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[ Which simple model? How to combine model & measurements?

Scientific problem :
Simulation & data assimilation under severe dimensional reduction

typically, 107 - 0(10) degrees of freedom
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DATA ASSIMILATION (POSTERIOR)
On-line estimation of the solution

Reference

PCA-projection of the DNS
(Optimal from 8-dof linear decomposition)
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—

From 107 to 8 degrees of freedom

O Single measurement point (blurred & noisy velocity)

Our method

POD-Galerkin with Navier-Stokes
under location uncertainty (LUM)

State-of-the-art

POD-Galerkin with Navier-Stokes + optimally
tuned eddy viscosity & additive noise

Re 100
2D
(DNS has
10* dof)

Vorticity

Vorticity

Vorticity

Re 300

3D
(DNS has
107 dof)

Q-criterion

888

\

vortices

Y

(round) wind turbine blade

Resseguier et al. (2022). J Comp.Phys . hal-03445455
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» Data assimilation : to correct the fast simulation on-line by incomplete/noisy measurements
= Model error quantification handled by LUM
» First results
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= Robust far outside the training set (time extrapolation / out of sample)
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WORK IN PROGRESS:

» Increasing Reynolds (ROM of LES, DDES)

ITHACA - FV

= Hyperreduction (=interpolation with a POD basis) of turbulence model terms
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