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Scientific problem : 
Simulation & data assimilation under severe dimensional reduction

typically, 107 → 𝑂(10) degrees of freedom 1
0
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LOCATION UNCERTAINTY MODELS (LUM)
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Momentum conservation

d

dt
𝑤 𝑡, 𝑋𝑡 = 𝐹 (Forces)

Positions of fluid parcels 𝑋𝑡 :
𝑑

𝑑𝑡
𝑋𝑡 = 𝑤 𝑡, 𝑋𝑡 + 𝜎 𝑡, 𝑋𝑡

𝑑𝐵𝑡
𝑑𝑡

Gaussian
process

white in time

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420
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From Ito-Wentzell
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with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤
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From Ito-Wentzell
formula (Kunita 1990)
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From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
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terms
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From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 
𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)
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2
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energy
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48

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 
𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡
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terms
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Forces
Turbulent
DiffusionAdvection

𝜕𝑡𝑤 + 𝐶 𝑤,𝑤 + 𝐶 𝜎 ሶ𝐵, 𝑤 + 𝐹 𝑤 = 𝐹

LOCATION UNCERTAINTY MODELS (LUM) ,

Randomized Navier-Stokes 

Skew-symmetric
multiplicative

random
forcing

Balanced
energy
fluxes

49

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

Symmetric
negative

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

Usual
terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420
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𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 
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Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
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𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞
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න
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𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝑑

𝑑𝑡
𝑏 𝑡 = 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

Multiplicative skew-symmetric noise

(n+1) x (n+1)

M x 1

n x 1

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

15

න
Ω

𝜙𝑖 𝑥 ⋅ 𝜕𝑡𝑤 + 𝐶 𝑤,𝑤 + 𝐹 𝑤 + 𝐶 𝜎 ሶ𝐵, 𝑤 = 𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝑑

𝑑𝑡
𝑏 𝑡 = 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

Multiplicative skew-symmetric noise

(n+1) x (n+1)

M x 1

n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

15

න
Ω

𝜙𝑖 𝑥 ⋅ 𝜕𝑡𝑤 + 𝐶 𝑤,𝑤 + 𝐹 𝑤 + 𝐶 𝜎 ሶ𝐵, 𝑤 = 𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝑑

𝑑𝑡
𝑏 𝑡 = 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

Multiplicative skew-symmetric noise

(n+1) x (n+1)

M x 1

n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

15

න
Ω

𝜙𝑖 𝑥 ⋅ 𝜕𝑡𝑤 + 𝐶 𝑤,𝑤 + 𝐹 𝑤 + 𝐶 𝜎 ሶ𝐵, 𝑤 = 𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝑑

𝑑𝑡
𝑏 𝑡 = 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

15

න
Ω

𝜙𝑖 𝑥 ⋅ 𝜕𝑡𝑤 + 𝐶 𝑤,𝑤 + 𝐹 𝑤 + 𝐶 𝜎 ሶ𝐵, 𝑤 = 𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

𝑑

𝑑𝑡
𝑏 𝑡 = 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

15

න
Ω

𝜙𝑖 𝑥 ⋅ 𝜕𝑡𝑤 + 𝐶 𝑤,𝑤 + 𝐹 𝑤 + 𝐶 𝜎 ሶ𝐵, 𝑤 = 𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

𝑑

𝑑𝑡
𝑏 𝑡 = 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

15

න
Ω

𝜙𝑖 𝑥 ⋅ 𝜕𝑡𝑤 + 𝐶 𝑤,𝑤 + 𝐹 𝑤 + 𝐶 𝜎 ሶ𝐵, 𝑤 = 𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

𝑑

𝑑𝑡
𝑏 𝑡 = 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

15

න
Ω

𝜙𝑖 𝑥 ⋅ 𝜕𝑡𝑤 + 𝐶 𝑤,𝑤 + 𝐹 𝑤 + 𝐶 𝜎 ሶ𝐵, 𝑤 = 𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

𝑑

𝑑𝑡
𝑏 𝑡 = 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

15

න
Ω

𝜙𝑖 𝑥 ⋅ 𝜕𝑡𝑤 + 𝐶 𝑤,𝑤 + 𝐹 𝑤 + 𝐶 𝜎 ሶ𝐵, 𝑤 = 𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

from synthetic data

𝑑

𝑑𝑡
𝑏 𝑡 = 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

15

න
Ω

𝜙𝑖 𝑥 ⋅ 𝜕𝑡𝑤 + 𝐶 𝑤,𝑤 + 𝐹 𝑤 + 𝐶 𝜎 ሶ𝐵, 𝑤 = 𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

from synthetic data

𝑑

𝑑𝑡
𝑏 𝑡 = 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

15

න
Ω

𝜙𝑖 𝑥 ⋅ 𝜕𝑡𝑤 + 𝐶 𝑤,𝑤 + 𝐹 𝑤 + 𝐶 𝜎 ሶ𝐵, 𝑤 = 𝐹 𝑑𝑥
New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡
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PART IV

NUMERICAL RESULTS
a. Test cases
b. Data 

assimilation
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TEST CASES

18

From 107 to 8 degrees of freedom

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Resseguier et al. (2022). J Comp.Phys . hal-03445455

Difficult case

Reynolds number 
(Re) = 300

3D
(107 dof)

Reduced-order reference
PCA-projection of the full-order simulation
(Optimal from 8-dof linear decomposition)

Wind
Q-criterion

Wind

Vorticity

(round) wind turbine blade
vortices

Full-order
reference

Wind

Wind

POD
eigenvalues

Easy case

Reynolds number 
(Re) = 100

2D
(104 dof)
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DATA ASSIMILATION

On-line estimation of the solution

Resseguier et al. (2022). J Comp.Phys . hal-03445455
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DATA ASSIMILATION

Error on the solution estimation

Red. LUM
bias

Red. LUM
std

State of the art

State of the art𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid velocity: 
𝑣′

Resseguier et al. (2022). J Comp.Phys . hal-03445455

Easy case

Reynolds number 
(Re) = 100

2D
(104 dof)

Difficult case

Reynolds number 
(Re) = 300

3D
(107 dof)
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CONCLUSION

valentin.resseguier@scalian.com

 Intrusive ROM : for very fast and robust CFD  (107 → 8 degrees of freedom.)

▪ Closure problem handled by LUM

▪ Efficient estimator for the multiplicative noise

▪ Efficient generation of prior / Model error quantification

▪ Now implemented in ITHACA-FV

 Data assimilation (Bayesian inverse problem) :
to correct the fast simulation on-line by incomplete/noisy measurements

 First results 

▪ Optimal unsteady flow estimation/prediction in the whole spatial domain (large-scale structures)

▪ Robust far outside the training set

NEXT STEPS
 Increasing Reynolds

(ROM of (non-polynomial) turbulence models)
 Real measurements

 Parametric ROM (unknown inflow)


