STOCHASTIC REDUCED ORDER MODELS FOR BAYESIAN ESTIMATION PROBLEMS IN FLUID MECHANICS

P. Jacquet, A. Moneyron, G. Le Pape, M. Ladvig, A. M. Picard, **V. Resseguier**, D. Heitz & G. Stabile

@Scalian 2019. All rights reserved.

CONTENT

- I. Context
- II. State of the art
 - a. Intrusive reduced order model (ROM)
 - b. Data assimilation
- III. Reduced location uncertainty models
 - a. Location uncertainty models (LUM)
 - b. Reduced LUM
- IV. Numerical results
 - a. Test cases
 - b. Data assimilation

PART I

CONTEXT : OBSERVER FOR WIND TURBINE APPLICATIONS

CONTEXT Observer for wind turbine application

CONTEXT Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources & few sensors

Which simple model? How to combine model & measurements?

CONTEXT Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources & few sensors

Scientific problem : Simulation & data assimilation under severe dimensional reduction typically, $10^7 \rightarrow O(10)$ degrees of freedom

PART II

STATE OF THE ART

- a. Intrusive reduced order model (ROM)
- b. Data assimilation

INTRUSIVE REDUCED ORDER MODEL (ROM) Combine physical models and learning approaches

• <u>Principal Component Analysis (PCA)</u> on a *dataset* to reduce the dimensionality:

• <u>Approximation</u>: $v(x,t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)$

INTRUSIVE REDUCED ORDER MODEL (ROM) Combine physical models and learning approaches

INTRUSIVE REDUCED ORDER MODEL (ROM) Combine physical models and learning approaches

INTRUSIVE REDUCED ORDER MODEL (ROM) Combine physical models and learning approaches

INTRUSIVE REDUCED ORDER MODEL (ROM) Combine physical models and learning approaches

INTRUSIVE REDUCED ORDER MODEL (ROM) Combine physical models and learning approaches

INTRUSIVE REDUCED ORDER MODEL (ROM) Combine physical models and learning approaches

• <u>Principal Component Analysis (PCA)</u> on a *dataset* to reduce the dimensionality:

INTRUSIVE REDUCED ORDER MODEL (ROM) Combine physical models and learning approaches

• <u>Principal Component Analysis (PCA)</u> on a *dataset* to reduce the dimensionality:

INTRUSIVE REDUCED ORDER MODEL (ROM) Combine physical models and learning approaches

• <u>Principal Component Analysis (PCA)</u> on a *dataset* to reduce the dimensionality:

= Coupling simulations and measurements y

On-line measurements

→ incomplete
→ possibly noisy

= Coupling simulations and measurements y

→ incomplete→ possibly noisy

= Coupling simulations and measurements y

28

= Coupling simulations and measurements y

29

= Coupling simulations and measurements y

= Coupling simulations and measurements y

= Coupling simulations and measurements y

PART III

REDUCED LOCATION UNCERTAINTY MODELS

- a. Location uncertainty models (LUM)
- b. Reduced LUM (Red LUM)

LOCATION UNCERTAINTY MODELS (LUM)

v = w + v' Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$	
Unresolved fluid velocity: $v' = \sigma \dot{B}$	Assumed (conditionally-)Gaussian & white in time (non-stationary in space)

LOCATION UNCERTAINTY MODELS (LUM)

LOCATION UNCERTAINTY MODELS (LUM)

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity: *w*

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t)

(assuming $abla \cdot w = 0$ and $abla \cdot v' = 0$)

Momentum conservation

$$\frac{\mathrm{d}}{\mathrm{dt}}(w(t,X_t)) = F \quad (\text{Forces})$$

Positions of fluid parcels X_t : $\frac{d}{dt}X_t = w(t, X_t) + \sigma(t, X_t) \frac{dB_t}{dt}$ Gaussian process white in time

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420

From Ito-Wentzell

with Ito notations

formula (Kunita 1990)

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity: *w*

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$)

$$\partial_t w + w^* \cdot \nabla w + \sigma \dot{B} \cdot \nabla w - \nabla \cdot \left(\frac{1}{2}a\nabla w\right) = F$$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

v = w + v'

Resolved fluid velocity: *w*

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $abla \cdot w = 0$ and $abla \cdot v' = 0$)

