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Abstract. Due to global warming, the decline in the Arctic
sea ice has been accelerating over the last 4 decades, with a
rate that was not anticipated by climate models. To improve
these models, there is the need to rely on comprehensive field
data. Seismic methods are known for their potential to esti-
mate sea-ice thickness and mechanical properties with very
good accuracy. However, with the hostile environment and
logistical difficulties imposed by the polar regions, seismic
studies have remained rare. Due to the rapid technological
and methodological progress of the last decade, there has
been a recent reconsideration of such approaches. This pa-
per introduces a methodological approach for passive mon-
itoring of both sea-ice thickness and mechanical properties.
To demonstrate this concept, we use data from a seismic ex-
periment where an array of 247 geophones was deployed on
sea ice in a fjord at Svalbard, between 1 and 24 March 2019.
From the continuous recording of the ambient seismic field,
the empirical Green function of the seismic waves guided in
the ice layer was recovered via the so-called “noise corre-
lation function”. Using specific array processing, the multi-
modal dispersion curves of the ice layer were calculated from
the noise correlation function, and then inverted for the thick-
ness and elastic properties of the sea ice via Bayesian infer-
ence. The evolution of sea-ice properties was monitored for
24 d, and values are consistent with the literature, as well as
with measurements made directly in the field.

1 Introduction

In the alarming context of global warming, modern clima-
tology faces the challenging task of updating climate mod-
els for more reliable forecasting. However, these models rely

on parameters that are changing at an accelerating rate. One
of these parameters is the extent and thickness of the Arc-
tic sea ice, which have been declining faster than expected
for the last 4 decades (Stroeve et al., 2007; Rampal et al.,
2011). A worrying example is the change between the fore-
cast from 2012 to 2019: in 2012, a sea-ice-free Arctic was
anticipated sometime after 2050 (Stroeve et al., 2012; Stef-
fen et al., 2018), while in 2019, this was modified to as early
as 2030 (Screen and Deser, 2019). The evolution of the ex-
tent of the sea ice is subject to thermodynamic processes that
are affected by important parameters, such as the mechanical
properties and thickness of the ice. Hence, continuous and
accurate monitoring of these parameters is essential in view
of the need to update our climate models.

Currently, given the challenging logistics for accessing the
Arctic, satellite remote sensing remains the preferred ap-
proach to monitor the thickness of sea ice (Kwok, 2010;
Wadhams, 2012). This approach relies on conversion from
the sea-ice freeboard distribution into an average thickness,
on the assumption that the density of the ice is known. How-
ever, this results in high uncertainties that are due to a num-
ber of factors: (i) strong dependence of this approach on
models of ocean elevation and the difficulty to correct for
fluctuations in the altitude of the ocean surface (Kwok and
Cunningham, 2008; Petty et al., 2020); (ii) the presence of
snow, which complicates the measurement of the freeboard
(Kwok and Cunningham, 2008); and (iii) important tempo-
ral and spatial variations in the density of the ice and snow.
For example, thin first-year ice (i.e., less than 1 m thick) is
typically more porous and contains more brine than thick
multiyear ice. Consequently, depending on the assumptions
used to estimate the sea-ice freeboard, and on which density
the conversion is made from, estimations of the same sea-ice
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thickness can vary from 0.2 to 1.2 m (Ricker et al., 2014; Mu
et al., 2018).

While satellite remote sensing solves the problems asso-
ciated with logistics and allows the monitoring of sea-ice
thickness over the whole Arctic Basin, this is at the cost of
high uncertainties and poor temporal and spatial resolution.
Hence, complementary approaches are needed to improve
the monitoring of sea ice. Satellite data can be combined
with data acquired in the field, e.g., from upward-looking
sonar acquisitions or electromagnetic surveys (Lindsay and
Schweiger, 2015; Belter et al., 2020).

The use of seismic methods to study sea ice has been con-
sidered for more than 60 years, but due to the hostile envi-
ronment in polar regions, such studies have remained rare.
This is despite their potential for very accurate estimations
of the ice thickness, h; density, ρ; Young modulus, E; and
Poisson ratio, ν (Anderson, 1958; Hunkins, 1960; Yang and
Giellis, 1994; Stein et al., 1998). The main limitation for
seismic methods used to be the transport of the seismic sta-
tions. However, with the miniaturization of electronic com-
ponents and the rapid progress in terms of battery life, it is
currently possible to easily transport small autonomous geo-
phones (e.g., less than 1 kg for one geophone) that can record
a seismic field for several months. Another limitation was the
need for a human presence in the field to proceed with acqui-
sitions using active seismic sources. Seismic methods based
on noise interferometry (Shapiro and Campillo, 2004; Sabra
et al., 2005) have solved this problem, and seismic acquisi-
tions applied to sea ice are now possible without the need
of human intervention, other than for the installation and re-
moval of the geophones (Marsan et al., 2012, 2019; Moreau
et al., 2020a, b). Another seismic method that was presented
by Romeyn et al. (2021) makes it possible to estimate the
thickness of sea ice. This consists of exploiting the propa-
gation of air-coupled flexural waves that are excited by an
impulsive seismic source. Romeyn et al. (2021) suggested
that these waves might be naturally excited by icequakes pro-
duced by natural cracking of the ice, which thus provides a
complementary approach to existing passive methods for es-
timation of ice thickness.

Based on laboratory-scale data, in Moreau et al. (2017),
we introduced a methodology where the frequency–
wavenumber spectrum of seismic guided waves propagating
in an ice layer was used to infer h, E, and ν with very high
accuracy. In Moreau et al. (2020a), this methodology was
successfully applied to field data acquired in March 2019 in
Van Mijen Fjord in Svalbard (Norway), after the frequency–
wavenumber spectrum was obtained from noise interferome-
try via the so-called noise correlation function (NCF). The
NCF is obtained by correlating the ambient seismic noise
recorded between station pairs of an array of geophones. It
can be shown that it converges toward the impulse response
of the medium, which for sea ice is a superposition of seis-
mic modes guided through its thickness. Estimations of h,
E, and ν were obtained from these data, and we concluded

that this approach is suitable for long-term monitoring of sea
ice. Building on this work, the methodology was improved in
view of automatic, more accurate, and more complete moni-
toring of the ice in Van Mijen Fjord.

