
HAL Id: hal-03818047
https://hal.science/hal-03818047v2

Submitted on 2 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rheological identification of jetted fluid using machine
learning

Guillaume Maîtrejean, A. Samson, D. Roux, N. El-Kissi

To cite this version:
Guillaume Maîtrejean, A. Samson, D. Roux, N. El-Kissi. Rheological identification of jetted fluid using
machine learning. Physics of Fluids, 2022, 34 (9), pp.093103. �10.1063/5.0100575�. �hal-03818047v2�

https://hal.science/hal-03818047v2
https://hal.archives-ouvertes.fr


Rheological identification of jetted fluid using machine learning

Rheological identification of jetted fluid using machine learning

G. Maîtrejean,1 A. Samson,2 D. Roux,1 and N. El-Kissi1

1)Univ. Grenoble Alpes, CNRS, Grenoble INP*, LRP 38000 Grenoble,

France
2)Univ. Grenoble Alpes, CNRS, Grenoble INP*, LJK 38000 Grenoble,

France

*Institut of Engineering Univ. Grenoble Alpes

(*Electronic mail: guillaume.maitrejean@univ-grenoble-alpes)

(Dated: 2 October 2023)

The understanding of flowing properties of fluids and the knowledge of the related rheolog-

ical properties are crucial from both a research and industrial point of view. To determine

the complex rheological properties of fluids many devices have thus been developed, the

so-called rheometers.

The main objective of the present paper is to identify the rheological properties of a

fluid jetted using Continuous Inject Printing (CIJ) process by comparing the morphology

of the aforementioned jetted fluid to a dataset of known (rheologically-speaking) fluid jets

morphologies.

When ejecting a fluid, the CIJ ejection process competes between several forces: inertial,

viscous, surface tension and elasticity, which affect the morphology of the resulting jet.

Also, under certain conditions, the morphology of the jet is unique and directly related to

the rheological properties of the fluid.

We want to use this uniqueness to identify the fluid among a large dataset of known

fluid jet morphologies to be compared with, to obtain its rheological properties.

Using a large numerically-generated dataset of Newtonian fluid jets, we show in this ar-

ticle that the identification of the viscosity using Neural Network (NN) is not only feasible,

but proves to be very accurate with an average error of less than 1% for a large range of

viscosities.
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I. INTRODUCTION AND MOTIVATION

Rheological characterization of liquids is of major importance in many scientific fields as these

properties play a key role and help to understand the complex fluid dynamical behavior. In many

industrial applications, such as paint coating, inkjet printing, combustion, etc, the rheological

insight is critical for the processes themselves. Many techniques and devices have thus been

developed to measure a large range of fluid properties such as viscosity, surface tension or density.

The most widely used type of rheometer, the rotational rheometer, presents the results of a

tested fluid sample as flow curves which plot the the viscosity η as a function of the shear rate

γ̇ . In a controlled shear rheometer, for each shear rate, a shear stress σ is measured then the

associated viscosity is derived using the simple relation η = σ/γ̇ , and from this curve, a relatively

simple mathematical model η = f (γ̇) is typically fitted.

In the present article we choose an original approach where the rheological properties are no

longer measured but identified, using both Continuous Ink Jet (CIJ) device and machine learning.

CIJ jetting

CIJ installation consists in an air-assisted atomization nozzle (see Fig.1): a liquid jet is released

at moderate speed through a cylindrical nozzle on which is applied a periodical disturbance, usu-

ally using a piezoelectric actuator upstream from the nozzle. The presence of a strobe light and a

camera allows to observe accurately the morphology of the fluid jet.

FIG. 1: Common CIJ and visualization setup.

