Catalan’s constant is irrational
Valerii Sopin

To cite this version:
Valerii Sopin. Catalan’s constant is irrational. 2022. hal-03816600

HAL Id: hal-03816600
https://hal.archives-ouvertes.fr/hal-03816600
Preprint submitted on 17 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Catalan’s constant is irrational

Valerii Sopin

email: VvS@myself.com

October 17, 2022

Abstract

In mathematics, Catalan’s constant G is defined by

$$G = \beta(2) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \frac{1}{9^2} - \cdots,$$

where β is the Dirichlet beta function.

Catalan’s constant has been called arguably the most basic constant whose irrationality and transcendence (though strongly suspected) remain unproven. In this paper we show that G is indeed irrational.

Proof

Keeping in mind the Riemann series theorem (also called the Riemann rearrangement theorem), we have

$$\begin{array}{c|c}
\frac{1}{1^2} & - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \frac{1}{9^2} - \cdots \\
- \frac{2}{3^2} & + \frac{2}{5^2} - \frac{2}{7^2} + \frac{2}{9^2} - \cdots \\
+ \frac{2}{7^2} & - \frac{2}{9^2} + \frac{2}{11^2} - \cdots \\
- \frac{2}{9^2} & + \frac{2}{11^2} - \cdots \\
+ \frac{2}{11^2} & - \cdots \\
\vdots & \vdots \\
\frac{1}{t} & - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots \\
\end{array}$$

$$G = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \frac{1}{9^2} - \cdots,$$

$$2G = \frac{2}{1^2} - \frac{2}{3^2} + \frac{2}{5^2} - \frac{2}{7^2} + \frac{2}{9^2} - \cdots.$$

Notice that the Leibniz formula for π states that

$$\frac{\pi}{4} = \beta(1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots.$$

Moreover, it is easy to see that $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$ is conditionally convergent. On the another hand, $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2}$ is absolutely convergent and we are able to rearrange the terms as we want.

Let’s assume the contrary: G is a rational number $\frac{a}{b}$, where t is odd. Hence, we have

$$\begin{align*}
stG &= st \sum_{n=0, nt}^{\infty} \frac{(-1)^n}{(2n+1)^2} + st \sum_{m=0}^{\infty} \frac{(-1)^m + (t/2)}{t^2(2m+1)^2} \\
&= st \sum_{n=0, nt}^{\infty} \frac{(-1)^n}{(2n+1)^2} + ((-1)^{t/2})2^k G \sum_{m=0}^{\infty} \frac{((-1)^m)^t}{(2m+1)^2} \\
&= st \sum_{n=0, nt}^{\infty} \frac{(-1)^n}{(2n+1)^2} + ((-1)^{t/2})2^k G^2.
\end{align*}$$
In other words, we obtain the following quadratic equation for G:

$$G^2 - (-1)^{t/2} \frac{s t}{2^k} G + (-1)^{t/2} \frac{s t}{2^k} \sum_{n=0, n \not| t}^{\infty} \frac{(-1)^n}{(2n+1)^2}.$$

The last is equal to

$$G^2 - (-1)^{t/2} \frac{s t}{2^k} G + (-1)^{t/2} t^2 G \sum_{n=0, n \not| t}^{\infty} \frac{(-1)^n}{(2n+1)^2}.$$

Since $G \neq 0$, we have the next equation

$$G = (-1)^{t/2} \frac{s t}{2^k} - (-1)^{t/2} t^2 \sum_{n=0, n \not| t}^{\infty} \frac{(-1)^n}{(2n+1)^2}.$$

Indeed, we have

$$G = (-1)^{t/2} \frac{s t}{2^k} - (-1)^{t/2} t^2(G + \epsilon),$$

$$G = (-1)^{t/2} t^2 G - (-1)^{t/2} t^2(G + \epsilon),$$

where

$$\epsilon = - \sum_{m=0}^{\infty} \frac{(-1)^{mt+\lfloor t/2 \rfloor}}{t^2(2m+1)^2} = -(-1)^{\lfloor t/2 \rfloor} \frac{G}{t^2}.$$

According to the above, we consider the following quadratic equation for t:

$$G = (-1)^{t/2} \frac{s t}{2^k} - (-1)^{t/2} t^2(G + \epsilon),$$

$$t^2 - \frac{s}{2^k(G + \epsilon)} t + (-1)^{t/2} \frac{G}{(G + \epsilon)} = 0.$$