The first improvement concerns the calculation of the
NCF. We introduce a method based on beamforming (Rost
and Thomas, 2002) for detection and selection of only the
time windows where the seismic noise source is aligned with
the station pair used, which significantly improves the signal-
to-noise ratio (SNR) of the NCF. The second improvement
concerns the inversion strategy. In Moreau et al. (2020a), E
and ν were determined from the velocity of the longitudi-
nal and shear horizontal guided waves. The values were then
used in a finite element (FE) model for computing synthetic
wavefields. However, we noted that a joint inversion of the
three parameters E, ν, and h is computationally too expen-
sive for forward modeling with a FE model. With these two
improvements, we obtained the daily evolution of the thick-
ness and elastic parameters of the sea ice.

In the present paper, we use the analytical model intro-
duced in Stein et al. (1998) for generating synthetics. This
approach is computationally very efficient, so Bayesian in-
ference can be used for joint inversion of E, ν, and h, and
also the additional parameter ρ (see Sect. 2.4). The evolu-
tion of these parameters reveals a constant increase in the ice
thickness between 1 and 24 March 2019, while the mechani-
cal parameters remained stable.

2 Instruments and methods

Contrary to wave propagation in an infinite and homoge-
neous domain, propagation in a waveguide (i.e., a thin,
bounded domain, such as an ice layer) is subject to multiple
reflections at the upper and lower bounds. This causes inter-
ference that results in several propagating guided modes that
are similar to the Lamb modes that propagate in a stress-free
plate (Lamb, 1917). However, the nature of the seismic field
in sea ice is modified by the presence of the solid–liquid in-
terface. In the following, we use the terminology introduced
in Moreau et al. (2020a) to describe the modes in the wave-
field:

– the fundamental quasi-symmetric mode (QS0), which
produces mainly longitudinal motion;

– the quasi-Scholte mode (QS), which produces mainly
flexural motion;

– the fundamental mode (SH0), which produces shear-
horizontal motion.

Guided modes are dispersive, and hence seismic signals
recorded in sea ice away from the source are distorted. An
important property of guided wave propagation is the rela-
tionship between the dispersion curves of the guided modes
and the mechanical properties and thickness of the ice. The
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dispersion curves are the representation of the modal propa-
gation in the frequency–wavenumber space, which requires
measurement of the wavefield with an array of sensors. In the
following section, we only recall the main features of this ar-
ray, but the reader can refer to Moreau et al. (2020a) for a
detailed description.

2.1 Seismic array

The experiment was conducted on fast ice in Van Mijen
Fjord, which is located on the southern coast of the island
of Spitsbergen, in the Norwegian archipelago of Svalbard
(Fig. 1a). More precisely, the seismic array was deployed on
Lake Vallunden, which is connected to the fjord by a channel
and is surrounded by a moraine. The town of Sveagruva is
located not far to the northwest (Fig. 1a).

The experiment was meant to deliver a proof of concept
for passive seismic monitoring of sea ice, so this place was
ideal for several reasons.

– It is close to the facilities of Sveagruva, and easy to ac-
cess by snowmobile (10 min drive).

– It is off the main snowmobile traveling routes frequently
encountered in the frozen fjords of Svalbard.

– Despite being surrounded by a moraine, it is subject to
tidal forcing and currents, like any other parts with fast
ice in Svalbard.

With new processing methods, currently under investiga-
tion, that combine deep learning for automatic clustering of
the waveforms, with different inversion approaches, it is ex-
pected that the same information about sea-ice properties can
be monitored by deploying only three to five stations instead
of a dense array, thus significantly easing the logistics asso-
ciated with transport and deployment of the geophones. The
other inversion strategy has recently been tested on drifting
pack ice (Moreau et al., 2020b). New deployments on fast ice
and on pack ice are being planned to monitor sea ice in the
Lincoln Sea and in the Nares Strait in 2023 and 2024.

The seismic network is a mix between one-component
(1C) and three-component (3C) FairFieldNodal Zland geo-
phones (Fig. 1b). It consists of a dense array of geophones
with 4 m spacing that forms a square. Within this square there
is a denser cross of 3C geophones. The first two geophones
at the edges of this cross are spaced 2 m apart, and all of the
others along the cross have a regular spacing of 1 m. The two
lines of geophones that form this dense cross are referred to
as the east–west (EW) line and the north–south (NS) line. To
the east, west, north, and south of the array there are extra
antennae of four sensors that are referred to as linear array
east (LAE), west (LAW), north (LAN), and south (LAS). In
the following, LAN and LAS (Fig. 1b) are used as virtual
sources for the receivers in the NS line, while LAE and LAE
are used as virtual sources for the receivers in the EW line.

The type of geophones used for the experiment has a cylin-
drical geometry of about 17 cm in height and 12 cm in diam-
eter, mounted on a detachable spike. The geophones were
installed directly in the ice without their spike. For accurate
positioning, we used taut cords that we attached to each end
of the rows and columns of the array, and a decameter. To
maximize the coupling, a milling tool was specifically de-
signed to drill the ice at the diameter of the nodes. The snow
was removed prior to drilling holes, and geophones were in-
stalled in the holes at about half their height. We covered
them back with snow to insulate them in view of preserving
their battery life. At the time of the deployment, the internal
temperature of several nodes was measured, before and af-
ter covering them with snow, showing an increase from −21
to −16 ◦C. Deployment was without particular difficulty and
took about 2.5 d of work for a team of five people, including
the time required for their activation. Markers were carefully
placed all around the main array and at the position of the
four antennae, in order to find them back more easily at the
end of the experiment.