When the wave length of the radial disturbance is bigger than the jet circumference, the
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Rayleigh capillary instability is triggered1, resulting in the jet breakup and the generation of fluid

droplets. Several parameters can be adjusted in order to control the breakup morphology such

as the fluid rheology, the jet speed or the disturbance frequency and amplitude2. Indeed, the jet

breakup of fluids is affected by the competition between several main forces: inertia, viscous

forces, surface tension and, when applicable, elastic force. This competition affects the morphol-

ogy (i.e. break-up lengths, satellite dynamics, drop shape, etc) of the jet and thus for a given

rheological properties and under given process settings, a unique morphology is observed for

which every of the above forces plays a key-role.

In industrial CIJ setup, the disturbance (also called stimulation) frequency remains fixed while

the amplitude of the stimulation, i.e. the voltage applied to the piezoelectric actuator, is adjusted

to obtained the desired morphology. For example, Fig.2 illustrates two jets morphologies for stim-

ulation amplitudes ranging from 2V to 62V (left and right of each figure, respectively). These two

fluids have been extensively studied in3–5 and exhibit almost identical surface tension (22.8mN/m

and 24mN/m for fluid 1 and 2, respectively), density (873kg/m3 and 861kg/m3, for fluid 1 and 2,

respectively) and viscosity for a shear rate γ̇ < 104s−1 as depicted Fig. 3.

FIG. 2: Morphologies of two fluid jets exhibiting almost identical surface tension, density and

viscosity (for γ̇ ≤ 104s−1) for a wide range of stimulation amplitudes (from 2 to 62V ) with the

exact same CIJ setup. Left: Fluid 1 with a quasi-Newtonian behavior (square plot on Fig. 3).

Right: Fluid 2 with a shear thinning behavior at high shear rate (round plot on Fig. 3).

It is worth pointing out that both fluids show same jet morphologies at low stimulation ampli-

tude, i.e. less than 20V in Fig. 2, which was expected due to the similarity of the fluids for low to

moderate shear rate (i.e. ≤ 104s−1).
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FIG. 3: Comparison of the dynamic viscosity of the two industrial CIJ fluids 1 and 2 from3–5.

In the example shown Figure 2, it can be seen that two fluids of the same viscosity produce

an identical jet morphology. On the other hand, when the rheological behavior of these two fluids

diverges, beyond a certain shear rate for example, the same applies to the morphologies of the jets

obtained. It therefore seems that the CIJ jetting can be used to discriminate between the rheological

behavior of the fluids, even at shear rates up to several hundred of thousands reciprocal seconds.

It should be noted that these values are not accessible by conventional rotational rheology6.

In this paper, by combining the CIJ process with machine learning approaches, we thus aim

to show that it is possible not only to discriminate, but also identify the viscosity of a Newtonian

fluid. Indeed, when a fluid is jetted, its jet morphology proves to be unique under certain jetting

conditions and our objective is to use this uniqueness in order to perform a rheological characteri-

zation. To do so, first, a large dataset is generated containing information about the morphologies

of jetted fluids with well-known rheological properties. Then, by jetting an unknown fluid, one can

compare its morphology to the ones present in the dataset, in order to find the fluid having, if not

the same, a very close morphology: the so-called matching fluid. This step is performed using ma-

chine learning approach, and more specifically deep learning, and is referred as the identification

step, with the rheological properties identified by comparison.

Note that, the dataset containing the jet morphology can be either experimentally or numerically

4



Rheological identification of jetted fluid using machine learning

generated. In the latter case a particular attention must be paid to the ability of the numerical

simulation to agree with experimental results because the unknown (rheologically-speaking) fluid

morphology will, of course, be obtained experimentally.

To assess the feasibility of the above approach, a large dataset7,8 of numerically-generated jets

of Newtonian fluids is used in the present article. First, in section II, a brief presentation of the

generation of the dataset of fluid jets is made while machine learning methods and associated

datasets are described in section III. Different strategies of identification are then presented in

section IV and finally the results are discussed in section V.

