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Scientific problem : 
Simulation & data assimilation under severe dimensional reduction

typically, 107 → 𝑂(10) degrees of freedom 1
0
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DATA ASSIMILATION (POSTERIOR)

On-line estimation of the solution

Resseguier et al. (2022). J Comp.Phys . hal-03445455
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 Increasing Reynolds (ROM of LES, DDES)

▪ Hyperreduction  (=interpolation with a POD basis) of turbulence model terms
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