The structure of this deployment was designed with a spa-
tial sampling and geometry that allowed the QS0 and SH0
modes to be measured up to about 250 Hz and the QS mode
to be measured up to about 150 Hz (Moreau et al., 2020a).
Moreover, all of the data used in this work are sampled with
a sampling frequency of 500 Hz (Moreau and RESIF, 2019).

2.2 Noise correlation function

2.2.1 The noise correlation function

For the last 15 years, developments of passive seismolog-
ical methods have shown that it is possible to extract the
medium properties from seismic-noise interferometry with-
out the need for active sources (e.g., sledgehammer, explo-
sions, vibrating truck) or earthquakes. The NCF is obtained
by correlation of continuous recordings of seismic noise from
a pair of seismometers, and it has been shown to converge
toward an estimate of the elastodynamic Green function be-
tween the seismometers (Roux et al., 2005; Campillo and
Roux, 2014). This conversion of passive sensors into virtual
active sources is very useful in modern seismology for mon-
itoring and tomography purposes (Campillo and Paul, 2003;
Shapiro and Campillo, 2004; Sabra et al., 2005). However,
theoretical hypotheses that ensure convergence of the NCF
toward the Green function are restrictive, as they require
noise sources to be stationary and with an isotropic distri-
bution and signals to be recorded over an infinitely long time
(Lobkis and Weaver, 2001; De Verdière, 2006). In practice,
these hypotheses are of course never fulfilled. Nonetheless,
the seismic noise is very rich in our dataset: it includes the
thousands of icequakes that occur every day, directional an-
thropogenic noise (e.g., other field experiments in the fjord,
human activities near Sveagruva), and seismic noise associ-
ated with the wind and water currents. Hence the Green func-
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Figure 1. (a) Map of the area where the seismic array was installed (red dot) on Lake Vallunden, Svalbard, which is naturally bounded
by moraines and connected to Van Mijen Fjord by a small channel. The town of Sveagruva is located about 1 km northwest of the array.
(b) Schematic representation of the seismic array. The red dots indicate the three-component (3C) geophones, and the blue dots indicate the
one-component (1C) geophones. In the main array, the 1C geophones are spaced by 4 m, and the 3C geophones are organized in a dense
cross with 1 m spacing oriented along the east–west (EW) and north–south (NS) directions. To the east, north, south, and west there are linear
arrays of four geophones (LAE, LAN, LAS, LAW). (a) Modified from Moreau et al. (2020a).

tion can be precisely estimated (Campillo and Paul, 2003;
Shapiro and Campillo, 2004) with adequate pre-processing
of the data. Recent work provide a catalogue of methods to
tackle the challenge of applying passive seismic interferom-
etry to glaciers in the absence of isotropic source distribution
(Sergeant et al., 2020).

A usual way of calculating the NCF when sources are not
isotropic and/or not stationary consists of truncating the con-
tinuous recordings of a station pair into shorter noise seg-
ments and inter-correlating these segments before averaging
the correlations. The segment lengths should be such that
seismic sources are as stationary as possible within the seg-
ments.

Figures A1 and A2 show the seismic wavefield recorded
on 11 March 2019, during the night (Fig. A1a) and dur-
ing the day (Fig. A2a) when some fieldwork occurred about
500 m NE of the main array. The corresponding short-time
Fourier transforms are shown in Figs. A1b and A2b, as well
as the estimated power spectral densities (Fig. A1c and A2c).
These figures show that seismicity can be dominated by
noise sources with a very different characteristic time. For
example, in the presence of human activity the characteris-
tic time is a few minutes (see Fig. A2a between 16:00 and
16:35 UTC). When there is no human activity, noise sources
can be impulsive when icequakes occur (there are also pe-
riods of time where many icequakes occur every minute),
or they can have a characteristic time of a few minutes (see
for example Fig. A1a between 02:00 and 02:15 UTC). There-
fore, it is necessary to correlate noise segments with a length
that accounts for the characteristic time of the various noise

sources. After some preliminary tests, we concluded that a
5 min window is adequate. Moreover, impulsive events, hu-
man activity, and other noise sources have different levels of
energy. To prevent bias due to the dominant noise sources,
spectral whitening was applied to the noise segments prior to
calculating the correlations. Three sets of correlations were
calculated:

– between the recordings from the vertical displacement
component

– between the recordings from the north displacement
component

– between the recordings from the east displacement com-
ponent.

In this work, we restrict the study to correlations between
(i) the 45 stations of the EW line with the four stations of the
LAE and LAW and (ii) the 45 stations of the NS line with
the four stations of the LAS and LAN. Of course, by using
all station pairs amongst the 247 stations, it will be possible
to obtain 30 381 inter-correlations with many different inter-
station paths, distances, and directions. With such a number
of correlations, it becomes possible to apply tomographic in-
versions over the full array geometry and to obtain a 3D+time
map of the sea-ice properties with unprecedented spatial and
temporal resolution. However, this requires a different pro-
cessing strategy where noise sources have to be selected so
that their distribution around the array is isotropic. This is
ongoing work that will be the matter of a future paper.
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Figure 2. Beamforming obtained from the ambient seismic noise recorded on 9 March 2019, over a 5 min window from 03:50 UTC in four
frequency bands: (a) [3–5] Hz, (b) [7–9] Hz, (c) [11–13] Hz, and (d) [15–17] Hz. The dominant source is located within ±10◦ (red dashed
lines) in the EW sensor line.

2.2.2 Optimization of the noise correlation function
using beamforming

The distribution of seismic sources is not isotropic every day;
hence we propose optimizing the retrieval of the Green func-
tion by selecting all of the noise segments for which the
energy comes from a direction that is within ±10◦ of the
lines of orientation for each day of the recording (Fig. 2,
red dashed line). The choice of ±10◦ for the direction of
the sources is because this aperture is small enough for the
emitted wavefield to be localized in the end-fire lobes. These
are the areas on either side of the ends of the receiver line
in which the phase of the wave correlation function is sta-
tionary with respect to the azimuth (Roux et al., 2004). The
aperture of these lobes depends on the ratio between the
wavelength and the distance between the receivers (Goué-
dard et al., 2008).