II. DATASET OF NEWTONIAN FLUID JETS INTERFACES

The dataset of numerically-generated interfaces of Newtonian jets in CIJ regime used in this

work can be found at8 under Creative Commons Attribution license. Data contained in the dataset

are thoroughly described in7 and the reader is invited to refer to this article for more detailed

information about the dataset itself. In this section we briefly recall the main features of this

numerically-generated dataset that have been exclusively generated using the open-source libraries

provided by the Basilisk9 platform.

A. Governing equations and boundary conditions

The Basilisk toolbox solves unsteady incompressible Navier-Stokes equations with the inter-

face between the fluids tracked with a Volume-Of-Fluid (VOF) method:

∂tu+∇ · (u⊗u) =
1
ρ
[−∇p+∇ · (2ηD)] (1)

and

∇ ·u = 0 (2)

with u the velocity field, ρ the density of the considered phase, D the strain rate tensor such as

D = [∇u+(∇u)T ]/2 and η the dynamic viscosity.

At the interface between air and liquid, the term

1
ρ

σκ∇ f (3)
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is added to the right-hand side of Eq.1 to account for the surface tension effect, where σ is the

(constant) surface tension, κ the interface mean curvature and f the volume fraction describing

the interface.

Following many CIJ jets simulation3,10,11, the present numerical model is axisymmetric with z

the symmetry axis as depicted Figure 4.

The problem is addressed in dimensionless form and the numerical domain is a square of di-

mension 512. The boundary conditions (BC) are described in details in7 and the inlet BC are

depicted in Fig. 4. The initial radius of the jet is R0 = 1 and u0 is the inlet velocity field im-

posed on the liquid phase on which a periodic amplitude disturbance is applied. This triggers and

controls the Rayleigh-Plateau instability

u0 = {1+δ sin(2π frt),0} , (4)

with a disturbance amplitude δ , a frequency perturbation fr and a simulation time t. In the follow-

ing, the frequency is arbitrary fixed to fr = 1/7 for all jets.

An outflow boundary condition is imposed on all the remaining boundaries.

FIG. 4: Example of generated fluid jet, with the inlet boundary conditions and drop numbering

from7.

As depicted on Figure 4, each contiguous liquid zone is numbered as a drop, so that the main

thread (the jet before breaking up) is considered as the first drop with a numbering starting from

zero.

Hereafter both air and liquid densities, ρa and ρl are, respectively, fixed with a ratio

ρl

ρa
= 1000, (5)

and, in order to preserve the numerical stability of the model, the viscosity ratio between air and

liquid viscosities, ηa and ηl respectively, is fixed to

ηl

ηa
= 500. (6)
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The Reynolds number writes:

Re =
ρlut=0

0 R0

ηl
. (7)

For all jets, fixed values of geometry, density and inlet velocity are used, i.e. ρl = ut=0
0 = R0 = 1,

so that the Reynolds number is equal to the inverse of the viscosity.

Finally the surface tension is fixed for all the simulations with a Weber number

We =
ρlR0u2

0
σ

= 600 (8)

We thus limit the identification to Newtonian fluids having a constant interfacial tension and a

Reynolds number ranging from 100 to 1000 which means that the Ohnesorge number

Oh =

√
We

Re
(9)

is not constant.

B. Data generation

In order to prevent the results from being influenced by the initial condition of the simulation,

we start saving interfaces after at least three drops have already been jetted. From then on, 101

output interfaces are generated and saved in one oscillation period of time, i.e. every 0.07 dimen-

sionless time. These interfaces are formed by segments from the VOF tracking interface algorithm

used by Basilisk and are written in text files under Gnuplot-style12 format.

Jets of fluids have been computed for Reynolds number in the range [100,1000] with a step of

5 and for six stimulation amplitudes δ ranging from 0.01 to 0.035 every 0.005. Finally, with a

total of 181 Reynolds numbers and 6 stimulation’s amplitudes, 1086 jets have been generated and

≈ 110,000 interfaces saved.