Since $\frac{s}{2^k(G + \epsilon)} > 0$ due to $t > 1$ (G can not be $\frac{s}{2^k}$ for natural s, k: it goes around with the representation\n
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2},$$

we get

$$t = \frac{s}{2^k(G + \epsilon)}(1 \pm \sqrt{1 - \frac{4(-1)^{\lfloor t/2 \rfloor} G(G + \epsilon)^2 2^{2k}}{(G + \epsilon)s^2}}) =$$

$$= \frac{s}{2^k(G + \epsilon)}(1 \pm \sqrt{1 - \frac{(-1)^{\lfloor t/2 \rfloor} G(G + \epsilon)^2 2^{2k+2}}{s^2}}).$$

Using the Taylor series of $\sqrt{1 + x}$, we come to

$$t_+ \cong \frac{s}{2^k(G + \epsilon)} - \frac{(-1)^{\lfloor t/2 \rfloor} G 2^k}{s}, \quad t_- \cong \frac{(-1)^{\lfloor t/2 \rfloor} G 2^k}{s},$$

where t_- is impossible as $G = \frac{s}{2^k}$ and $t > 1$.

Substituting $G = \frac{s}{2^k t_+}$, we derive

$$t_+ \cong \frac{s}{2^k(G + \epsilon)} - \frac{(-1)^{\lfloor t/2 \rfloor} G 2^k}{s} = \frac{s}{2^k(G + \epsilon)} - \frac{(-1)^{\lfloor t/2 \rfloor}}{t_+} = \frac{t_+ G}{(G + \epsilon)} - \frac{(-1)^{\lfloor t/2 \rfloor}}{t_+}.$$

According to the above, we consider the following quadratic equation for t_+:

$$t_+^2 - \frac{\epsilon}{(G + \epsilon)} + (-1)^{\lfloor t/2 \rfloor} \cong 0.$$

Substituting $\epsilon = -(-1)^{\lfloor t/2 \rfloor} \frac{G}{t_+^2}$, we derive

$$-\frac{G}{(G + \epsilon)} + 1 \cong 0.$$

So, on the one hand, ϵ can not be close to 0 with any accuracy (it is $1/t^2$), but, on the other hand, accuracy of \cong in the Taylor expansion is $O(1/t^4)$. Note that $1/(1 \pm x)$ and $\sqrt{1 \pm x}$ are different as series. Hence, the last equation can not be fulfilled. Q.E.D.
Remark 1. There exists the following integration

\[\int_0^\infty \frac{1}{1+x^2} \cos(kx)dx = \frac{\pi}{2} e^{-k}. \]

One way to see it is via the Fourier inversion theorem: we know that the Fourier transform of a function has a unique inverse. This carries over to the cosine transform as well. Moreover, the unique continuous function on the positive real axis with Fourier transform \(\frac{1}{1+x^2} \) is \(e^{-k} \).

Notice that if

\[I_n = \int \frac{x^n}{1+x^2} dx, \]

then

\[I_{n+2} + I_n = \frac{x^n}{n+1} + C. \]

Remark 2. Are all \(\{1, \pi \mid n \in \mathbb{N} \} \) linearly independent over \(\mathbb{Q} \), where “\(x \) is tetration?” Meaning none of exponents is an integer (we have not known that \(\pi^{1/2} \) (56 digits) is not an integer).

Moreover, at least one of \(e^x \) and \(e^{2x} \) must be transcendental due to W. D. Brownawell.

Remark 3. Is \(e + \pi \) irrational?

Note that \((x - e)(x - \pi) = x^2 - (e + \pi)x + e\pi\). So, at least one of the coefficients \(e + \pi, e\pi \) must be irrational.

Remark 4. Is \(\ln(\pi) \) irrational?

There exists such representation

\[\frac{\sin(x)}{x} = \prod_{n=1}^\infty \left(1 - \frac{x^2}{n^2\pi^2}\right). \]

Let \(x = \frac{\pi}{2} \) and then we have the Wallis product formulae for \(\frac{\pi}{2} \):

\[\frac{\pi}{2} = \prod_{n=1}^\infty \frac{2n}{2n-1} = \frac{2n}{2n+1}. \]

Taking logarithms of this, we come to

\[\ln(\pi) = \ln(2) + \sum_{n=1}^\infty \left(2\ln(2n) - \ln(2n-1) - \ln(2n+1)\right). \]

Remark 5. Is the Euler–Mascheroni constant \(\gamma \) irrational?

\[\gamma = \lim_{n \to \infty} \left(\sum_{m=1}^n \frac{1}{m} - \log(n) \right). \]

Remark 6. Is the Khinchin’s constant \(K_0 \) irrational?

\[K_0 = \prod_{n=1}^\infty \left(1 + \frac{1}{n(n+2)}\right)^{\log_2 n}. \]

References