To determine the direction of the seismic sources in each
noise segment, classical beamforming is applied to the data
(Rost and Thomas, 2002). Beamforming was performed us-
ing all 1C and 3C stations of the main array that are equally
spaced. In some noise segments, seismic sources have differ-
ent directions for different frequency bands. To prevent the
inclusion of these segments in the NCF, we apply the beam-
forming in several frequency bands, to select only the seg-
ments for which the direction of the source is stable indepen-
dent of the frequency. This processing is based on the spa-
tial coherence between the receivers. Therefore, spatial sam-
pling must satisfy the Nyquist criterion. The 1C geophones
have a spatial sampling of 4 m. This sets the minimum wave-
length that can be spatially sampled to 8 m, which is that of
mode QS at a frequency of 16 Hz. Applying beamforming
at frequencies higher than 16 Hz would cause aliasing prob-
lems, which prevents dispersion information to be extracted
beyond 16 Hz. Hence, we define four frequency bands for se-
lection of the appropriate noise segments: [3–5], [7–9], [11–
13], and [15–17] Hz. The direction of the dominant noise
source can be identified in each frequency band; e.g., Fig. 2
shows the beamforming of a noise segment in all frequency

bands. A seismic source from the east is detected, and this
segment is therefore selected for calculation of the NCF be-
tween the virtual sources of LAE and the receivers of line
EW.

Finally, the optimized NCF is obtained by correlation of
the selected noise segments and averaging of these correla-
tions. This process is illustrated in Fig. 3. Figure 3a shows
the NCF of all of the 5 min noise segments obtained from
the correlation between a virtual source of LAE and the re-
ceiver at the center of the EW line (Fig. 1b). The segments
selected for the beamforming are shown in color in Fig. 3a,
and the rejected segments (i.e., those showing a superposition
of sources that originate from several directions outside the
end-fire lobes) are shown in black and white. Indeed, another
research team was working in Vallunden Lake to the north-
west of our experimental area. This generated many domi-
nant sources from this direction and impacted our seismic
array negatively, with a source that was not included in the
end-fire lobes of our two reception directions, EW and NS.
Figure 3b shows the beamforming calculated from all of the
5 min segments (on the left) and that of the selected segments
(on the right). Figure 3c shows a comparison between a NCF
obtained by averaging the correlations from all of the noise
segments (blue waveform) and that obtained by averaging
only the selected segments (red waveform). The SNR is sig-
nificantly improved, especially at early arrival times, where
unfavorable noise source directions corrupt the NCF. When
calculating the dispersion curves, this introduces a bias in
the frequency–wavenumber spectra (see Sect. 2.3), and the
modes appear to propagate faster than they actually do. This
results in degraded estimates of the sea-ice properties.

The steps to compute the NCF are summarized in Fig. 4.

2.3 Extraction of the frequency–wavenumber spectra
from the noise correlation function

To infer the sea-ice properties, the inverse problem is based
on a minimization of the difference between the dispersion
curves measured in situ and those obtained synthetically. It
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Figure 3. (a) The 5 min correlation windows as a function of time between the easternmost station of LAE and the central receiver of the
EW sensor line, filtered between 1 and 60 Hz. Correlations shown in color are those with the dominant source aligned with the EW line. The
correlations were calculated from the ambient seismic wavefield recorded on 9 March 2019. (b) Beamforming calculated from the full day
of ambient seismic noise recorded on 9 March 2019, in the [15–17] Hz frequency band. The noise sources are dominant in the northwest.
(c) Beamforming from the summation of the 5 min seismic noise segments selected for an optimal NCF. The dominant noise sources are
aligned with the EW line. (d) In blue is the stack of the 288 correlations. In red is the optimized NCF. The signal-to-noise ratio is significantly
enhanced.

is therefore necessary to extract the optimal dispersion curve
for each mode. To this end, we used the method introduced
in Minonzio et al. (2010) in the field of medical ultrasound,
and applied in the context of geophysics on a floating ice
layer in Moreau et al. (2017) and Moreau et al. (2020a). As
this processing has already been described several times in
the literature, we only recall the main ideas here, and we in-
vite the reader to refer to the above three references for more
details.

The linear arrays contain either two or four 3C geophones,
which are considered virtual sources for the calculation of the
NCF. The classical way to obtain dispersion curves from a set
of NCFs is to apply a Fourier transform to the time and space
dimensions, which yields the frequency–wavenumber spec-
trum. When several virtual sources are available, the spectra
can be averaged over the virtual sources.

A better way of taking advantage of the multiplicity of
virtual sources consists of inserting a singular value decom-

position to the matrix of the transmit–receive NCF between
the Fourier transform on the time dimension and that on the
space dimension. This processing consists in the following
steps.

1. The matrix of transmit–receive signals has three dimen-
sions: sources (M = 2 or 4), receivers (N ), and time.
The first step is the application of the Fourier transform
to the temporal dimension of this matrix.

2. At each frequency, the resulting Fourier-domain matrix
is sliced into 2D transmit–receive matrices. These ma-
trices are then decomposed into singular values. The
singular vectors define an orthonormal basis of the
space dimensions along the transmitters (left-singular
vector) and receivers (right-singular vector). The under-
lying idea behind this processing step is that the differ-
ent levels of modal energy are distributed onto the sin-
gular vectors, the energy information being contained
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Figure 4. Workflow to calculate the noise correlation function from seismic noise.

in the singular values. This allows a heuristic separation
of the noise and signal subspaces, in a classical way for
singular value-based filters.

3. The last step consists of defining test vectors that are
representative of the wave propagation problem. In the
present case, we use plane waves of the form eiktestxn ,
where ktest is the wavenumber to be tested, and xn (n=
1,2, . . .,N ) is the coordinate of receiver n along the
propagation. Finally, the test vectors are projected onto
the singular vectors of the receivers’ basis. This leads to
a scalar product that is maximized when the wavenum-
ber in the test vector matches that of the waves in the
measured wavefield. In practice, this projection step
is equivalent to calculating the discrete spatial Fourier
transform of each singular vector.