In addition to the interfaces, some coefficients are computed for each drop of the jets and saved

inside a .csv file: the drop barycenter, the width, the height, the Feret diameter (ratio of width over

height), the area and the volume. Hereafter, we will refer to these coefficients as drop coefficients.

III. RHEOLOGICAL IDENTIFICATION OF THE FLUID

As stated in the first section, the objective of the present work is to identify the fluid viscosity

by comparing the jet morphology of an unknown fluid to a dataset of morphologies of known fluid
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jetted with the same CIJ parameters. More specifically, in the present case, we aim at linking the

Reynolds number of the jetted fluid, i.e. its viscosity, to the morphology of the jet in order to

identify it. This regression problem is addressed by machine learning (ML) approaches using the

following two datasets:

1. Dataset A: dataset created from the drop coefficients file (see sec. II B) that describes the

jets using drop descriptors such as volume, area, etc.

2. Dataset B: dataset containing a more detailed description of the drops, by fitting each drop

shape h(x) using a polynomial of order 9 such as

hn(x) = cn
0 + cn

1x+ cn
2x2 + · · ·+ cn

9x9 (10)

where the exponent n stands for the drop number.

For each dataset, both a linear regression model (as a basic learning method) and a Artificial

Neural Network (ANN) fit – more precisely a Deep Neural Network (DNN) – are performed using

Scikit-Learn13 and Tensorflow – Keras14,15 API, respectively. Figure 5 shows an overview of the

present approach with the creation of the datasets A and B and the use of a DNN.
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FIG. 5: Overview of the present approach: for fixed Reynolds number, amplitude and time, de-

scriptors and polynomial fits are calculated and gathered in datasets A and B, respectively, for

drops 0 and 1. For each dataset, the DNN predicts the Reynolds number using each instance as

input layer; it has four fully connected layers (see Table I) and one singled-element output layer

which is the Reynolds number.

The use of ANN algorithms on large datasets is widespread and its popularity lies in the great

accuracy achieved by such methods in many research and industrial fields. The reader interested

by the ANN methods and its application in fluid mechanics field is invited to refer to16, or more

generally17,18 and therein references.

Due to their ability in modeling complex system with accuracies, ML and more specifically

ANN approaches, have been already used to predict rheological properties of fluids. Starting

from19, who successfully predicted both density and viscosity of biofuel compounds using ANN

approach, many authors used ANN to predict rheological properties from experimental or ana-

lytical data such as20 for the scCO2-Foam,21 for the viscosity of cosmetic oil or nanofluids22.

More recently, physics-based ML algorithms, the so-called Physics-Informed Neural Network23

(PINN), have been developed to reduce to diminish the need for big data sets by including gov-

erning physical laws in the ANN framework. This approach has then been extended to rheology
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by the Rheology-Informed Neural Networks (RhINNs)24,25 which enables an accurate modeling

of the rheological properties of a fluid with a limited number of experiments.

The actual work falls within prediction/identification of the properties using experimental data

coupled with the use of a ML algorithm.

A. Deep Neural Network

The same sequential DNN is used for both datasets A and B and is schematically represented

Fig.5. The input size of the DNN depends on the used dataset and the output is the Reynolds num-

ber. The parameters defining the DNN, the so-called hyperparameters are summed-up in the Table

I, and have been arbitrarily defined. Using Keras Tuner26 and its built-in BayesianOptimization

class, these hyperparmeters have been found to be the most efficient for the datasets defined in the

next section. Hereafter, these hyperparameters are fixed, and no further optimization is performed.

DNN hyperparameters

Hyperparameter Value

Hidden layers 4 with 64, 128, 128, 64 neurons, respectively

Activation function reLU

Optimizer Adam

Loss function Mean Squared Error (MSE)

Batch size 64

epochs 200

Hold-out validation Train: 65% – Validation: 15% – Test: 20%

Learning rate 0.001

TABLE I: Hyperparameters of the DNN used throughout the present article.

