm height: SP110 (Campbell CS300);
at 100 cm height: RG100 Solems; at 3 cm height: Li200X (LI-COR PY34392); and inside covered
top mesocosm: RG100 Solems. Figure S2. Stacked area graph showing the average percentage of
the estimated fraction of decayed E. coli at daily time steps during the experiment: the grey area
corresponds to the decay fraction due to deposition; the yellow area corresponds to the decay fraction
due to solar radiation, and the blue area is the residual fraction of decayed E. coli. Figure S3. Plot of
Ln(Ct/Ci) versus time in days where Ct is the measured concentration of total E. coli at time t in MPN
100 mL−1, Ci is the measured initial concentration of total E. coli in MPN 100 mL−1 for the mesocosms
installed in the headwater wetland of the Houay Pano catchment, northern Lao PDR, from August
9 to August 16, 2019. RD: Resuspension-Dark; RL: Resuspension-Light; DD: Deposition-Dark; DL:
Deposition-Light. Dotted lines represent 95% confidence interval and continuous lines represent 95%
prediction interval.
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