Advection

$$\partial_t w + w^* \cdot \nabla w + \sigma \dot{B} \cdot \nabla w - \nabla \cdot \left(\frac{1}{2}a\nabla w\right) = F$$

From Ito-Wentzell formula (Kunita 1990) with Ito notations

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity: *w*

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $abla \cdot w = 0$ and $abla \cdot v' = 0$)

$$\partial_t w + w^* \cdot \nabla w + \sigma \dot{B} \cdot \nabla w - \nabla \cdot \left(\frac{1}{2}a\nabla w\right) = F$$

From Ito-Wentzell formula (Kunita 1990) with Ito notations

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity: *w*

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $abla \cdot w = 0$ and $abla \cdot v' = 0$)

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity: *w*

v = w + v'

Unresolved fluid velocity:

$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)
(assuming $\nabla \cdot w = 0$ and $\nabla \cdot v' = 0$

Variance tensor:

$$a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity: *w*

v = w + v'

Unresolved fluid velocity:
$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming
$$abla \cdot w = 0$$
 and $abla \cdot v' = 0$

Variance tensor:
$$a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

LOCATION UNCERTAINTY MODELS (LUM),

Randomized Navier-Stokes

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity: *w*

v = w + v'

Unresolved fluid velocity:
$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming ${m
abla} \cdot w = 0$ and ${m
abla} \cdot v' = 0$)

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

$$\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

r

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

$$\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

v = w + v'

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

v = w + v'

Unresolved fluid velocity: $v' = \sigma B$ (Gaussian, white wrt *t*)

SCALIAN

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t)

Variance tensor: $a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$ $\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$

 $\oint \frac{d}{dt}b(t) = H(b(t)) + K(\sigma \dot{B}) b(t)$

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t)

Variance tensor: $a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$

 $\overline{f} = \frac{1}{T} \int_{-T}^{T} f$

 $\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$

 $\stackrel{d}{\longrightarrow} \frac{d}{dt}b(t) = H(b(t)) + K(\sigma\dot{B}) \ b(t)$

^{2nd} order polynomial

Coefficients given by :

- Randomized Navier-Stokes
- $(\phi_j)_j$
- $a(x) \approx \Delta t \ \overline{v'(v')^T}$

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

v = w + v' $\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$ Resolved fluid velocity: $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t)\phi_i(x)}$ $\stackrel{d}{\longrightarrow} \frac{d}{dt}b(t) = H(b(t)) + K(\sigma\dot{B}) \ b(t)$ Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t) Variance tensor: $a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$ 2nd order polynomial Coefficients given by : Randomized Navier-Stokes **Randomized Navier-Stokes** $(\phi_j)_i$ • $a(x) \approx \Delta t v' (v')^T$ $K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$ $\overline{f} = \frac{1}{T} \int_{-T}^{T} f$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

v = w + v' $\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$ Resolved fluid velocity: $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t)\phi_i(x)}$ $\stackrel{d}{\longrightarrow} \frac{d}{dt}b(t) = H(b(t)) + K(\sigma\dot{B}) \ b(t)$ Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t) Variance tensor: $a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$ 2nd order polynomial Coefficients given by : Randomized Navier-Stokes **Randomized Navier-Stokes** $(\phi_j)_i$ PCA modes • $a(x) \approx \Delta t v' (v')^T$ $K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$ $\overline{f} = \frac{1}{T} \int_{-T}^{T} f$

15

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

v = w + v' $\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$ Resolved fluid velocity: $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t)\phi_i(x)}$ $\oint \frac{d}{dt}b(t) = H(b(t)) + K(\sigma \dot{B}) b(t)$ Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t) Variance tensor: $\overline{a(x,x)} = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{U}$ 2nd order polynomial Coefficients given by : Randomized Navier-Stokes **Randomized Navier-Stokes** $(\phi_j)_i$ PCA modes • $a(x) \approx \Delta t v' (v')^T$ PCA residual v' $K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$ $\overline{f} = \frac{1}{T} \int_{-T}^{T} f$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

v = w + v' $\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$ Resolved fluid velocity: $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t)\phi_i(x)}$ $\frac{d}{dt}b(t) = H(b(t)) + K(\sigma \dot{B})b(t)$ Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t) Multiplicative skew-symmetric noise Variance tensor: $\overline{a(x,x)} = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{U}$ 2nd order polynomial Coefficients given by : Randomized Navier-Stokes **Randomized Navier-Stokes** $(\phi_j)_i$ PCA modes • $a(x) \approx \Delta t v' (v')^T$ PCA residual v' $K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$ $\overline{f} = \frac{1}{T} \int_{-T}^{T} f$ 15 Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