An hold-out validation is performed with a 65% – 15% – 20% partition (train, validation and

test, respectively) . The dataset is shuffled before partitioning. The model accuracy is assessed

using the Mean Absolute Percentage Error (MAPE) which is more humanly understandable than

the MSE metric used in the DNN loss function (see Table I).
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Note that due to the randomness of both the train/test datasets generation and weights initializa-

tion, every DNN is run 30 times to assess its prediction accuracy with a re-shuffling of the dataset

before partitioning. The given MAPE is then the average MAPE obtained over the 30 runs with

the standard deviation associated.

B. Datasets generation

The two datasets used to perform the rheological identification are detailed in the next subsec-

tions. It is also worth pointing out that Machine Learning terminology is used with an instance

referring to a single row of data, and a feature to a single column of data.

1. Dataset A

All the drop coefficients files are gathered in the same dataset, that we will call hereafter dataset

A, where each instance describes an interface output, with descriptors of up to 10 drops. For each

drop, 6 drop descriptors are derived: barycenter, width, height, Feret diameter, area and volume of

the drop. Tab. II shows the 15 first features and the 5 first instances: the 3 first features give the

jet parameters, i.e. Reynolds number, amplitude of stimulation δ and time of the output while the

next features describe two drops with 6 variables each.

It is worth pointing out that the first drop, numbered Drop 0, refers to the main jet itself, while

the others drops are either main drops or satellites (see Fig. 4).

Dataset A
Jet parameters Drop 0 Drop 1

Reynolds Amplitude Time Barycenter Width Height Feret Area Volume Barycentre Width Height Feret Area Volume

100 0.01 378.14 168.35 335.12 1.68 199.52 2127.87 1093.64 339.98 3.42 1.74 1.96 37.53 21.56

100 0.01 378.21 168.39 335.19 1.68 199.55 2128.24 1093.85 340.04 3.42 1.74 1.96 37.53 21.56

100 0.01 378.28 168.42 335.25 1.68 199.59 2128.60 1094.07 340.11 3.41 1.74 1.96 37.52 21.56

100 0.01 378.35 168.45 335.31 1.68 199.63 2129.02 1094.29 340.18 3.41 1.74 1.96 37.52 21.56

100 0.01 378.42 168.49 335.39 1.70 197.83 2129.35 1094.51 340.24 3.41 1.74 1.96 37.52 21.56

TABLE II: The 15 first features and the 5 first instances for Re = 100 and Amp = 0.01 used in

dataset A.

The Pearson’s coefficient correlation matrix between the features of the dataset A is plotted
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Fig.6. As one can expect, there is a strong correlation between the features of each drop, while the

Reynolds number is moderately correlated with the first drop (i.e. the jet of fluid), and in a lesser

extend with the features of drop 1.

FIG. 6: Pearson’s coefficient correlation matrix for dataset A, where the superscript denotes the

drop number.

2. Dataset B

As mentioned above the dataset B, is generated using the coefficients of the polynomial fit per-

formed on each drop shape plus the Reynolds, Amplitude and Time features. The best polynomial

fit, of order at most 9 from eq.10, is performed using Polynomial class from Numpy27. The main

fluid jet (i.e. drop 0) can be as long as 400 ·R0, which is far too long to be accurately fitted using

a polynomial. The fit is then restricted on the last part of the jet of length 7 ·R0 as illustrated with

the orange tick line Figure 5.

The domain of the drop, i.e. the minimum and maximum z-coordinates, is mapped to the

interval [−1,1] and a least squares polynomial fit of the drop shape is performed, returning its sum
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of squared residuals. The dataset B is the aggregation of the fit coefficients, the sum of squared

residuals and order as well as domain boundaries for each drop, as shown in Table III.