Step 3 is performed at each frequency resulting from
step 1.

Once steps 1–3 are performed, the resulting frequency–
wavenumber spectrum significantly enhances the identifica-
tion of the dispersion curves, for two reasons: (i) it is possible
to separate signal from noise by applying a threshold to the
singular values, and (ii) modal amplitude stands out at all fre-
quencies and for all modes with the same spectral intensity
(Fig. 5), despite their different relative amplitude in the wave-
field, because singular vectors have a unit norm. The disper-
sion curves can therefore be identified on a larger bandwidth
and with fewer SNR-related uncertainties than with conven-
tional beamforming techniques (Moreau et al., 2020a). In the
present work, they are extracted from the spectrum by iden-
tification of all of the frequency–wavenumber couples with
a spectral intensity above a threshold. This threshold is set
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Figure 5. Frequency–wavenumber spectra obtained from the noise correlation function calculated on 9 March 2019, with the method de-
scribed in Sect. 2.2 and the processing of Sect. 2.3, for recordings in the EW direction. (a) Spectrum from the vertical channel, dominated
by the QS mode. The zone with a dotted contour highlights a seismic signature with slopes corresponding to a mix between the SH0 and
QS0 modes. These modes appear on the vertical channel because the geophones were slightly tilted. (b) Spectrum from the radial channel,
dominated by the QS0 mode. (c) Spectrum from the transverse channel, dominated by the SH0 mode. Green dots show the average of the
dispersion curves extracted in the EW and WE directions. The red dotted lines show the dispersion curves obtained from Eqs. (1)–(3), with
the sea-ice parameters inferred from Bayesian inference: E = 4.1 GPa, ν = 0.28, ρ = 917 kg m−3, and h= 0.60 m.

heuristically to 0.2, to achieve the best compromise between
the visibility of the propagation modes and that of the seis-
mic noise that pollutes our spectra. Based on this method,
four sets of dispersion curves are extracted:

– from E to W with LAE as virtual sources,

– from W to E with LAW as virtual sources,

– from N to S with LAN as virtual sources,

– from S to N with LAS as virtual sources.

Finally, the dispersion curves obtained from propagations in
opposite directions are averaged together to reduce uncer-
tainties, in a similar fashion as in Moreau et al. (2014b). This
yields one dispersion curve per mode per day in the EW and
NS lines. Next, the dispersion curves are inverted for the sea-
ice properties.

2.4 Estimation of sea-ice parameters with Bayesian
inference

2.4.1 Forward model, parameterization of the
problem, and cost function

In the following, we use the notation k
type
m (f ) to de-

scribe the frequency–wavenumber spectrum of a mode (m=
QS,QS0,SH0) at frequency f . Types “EW” and “NS” re-
fer to wavenumbers obtained from the data in the EW and
NS lines, respectively, and type “syn” refers to synthetic
wavenumbers obtained with the forward model. The for-
ward model used here is that introduced by Stein et al.
(1998), which describes the asymptotic behavior of the seis-
mic wavefield in a thin ice sheet that is floating on an infinite
water column, for low values of the product f ·h. While the

depth of the lake is only about 10 m (Marchenko et al., 2021),
this is sufficient for the ice–water system not to behave like
a bi-layer waveguide, because the first dispersive mode in
an acoustic waveguide of thickness 10 m is evanescent under
75 Hz. The wavenumbers are obtained by solving the follow-
ing equations.

kQS0(ω)= ω

√
ρ(1− ν2)

E
(1)

kSH0(ω)= ω

√
2ρ(1+ ν)

E
(2)

kQS(ω)
4
−
hρω2

D

−
ρw

D

 ω2√(
kQS(ω)

ω
ν
)2
−

(
ω
cw

)2
− g

= 0 (3)

In these equations, ω is the angular frequency; cw and ρw are
the speed of sound and density of the water, respectively; and
D = Eh3

12(1−ν2)
is the ice-bending rigidity.

Equation (1) holds as long as the QS0 does not become
dispersive, which occurs at f ·h values above 500 Hz m. The
sampling frequency of the signals in this study is 500 Hz,
so this condition is always satisfied. Equation (2) is al-
ways valid, because the fundamental guided shear-horizontal
mode, SH0, is not dispersive. Equation (3) is valid when f ·h
remains less than about 50 Hz m. The ice in Van Mijen Fjord
had a thickness of less than 0.8 m; hence this Eq. (3) can be
used at frequencies up to ∼ 65 Hz.

Given a dataset, d, and a set of parameters for the ice layer,
X= {E,ν,ρ,h}, a cost function can be defined as the L2
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norm between the wavenumbers calculated from the data and
those calculated from Eqs. (1)–(3), such that

f (d,X)=
1
3

∑
m=QS,QS0,SH0

∥∥∥ksyn
m (ω)− kEW,NS

m (ω)

∥∥∥ , (4)

where ‖.‖ refers to the L2 norm. In Moreau et al. (2020a), E
and ν were calculated directly from Eqs. (1) and (2), assum-
ing the density is known. Then h was estimated based on a
grid search and forward modeling with the FE method. FE
modeling was used because it allows the inversion to be per-
formed with high frequencies of up to 100 Hz. The downside
is that it is computationally very expensive. In the present
paper, instead of a FE model, we preferred to use Eq. (3),
which is much more efficient, even though it means that we
are limited to frequencies under 65 Hz for the QS mode. The
benefits are two-fold.

– First, compared to FE modeling, the efficiency of using
Eq. (3) allows inversions based on Bayesian inference,
for h, E, and ν, and also for ρ. The probability density
function (PDF) of these parameters can be estimated
and used to evaluate the uncertainties of the inversions.

– Secondly, Eq. (3) constrains mainly the thickness (to the
power of 3), but it also slightly constrainsE, ν, and ρ (to
a unit power). Hence, the problem is better constrained
when performing a joint inversion of all of the parame-
ters simultaneously.