REDUCED LUM (RED LUM) Full order : $M \sim 10^7$ POD-Galerkin gives SDEs for resolved modes Reduced order : $n \sim 10$ v = w + v' $\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$ Resolved fluid velocity: (n+1) x (n+1) n x 1 $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t)\phi_i(x)}$ $= \frac{d}{dt}b(t) = H(b(t)) +$ $K(\sigma \dot{B})$ b(t)Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t) Multiplicative skew-symmetric noise Variance tensor: **Covariance to estimate** $\overline{a(x,x)} = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{U}$ $\mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t K_{jq} \left[\frac{\overline{b_p}}{\overline{b_r^2}} \frac{\Delta b_i}{\Delta t} v'\right]$ 2nd order polynomial Coefficients given by : Randomized Navier-Stokes **Randomized Navier-Stokes** $(\phi_j)_i$ PCA modes • $a(x) \approx \Delta t v' (v')^T$ PCA residual v' $K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$ $\overline{f} = \frac{1}{T} \int_{-T}^{T} f$

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

REDUCED LUM (RED LUM) Full order : $M \sim 10^7$ POD-Galerkin gives SDEs for resolved modes Reduced order : $n \sim 10$ v = w + v' $\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$ Resolved fluid velocity: (n+1) x (n+1) n x 1 $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t)\phi_i(x)}$ $\oint \frac{d}{dt}b(t) = H(b(t)) +$ $K(\sigma \dot{B})$ b(t)Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t) Multiplicative skew-symmetric noise Variance tensor: **Covariance to estimate** $\overline{a(x,x)} = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{U}$ $\mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t K_{jq} \left| \frac{\overline{b_p}}{\overline{b_p^2}} \frac{\Delta b_i}{\Delta t} v' \right|$ 2nd order polynomial Coefficients given by : Randomized Navier-Stokes **Randomized Navier-Stokes** $(\phi_j)_i$ PCA modes • $a(x) \approx \Delta t v' (v')^T$ PCA residual v' $K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$ $\overline{f} = \frac{1}{T} \int_{-T}^{T} f$

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

REDUCED LUM (RED LUM) Full order : $M \sim 10^7$ POD-Galerkin gives SDEs for resolved modes Reduced order : $n \sim 10$ v = w + v' $\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$ Resolved fluid velocity: (n+1) x (n+1) n x 1 $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t) \phi_i(x)}$ $\frac{d}{dt}b(t) = H(b(t)) + K(\sigma \dot{B})$ b(t)Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t) Multiplicative skew-symmetric noise Variance tensor: **Covariance to estimate** $\overline{a(x,x)} = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{U}$ $\mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t K_{jq} \left| \frac{\overline{b_p}}{\overline{b_p^2}} \frac{\Delta b_i}{\Delta t} v' \right|$ 2nd order polynomial Coefficients given by : Randomized Navier-Stokes **Randomized Navier-Stokes** $(\phi_j)_i$ PCA modes • $a(x) \approx \Delta t v' (v')^T$ PCA residual v' $K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$ $\overline{f} = \frac{1}{T} \int_{-T}^{T} f$ 15

REDUCED LUM (RED LUM) Full order : $M \sim 10^7$ POD-Galerkin gives SDEs for resolved modes Reduced order : $n \sim 10$ v = w + v' $\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$ Resolved fluid velocity: (n+1) x (n+1) n x 1 $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t) \phi_i(x)}$ $\frac{d}{dt}b(t) = H(b(t)) + K(\sigma \dot{B})$ b(t)Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t) Multiplicative skew-symmetric noise Variance tensor: **Covariance to estimate** $\overline{a(x,x)} = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{U}$ $\mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t K_{jq} \left| \frac{\overline{b_p}}{\overline{b_p^2}} \frac{\Delta b_i}{\Delta t} v' \right|$ 2nd order polynomial Coefficients given by : Randomized Navier-Stokes **Randomized Navier-Stokes** $(\phi_j)_i$ PCA modes • $a(x) \approx \Delta t v' (v')^T$ PCA residual v' $K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$ $\overline{f} = \frac{1}{T} \int_{-T}^{T} f$ 15