Dataset B
Jet parameters Drop fit parameters

Reynolds Amplitude Time c0
0 c0

1 c0
2 c0

3 c0
4 c0

5 c0
6 c0

7 c0
8 c0

9 domain00 domain10 residual0 order0

100 0.01 378.14 0.20 2.02 6.79 4.68 -23.32 -32.01 36.74 43.34 -19.77 -18.72 327.19 335.14 5.46 10.0

100 0.01 378.21 0.19 2.06 7.09 3.91 -24.83 -28.27 39.04 37.49 -20.80 -15.88 327.28 335.20 5.41 10.0

100 0.01 378.28 0.18 1.90 6.80 5.79 -22.75 -35.06 35.41 46.66 -18.98 -19.98 327.31 335.26 5.69 10.0

100 0.01 378.35 0.20 2.15 7.23 2.29 -26.38 -20.92 41.99 26.27 -22.43 -10.38 327.47 335.33 5.49 10.0

100 0.01 378.42 0.19 1.91 6.91 5.55 -23.55 -33.20 36.69 43.32 -19.55 -18.24 327.48 335.39 5.74 10.0

TABLE III: The 15 first features and the 5 first instances for Re = 100 and Amp = 0.01 of the

dataset B, where the exponent stands for the drop number.
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FIG. 7: Pearson’s coefficient correlation matrix for dataset B.

We observe again Fig.7a strong correlation between the features of each drop and a stronger

correlation of the Reynolds number (i.e. the inverse of the viscosity) with the fluid jet (drop 0) than

the first main drop (drop 1). Furthermore some features such as Time, Width or domain are strongly

correlated with each other due to the intrinsic morphology of the jet: the longer the breakup length

(corresponding to the feature Width), the longer the simulation time.

Some randomly picked drop fits are displayed Fig.8 where it can be seen that the fit quality

depends on the drop shape: when the drop exhibits more-complex shape (top left corner or center

of Figure 8), the fit is of lesser quality and the residual is higher. Conversely when the shape is

smoother, its shape is perfectly fitted with low or null residual (center top or left bottom corner of

Figure 8).
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FIG. 8: Random examples of drop fits with the associated residuals where the surface color is the

drop and the thick line is the polynomial fit.

By comparing the polynomial fit of the two first drops Figure 9, it is of lower quality for drop

0 than drop 1, with a median of residuals of 7.02 and 1.53, respectively. Furthermore, as one can

expect, the quality of fit also depends on the amplitude of stimulation as depicted in Fig. 9: higher

stimulation amplitudes result in more complex drop shapes and thus reduce the fit goodness.
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(a) (b)

FIG. 9: Distribution of the fitted residuals for drop 0 (a) and drop 1 (b) with the hue depicting the

stimulation amplitudes.

C. Final datasets A and B

Depending on the jet parameters (Reynolds number, amplitude of stimulation and time of the

output), the number of drops may vary. We arbitrary decided to use only the data from the main

thread (i.e. drop 0) and the first main drop to perform the identification. The resulting datasets

have thus 15 and 31 features for dataset A and B, respectively, and ≈ 110,000 instances.

It is also worth noting that the first drop (i.e. drop 1) is not always a main drop and in almost a

quarter of the samples it is a secondary droplet, also called a satellite. In these cases, the drop 1 is

replaced by the next main drop generated.

IV. RESULTS

As explained before, we use two learning methods: we start with a linear regression model,

section IV A, and then a DNN, section IV B.

A. Linear regression Model

Figure 10 shows the prediction of the linear model for both datasets A and B. Predictions of

Reynolds are denoted R̂e. As one may expect, the dataset B, which contains more data about
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the drops morphologies, gives a better prediction with a MAPE of 17.15%, versus 25.1% for the

dataset A.

FIG. 10: Predicted Reynolds numbers R̂e as a function of the ground truth Reynolds number Re

using a linear model for datasets A (left) and B (right) with an associated MAPE of 25.1% and

17.15%, respectively.

However, the prediction is too poor and another approach must be considered such as the DNN

developed in the next section.