2.4.2 Estimation of the probability density function of
the ice parameters with Bayesian inference

Solving the inverse problem consists of finding the param-
eters that best explain the data, based on the cost function
defined in Eq. (4). This is a well-posed and well-constrained
inverse problem, because there is a one-to-one relationship
between the model parameters and the global minimum of
the cost function. We proceed with the Markov chain Monte
Carlo (MCMC) algorithm (Metropolis et al., 1953), which
provides an ensemble of solutions that fit the data with an ac-
ceptable level of likelihood, given the data uncertainty. This
ensemble of solutions is represented by the posterior distri-
bution of the model parameters, such that

P (X|d)=
P (d|X)P (X)

P (d)
, (5)

where P (X|d) is the likelihood function, P(X) is the prior
distribution, and P(d) is the marginal likelihood function,
which is essentially a normalization factor. The posterior dis-
tribution expresses the conditional probability of the param-
eter values based on evidence from measurements, expressed
by the likelihood function, and from prior assumptions, ex-
pressed by the prior distribution. It is also an estimate of the
parameter PDF.

In the present problem, it is assumed that measurement
errors are not correlated and are random and thus that they
can be modeled by a zero-mean Gaussian likelihood function
with variance σ 2:

P(d|X)= exp

(
−
(f (d,X))2

2σ 2

)
, (6)

where σ 2 is the variance associated with the measurement
errors. This is a typical likelihood function as used in many
data-fitting problems (Tarantola, 2005).

For first year ice, in situ measurements of density range
from 840 to 910 kg m−3 for the ice above the waterline and
900 to 940 kg m−3 for the ice below the waterline (Timco
and Frederking, 1996). Poisson’s ratio varies between 0.25
and 0.4 and Young’s modulus between 2 and 6 GPa (Ander-
son, 1958; Timco and Weeks, 2010). In particular, in Van
Mijen Fjord, Romeyn et al. (2021) reported a Young mod-
ulus around 2.5 GPa with a Poisson ratio of 0.33, and Mo-
rozov et al. (2011) reported a Young modulus around 3 GPa
and a Poisson ratio of 0.3. Moreau et al. (2014a) reported a
Young modulus around 4 GPa and a Poisson ratio of 0.32 at
Vallunden. The slightly higher value of Young’s modulus at
Vallunden, in comparison with those directly in Van Mijen
Fjord, is likely attributable to the protected physical setting
of the study site and support from the surrounding shoreline
at the moraine. Regarding the thickness, ice drillings indi-
cated that it was systematically less than 1 m. Hence, we as-
sume for the prior distributions that the model parameters
have equal probability over a range of values that contain the
above-referenced values:

– E is between 2 and 6 GPa,

– ν is between 0.1 and 0.5,

– ρ is between 700 and 1000 kg m−3,

– h is between 0.15 and 1.15 m.

Determining the optimal value of σ 2 is essential for appropri-
ate sampling of the PDF. However, σ 2 is data-dependent. In
our approach, we are inverting dispersion curves, so it should
account for uncertainties in the dispersion curves, not those
in the measurements. Unfortunately, there is no linear rela-
tionship between both, because of the dispersion of the QS
mode. Depending on the quality of the correlation function,
these uncertainties are not the same between all sets of dis-
persion curves. Hence σ 2 cannot be set a priori for all of the
inversions in this study, or else it would be a coarse approxi-
mation.

Moreover MCMC methods generally require a burn-in
phase before reaching the posterior distribution. To tackle
both of these issues, we precede the MCMC algorithm by
simulated annealing (SA) global optimization (Moreau et al.,
2014a; Gradon et al., 2019) to determine σ 2 and to improve
convergence. Another approach consists of considering the
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Figure 6. Daily evolution of the variance of measurement errors,
estimated with the simulated annealing algorithm, as described in
Sect. 2.4. Variance in the EW (red) and NS (blue) directions. The
variance in the EW direction remains stable, at around 0.5× 10−6.
That in the NS direction appears to show a slightly decreasing pat-
tern, which appears to be the consequence of temporal variations in
the ice properties in this direction.

variance as part of the inversion parameters of the MCMC
algorithm, in what is known as trans-dimensional MCMC.
However the method proposed in this paper has the advan-
tage that it converges much faster, and it is robust for dealing
with our dataset.

Simulated annealing is also an MCMC method . However,
its aim is to converge on the global optimum rather than to
generate samples from the posterior distribution (Kirkpatrick
et al., 1983). To this end, σ 2 in the likelihood function is ini-
tialized with a large value, to allow broad sampling of the
parameter space. This value is slowly reduced with each iter-
ation in what is termed the “cooling schedule”, and if a suf-
ficiently gradual schedule is chosen, the algorithm will con-
verge to the global optimum. In practice, the cooling sched-
ule can be implemented in a number of ways. We use a
standard schedule, T , where the variance is reduced from
T0 = 0.05 to T1 = 0.001 in an exponential function such that

T (n)= T0

(
T1

T0

)n/N
. (7)

The number of iterations, N , is set to 20 000 for the SA.
The SA phase is stopped when the algorithm reaches a num-
ber of iterations equal to N , or when it has remained stuck
at the same position in the search space for more than 200
successive iterations. The MCMC algorithm is then started,
with 50 000 iterations, from the position in the search space
that minimizes the cost function during the SA phase and
with a variance equal to the minimal variance reached, in-
creased by 1 % (which translates to a 10 % increase in the

standard deviation). This increase is to avoid the MCMC al-
gorithm spending hundreds of iterations (like the SA) at the
same position in the search space, which would be a sign of
poor calibration.