REDUCED LUM (RED LUM) Full order : $M \sim 10^7$ POD-Galerkin gives SDEs for resolved modes Reduced order : $n \sim 10$ v = w + v' $\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + F(w) + C(\sigma \dot{B}, w) = F\right) dx$ Resolved fluid velocity: (n+1) x (n+1) n x 1 $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t) \phi_i(x)}$ $\frac{d}{dt}b(t) = H(b(t)) + K(\sigma \dot{B})$ b(t)Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t) Multiplicative skew-symmetric noise Variance tensor: **Covariance to estimate** $\overline{a(x,x)} = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{u}$ $\mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t K_{jq} \left| \frac{\overline{b_p}}{\overline{b_p^2}} \frac{\Delta b_i}{\Delta t} v' \right|$ 2nd order polynomial Coefficients given by : Randomized Navier-Stokes **Randomized Navier-Stokes** $(\phi_j)_i$ PCA modes • $a(x) \approx \Delta t v' (v')^T$ PCA residual v' $K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$ $\overline{f} = \frac{1}{T} \int_{-T}^{T} f$ from synthetic data

15

SCALIAN

Full order : $M \sim 10^7$

Reduced order : $n \sim 10$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

Resseguier et al. (2022). J Comp. Phys . hal-03445455

PART IV

NUMERICAL RESULTS

- a. Test cases
- b. Data assimilation

From 10^7 to 8 degrees of freedom

POD **Full-order Reduced-order reference** eigenvalues PCA-projection of the full-order simulation reference (Optimal from 8-dof linear decomposition) Vorticity 10^{0} Easy case Wind Wind norm. λ_k 100 s Reynolds number 10-5 (Re) = 100 -1 -2 2D 10^{2} 10^{0} 18 2 4 10 12 14 16 2 10 12 14 6 8 (10^4 dof) 4 6 8 kQ-criterion Wind 10^{0} Wind 0.25 s **Difficult case** λ_k norm. Reynolds number 10-51 (Re) = 300 3D 10^{0} 10^{2} (10^7 dof) kvortices (round) wind turbine blade Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

TEST CASES

DATA ASSIMILATION From 10^7 to 8 degrees of freedom Single measurement point (blurred & noisy velocity) On-line estimation of the solution Reference **Our method** State-of-the-art POD-Galerkin with Navier-Stokes POD-Galerkin with Navier-Stokes + optimally PCA-projection of the DNS tuned eddy viscosity & additive noise (Optimal from 8-dof linear decomposition) under location uncertainty (LUM) Vorticity Wind Vorticity Wind Wind Vorticity Re 100 2D 61.25 s 61.25 s 61.25 s (DNS has 10^4 dof) 18 2 10 12 14 16 2 10 12 14 16 18 12 14 Wind Q-criterion Wind Q-criterion Wind Q-criterion Re 300 43 s 3D (DNS has 107 dof) vortices (round) wind turbine blade

DATA ASSIMILATION Error on the solution estimation

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity: v'

Easy case

Difficult case

Reynolds number (Re) = 3003D (10^7 dof)

CONCLUSION

20/10/2022

21

CONCLUSION

- ▶ Intrusive ROM : for very fast and robust CFD $(10^7 \rightarrow 8 \text{ degrees of freedom.})$
 - Closure problem handled by LUM
 - Efficient estimator for the multiplicative noise
 - Efficient generation of prior / Model error quantification
 - Now implemented in ITHACA-FV
- Data assimilation (Bayesian inverse problem) : to correct the fast simulation on-line by incomplete/noisy measurements
- First results
 - Optimal <u>unsteady</u> flow estimation/prediction in the whole spatial domain (large-scale structures)
 - Robust far outside the training set

NEXT STEPS

- Real measurements
- Parametric ROM (unknown inflow)

 Increasing Reynolds (ROM of (non-polynomial) turbulence models)

22