B. Deep Neural Network

In this section the DNN is used to identify the viscosity of the jet morphology following the

overview shown in Fig.5. To do this, we first use all the information contained in datasets A and

B, section IV B 1. However, these datasets have been generated from numerical simulations and

contain data that can be very difficult to obtain experimentally. Therefore, in order to generalize

the present method to experimentally generated datasets, A and B are progressively simplified or

modified and several strategies are then assessed:

• the time scale is refactored, section IV B 2;

• information of the main drop only is used, section IV B 3;

• the stimulation amplitudes are coupled, section IV B 4;
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• finally, the number of samples used to map the viscosity space is reduced, section IV B 5.

1. Full datasets prediction

FIG. 11: Predicted Reynolds numbers R̂e as a function of the ground truth Reynolds number Re

for datasets A (left) and B (right) with deep-learning approach.

The DNN strongly increases the accuracy of the prediction with an average MAPE of 1.11±

0.19 and 0.87± 0.16 for datasets A and B, respectively. As pictured Fig.11, this also decreases

drastically the number of outliers.

2. Refactoring time

The time information in both datasets is based on the simulation time, which is the time elapsed

since the beginning of the simulation, and does not provide any useful information for the DNN:

dropping the Time feature from the datasets gives very close prediction results.

We then choose to refactor the time by setting t = 0 when the breakup occurs, i.e. when a new

drop is created. For each Reynolds-Amplitude group, we then keep 100 samples with a time from

t ′ = 0 to t ′ = 6.93, and discarding the last t ′ = 7 which is identical to t ′ = 0 as the CIJ jetting is

periodical. Fig. 12 shows an example of the time evolution of the interface of the same jet with

both the simulation time t and the corresponding refactored time t ′ since the breakup occurred.
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FIG. 12: Jets of fluids for a fixed Re-Amplitude pair at 6 different times: t stands for the simulation

time while t ′ stands for the refactored time starting when the breakup occurs.

By refactoring the time information, we observe a great improvement of the prediction with

an average MAPE of 0.78± 0.16 and 0.72± 0.07 for datasets A and B, respectively. It repre-

sents a relative improvement of 42% and 21%, respectively, in comparison with results using the

simulation time.

3. First main drop information only

Gathering information about drops from numerical results is straightforward but it can be more

difficult from an experimental point of view. As stated above, the main thread, i.e. drop 0, can be

as long as several hundreds of radii and measuring its width with accuracy may be burdensome.

To alleviate the experimental work, one can restrict the identification approach by using the first

main drop information only and its corresponding refactored time. When dropping information
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about drop 0 in datasets A and B, the average MAPE remains very close to the values found in the

above subsection (sec. IV B 2) with 0.79±0.18 and 0.76±0.13 for datasets A and B, respectively.

4. Dropping time and coupling amplitudes

We saw, sec. IV B 2, that the time information has a great influence. However, from an ex-

perimental point of view, acquiring the time information for each photography is neither easy nor

reliable.

One route to get rid of the time without losing in prediction accuracy, lies in coupling stimula-

tion amplitudes. Two datasets were then generated, called A’ and B’ from A and B, respectively,

in the following way: for each Reynolds number, randomly picked instances of each amplitude

are randomly concatenated without following any subsequent time frame.

The resulting datasets A’ and B’ have thus 100 instances for each Reynolds number and n · i

features:

• n the number of stimulation amplitudes

• i = 7 for A’ (the 6 drop descriptors – see sec III B 1 – plus the stimulation amplitude); i = 14

for B’ (13 values from the fit – see III B 2 plus the stimulation amplitude)

Note that coupling amplitudes into A’ and B’ datasets results in much less samples with ≈ 18100

instances (100 instances for 181 Reynolds numbers).

The more coupled amplitudes, the better the average MAPE of the prediction, with an average

0.80±0.13 and 1.24±0.17 for datasets A’ and B’, respectively (see Fig.13).