The variance is linked to measurement errors, i.e., a mix
between the influence of the SNR and other random per-
turbations of the measure, such as variations in the physics
of the problem. In the present problem, such perturba-
tions are averaged when going from the time-space to the
frequency–wavenumber domains, and thus the variance re-
flects variations in frequency–wavenumber values around
ground truth values. Figure 5a–c indicate that the spread of
the frequency–wavenumber couples is very narrow. Calcu-
lations of this spread show that it remains of the order of
±0.002 rad m−1, which corresponds to a maximal variance
of about 4× 10−6 (rad m−1)2. This is consistent with the or-
der of variances found with our method, as shown in Fig. 6
for all of the days from 1 to 24 March 2019. It appears stable
around 0.5× 10−6 in the EW direction. In the NS direction,
however, it shows a slight decrease. Since the SNR remains
stable in the NCF, this decrease appears to be linked to tem-
poral and spatial variations in the physics of the problem,
which cannot be accounted for with the forward model. One
of these is the influence of the snow layer on the seismic
waveforms. In the NS direction, on 1 March, the snow cover
was thinner near LAS (about 10 cm) than it was near LAN
(about 40 cm). Such variations were not noted in the EW di-
rection, where the thickness of the snow was more constant.
Additional rainfall and snowfalls in March are likely to have
influenced the propagation of the seismic waves by modify-
ing the apparent density and Young modulus of the ice–snow
system. This should be investigated in future studies, and for-
ward modeling that accounts for a snow layer would repre-
sent significant progress.

After the MCMC algorithm has completed, a PDF is gen-
erated for E, h, ν, and ρ. Figure 7 shows an example of
PDF obtained on 9 March, from line EW. The ice proper-
ties are determined by computing the histograms of the pa-
rameters, to which we fit a kernel-type distribution density
estimator. The kernel estimation method creates a smooth,
continuous curve to represent the probability distribution of
the data from the data samples by locally estimating the nor-
mal distribution function centered in each sample (the ker-
nel functions). Summing these local smoothing functions for
each sample produces the resulting continuous fit. We use the
maximum of this fit to determine the estimate of the param-
eters. Figure 5 shows the dispersion curves obtained from
the estimated parameters, i.e., h= 0.60 m, E = 4.1 GPa, ν =
0.28, and ρ = 917 kg m−3. We observe a statistically consis-
tent fit between the theoretical model and the wavefield data.

From the PDF, we find that the thickness, Young modu-
lus, and Poisson ratio are satisfactorily constrained, with a
standard deviation of 3 cm, 0.4 GPa, and 0.04, respectively.
There is clear sharpening of the PDF around the most proba-
ble values. The PDF of the density, however, is not as sharp,
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Figure 7. Example of the probability density function for E, h, ν, and ρ obtained after the inversion of the dispersion curves calculated on
9 March 2019 and EW line with the four stations of the LAE. The red curve is an estimate of the distribution of the PDF calculated from
the kernel density estimator. The blue curve shows the maximum of our distribution. The Young modulus, the ice thickness, and the Poisson
ratio are satisfactorily constrained by our method. The ice density is less well constrained, with a flatter distribution. The values obtained are
nevertheless consistent with the literature.

with a standard deviation of about 80 kg m−3. Interestingly,
the covariance of the parameters (see Fig. B1 in Appendix B)
indicates that Poisson’s ratio, despite being well-constrained,
seems rather uncorrelated from the other parameters. On the
other hand, Young’s modulus, density, and thickness appear
to be strongly correlated, despite the density being not very
well constrained.

These observations seem to indicate that density having
a flatter PDF reflects the limits of our forward model more
than it is an indicator of the limits of the methodology. The
model is only sensitive to the effective properties of the ice–
snow system, because it cannot account for the snow layer
(about 40 cm thick, on average), which modifies the effec-
tive properties. The weight of the snow layer modifies the
density of the ice–snow system more than it does its rigidity
(Young’s modulus) and expansion–contraction (Poisson’s ra-
tio). Presumably, a forward model able to account for snow
would be a significant improvement, which should constrain
the density in a better way. The development of such a for-
ward model is therefore an important follow-up of this work.

Moreover, the values obtained from all inversions remain
constant around ρ = 915 kg m−3, which suggests that the ac-
tual standard deviation is not as high.

3 Results and discussion

Sea ice is a complex material that is made up of solid ice,
salt water, solid salts, and gas bubbles. In Van Mijen Fjord,
its growth is mainly controlled by the weather conditions
in situ, but other factors are involved, such as marine cur-
rents, which are mainly dominated by the tides; the supply
of glacial freshwater from the surrounding mountains, which
lowers the salinity of the water in the fjord (Høyland, 2009);
and warm Atlantic water from the West Spitsbergen Current
(Gerland and Hall, 2006). The Van Mijen Fjord ice that we
are studying is seasonal first-year ice, which disappears every
summer, and it is covered by snow.

The estimated parameters are of major importance for un-
derstanding and modeling sea-ice dynamics. Thickness has a
key role in coupled modeling (Allard et al., 2018), while the
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Figure 8. Daily evolution of the sea-ice parameters: (a) thickness, (b) Poisson’s ratio, (c) Young’s modulus, and (d) density, obtained for the
lines of sensors in directions NS (blue) and EW (red). The colored band represents the standard deviation associated with each of the curves.
We observe an increase in the ice thickness in both directions, while the elastic parameters remain stable, around values that are consistent
with the literature for first-year ice.

elastic parameters have key roles in recent rheological mod-
els (Dansereau et al., 2016). Figure 8 shows the evolution of
the four parameters obtained by performing one inversion per
day for the NS and EW sensor lines and over a period from
1 to 24 March 2019. The estimations are consistent with the
values reported in the literature for first-year ice, which are
given in Sect. 2.4.

In the field, a snow layer of 10 to 40 cm covers the ice. It is
likely that this has an influence on our estimations, because
guided modes propagate at a lower speed in snow than in ice.
Hence, it is possible that some parameters might have been
slightly under-estimated. However, is difficult to explicitly
constrain the influence of the snow layer on our estimations,
and this is left for a dedicated study.