FIG. 13: Average MAPE as a function of the number of coupled amplitudes.
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It is worth pointing out that for the first time a better MAPE is obtained using drop descriptors

(drop volume, area, etc, from dataset A’) than more complex information from drop shape fitting

(dataset B’). It is not clear why such a difference is observed between datasets A’ and B’ and some

explanations may lie in the DNN structure itself and in the number of samples in the datasets:

by coupling amplitudes the input layer is larger while the number of samples has been drastically

reduced. The DNN is then too small, i.e. the hidden layers have too few neurons to address such

a large input layer and/or more samples are needed.

With that in mind, the prediction from A’ shows an excellent average MAPE, with less than

1% of error, using the drop descriptors of the drop 1 only and with no time scale in the dataset.

Contrarily to what have been previously observed, no outliers, i.e. predicted values with more than

5% of error, is predicted.

5. Sampling the viscosity space

In the previous sections, 181 different Reynolds number are used to map the viscosity space,

of which range lies in a decade. Hereafter the influence of the Reynolds number density on the

average MAPE is assessed by picking one Reynolds sample every n. Datasets are generated from

A’ and B’, using main drop information only and coupling the six amplitudes.

FIG. 14: Average MAPE as a function of the systematic sampling parameter n: a subset of 1/n

Reynolds number is used to train/test the model.

With n = 1, the entire datasets A’ an B’ are selected and logically, the same MAPE as in Fig.

13 is obtained Fig. 14. As one can expect, the MAPE increases with the sampling parameter n,
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i.e. when less Reynolds number samples are picked. However, even with n = 10 (i.e. with only 18

Reynolds numbers samples in the subset) the MAPE remains relatively low with 1.33±0.13 and

2.67±0.27 for the subsets from datasets A’ and B’, respectively.

The number of samples needed to generate the dataset may then be drastically reduced without

degrading too much the prediction accuracy: by using only a fifth of the Reynolds numbers (i.e.

36 samples), the MAPE remains as low as 1%.

V. DISCUSSION AND CONCLUSION

It has been a classical challenge to accurately characterize the rheological properties of fluids

using many different approaches. Conventional rheometry often involves high technicality and

time-consuming experimental manipulation.

In the present study, we have developed a novel approach for accurate and efficient prediction

of the Newtonian viscosity of jetted fluids. The accuracy of the present approach has been demon-

strated through tests against extensive numerical data where the ground truth is exactly known:

while the present DNN is not optimized, we have reached less than 1% of average MAPE in many

cases and notably, using .

Unlike conventional rheometry, which needs to conduct a time-consuming process to measure

rheometrical properties, this method identify a fluid in a previously generated dataset using Deep

Neural Network. The dataset is generated only once and we showed that a few number of sam-

ples are needed to map a large range of viscosity. In the same way, the DNN is trained offline,

once, and its prediction process only involves a limited number of simple algebraic calculations.

Furthermore, the present method relies only on some descriptors of the first main drop (volume,

area, etc) at several amplitudes of stimulation to identify accurately the fluid. That information

is easily obtained using CIJ visualization system and can be fully automatized as the CIJ process

itself proves to be robust.

However, the present proposal is a proof of concept that addresses only the prediction of the

Newtonian viscosities where both density and surface tension are known and constant. The size of

the dataset is directly correlated to the number of parameters to be predicted, and more complex

rheological properties will thus need larger datasets. Many strategies can thus be developed to

alleviate the difficulty related to the constitution of the dataset used to identify the fluid. For

instance, using several jetting nozzle geometries may strongly increase the prediction accuracy
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by creating very different jet morphologies and, consequently, strengthening the discrimination

between jetted fluids. The challenge of predicting the rheological properties is also directly linked

to the width of the range of the rheological properties addressed. Fitting that range to the exact

needs of the user is also a strategy to generate smaller datasets without reducing the accuracy.

Finally, the method developed in the present proposal shows to be very accurate and presents

major advantages although additional work will be needed to explore the different strategies and

assess its limits.
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