The ice thickness is directly controlled by external envi-
ronmental factors, such as air temperature, snow type and
depth, wind speed, ocean heat flux, and surface radiation.
For the EW direction, we observe a quasi-linear increase in
ice thickness from 1 to 24 March. The thickness varies from
55± 3 to 66± 3 cm. For the direction NS, we also observe
an almost linear increase in ice thickness that ranges from
53±4 to 63±4 cm. These thickness values are consistent with

the measurements made during the installation (about 60 cm)
and de-installation (about 70 cm) of the array (Moreau et al.,
2020a), although they are slightly lower. This difference can
be explained by the presence of the snow on the ice. We sus-
pect that the calculated thickness could be under-estimated
by 2 to 3 cm, but this falls within the uncertainty margins.
Note that the inferred ice thicknesses differ systematically
by 2–3 cm in the NS and EW directions. A likely explanation
could be related to the elongated geometry of the moraine in
the NS direction, which could have a mechanical effect on
the ice while it is growing. Also, the channel to the north,
where water current is present, could have an effect on the
ice thickness. However, it is noteworthy that these differences
between both directions are not statistically significant, since
the uncertainties overlap; hence the differences could also be
linked to the quality of the Green function retrieval.

The Young modulus depends on several parameters, such
as salinity, porosity, and density of the ice. At Lake Vallun-
den, the ice contained a lot of brine and was relatively porous
and brittle for the first 30 cm; it was also covered with snow.
All of this affected the speed of the guided modes, which
propagate at a reduced speed compared to freshwater ice. The
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Young modulus remains around E = 3.7± 0.4 GPa for both
directions.

The Poisson ratio can be influenced by many factors too,
such as loading rate, temperature, grain size, grain structure,
direction of loading, and state of microcracking, among oth-
ers. In view of the short study period, we therefore expect to
have a relatively stable Poisson ratio of around 0.28 ±0.05
for the EW direction and 0.23 ±0.05 for the NS direction.

Knowing the density of the ice and its thickness are cru-
cial parameters for safe ice transport and the opening of new
shipping routes. The salinity and porosity of the ice are fac-
tors that influence its density. The density of sea ice is not
constant through the ice thickness. It tends to be less dense in
the freeboard. This is because air bubbles tend to accumulate
in the upper part of the ice, while brine tends to accumulate
in the lower part of the ice (Høyland, 2009). The density is
generally insensitive to temperature changes, which is con-
sistent with our results. The inversions give a value that is
very stable, at around 910± 82 kg m−3 for the EW direction
and 908± 80 kg m−3 for the NS direction.

From these inversion results, we note that the thickness,
Young modulus, and Poisson ratio are very well constrained
by our method. All of our results appear to be compatible
with relatively small thickness and young ice that insulate
the heat fluxes rather poorly. The density parameter is a bit
less well constrained. The PDF of the density has a more
uniform distribution, and the uncertainty is larger than for
the other parameters. Nevertheless, the actual uncertainty is
probably much smaller, as all of the inversions give a very
stable value, of around 910 kg m−3 for the EW direction and
908 kg m−3 for the NS direction. Moreover, the density val-
ues obtained are within a range confirmed by the literature
(Timco and Frederking, 1996). In this sense, we can choose
to perform the same inversions by fixing the density, on the
assumption that we can better constrain the other parame-
ters. In this way, we obtain the same results with smaller un-
certainties. They are 0.1 GPa for the Young modulus, 0.04
for the Poisson modulus, and 2 cm for the ice thickness. As
the results obtained are very close when the density is either
fixed or not fixed, it appears scientifically very interesting to
also invert the density parameter.

4 Conclusions

This paper introduces a methodology for estimating and
monitoring the thickness, Young modulus, density, and Pois-
son ratio of sea ice in different directions, using the ambient
seismic noise recorded with a seismic array. The methodol-
ogy consists of extracting from the NCF and then inverting
the dispersion curves of the guided modes propagating in sea
ice. To calculate the daily NCF, we show that selecting the
time windows where the dominant seismic source is aligned
with the receivers significantly improves the SNR. This strat-
egy also prevents potential directional bias from other dom-
inant noise sources, which would result in higher apparent
modal velocity and corrupt the estimation of sea-ice param-
eters. The dispersion curves of the three fundamental guided
modes are inverted with MCMC sampling for inferring the
probability density function of the sea-ice parameters. We
obtain satisfactory results that are consistent with the obser-
vations and measurements made in situ. Thus, we demon-
strate that by using this method, it is possible to constrain
the thickness, density, and elastic properties of sea ice both
precisely and on a daily basis.

This approach could also be useful in various other fields,
such as maritime transport safety or oceanography. The daily
monitoring of ice thickness and stiffness offered by this
method can help to ensure safe movement on sea ice in po-
lar regions where the majority of the population travels by
snowmobile. It can also open up possible new routes that
were previously closed due to the lack of knowledge of these
parameters. In the field of biology, for example, observations
suggest that meso-zooplankton biomass density is closely re-
lated to variations in sea-ice properties.

In future works, another way of processing these seismic
data is to exploit the thousands of icequakes present in the
recordings, which arise from the natural cracking of the ice.
These energetic and impulsive sources will allow the recon-
struction of the Green function of the medium in a multitude
of directions over time. This will form the basis for a tempo-
rally evolving three-dimensional tomographic profile of the
sea ice beneath the seismic array, with applications for char-
acterizing its rheology.

https://doi.org/10.5194/tc-16-2527-2022 The Cryosphere, 16, 2527–2543, 2022



2540 A. Serripierri et al.: Properties of sea ice from seismic noise

Appendix A: Examples of typical signals recorded
during night and day at Vallunden

Figure A1. Panel (a) shows 1 h of seismic wavefield at night, on 11 March 2019, with (b) the corresponding short time Fourier transform
and (c) Welch power spectral density of the recording.

Figure A2. Same as Fig. S1, but in the afternoon, with human activity.
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Appendix B: Covariance between the inverted
parameters

Figure B1. Covariance between Young’s modulus, thickness, density, and Poisson’s ratio, with the associated correlation coefficient.
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