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Abstract 17 

The glaciological significance of ice shelves is relatively well established for the stability of 18 
modern ice sheets of Antarctica. Past ice shelves of the Arctic, however, are poorly documented 19 
while their role for the stability of former ice sheets remains mostly unknown. Here we present 20 
swath bathymetry data and seismostratigraphic profiles that reveal a large moraine system 21 
extending along the continental slope off Baffin Island, demonstrating that a 500-m thick ice 22 
shelf covered northern Baffin Bay during the last glacial episode. We suggest that this ice shelf 23 
had a profound impact on the stability of a series of major ice streams that drained the interior of 24 
the Laurentide, Innuitian and Greenland ice sheets. Climate warming and global sea-level rise in 25 
the early stage of deglaciation possibly contributed to a large-scale break-up of the ice shelf, 26 
which led to the destabilisation and reorganisation of tributary ice streams from these three ice 27 
sheets. 28 

  29 
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Introduction 30 

Ice shelves are critical components of marine-terminating ice sheets due to their buttressing effect 31 
that controls mass balance by stabilizing the ice margins facing the ocean1-7. Retreat and break-up 32 
of ice shelves in Antarctica2,3,6,8-11 occur today at a time of important climate warming and may 33 
lead to a drawdown of the West Antarctic Ice Sheet, resulting in a rapid transfer of ice to the ocean 34 
and thereby contributing to global sea-level rise1,2,11,12. Identifying former ice shelves and 35 
reconstructing their evolution through time –particularly for past ice sheets of the Northern 36 
Hemisphere where they remain poorly documented3,12,13– will provide an essential analogue for 37 
understanding the stability of modern ice sheets and their interplay with climate and global sea-38 
level change. 39 

Baffin Bay forms a 450 km-wide and 2000 m-deep embayment between the Canadian Arctic 40 
Archipelago and Greenland (Fig. 1). At the Last Glacial Maximum (LGM; locally ~25-16 ka BP), 41 
Baffin Bay was located at the confluence of three ice sheets –the Laurentide (LIS), Innuitian (IIS) 42 
and Greenland (GrIS) ice sheets14-17– forming a continuous belt of ice streams draining the interior 43 
of Northern North America and Greenland and extending at or near the continental shelf break in 44 
many sectors18-26. However, the extension of these ice sheets beyond their grounding zones to form 45 
floating ice shelves remains elusive. The scenario of ice shelves in the northern Hemisphere have 46 
been hypothesized repeatedly since it was first introduced by Mercer27 as a comparison between 47 
the Arctic Ocean and West Antarctica. Hughes et al.28 later expanded the idea to include floating 48 
ice shelves in Baffin Bay and eastern North America. The scenario of an ice shelf extending in 49 
Baffin Bay from a southern source of ice grounded in Davis Strait and associated with the Hudson 50 
Strait Ice Stream was speculated by Hulbe29 as a starting point to explain the mechanisms behind 51 
Heinrich events. Although Hulbe et al.30 modified their original stance to instead support fringing 52 
ice shelves along the coasts of Eastern Canada, the idea of an extensive ice shelf sealing Baffin 53 
Bay from the Labrador Sea was adopted in the following decades31,32 although still debated as a 54 
trigger mechanism for Heinrich events33. However, this scenario was recently refuted by Jennings 55 
et al.34 who argued that such an ice shelf would have impeded Labrador Sea water advection, a 56 
key component for biological productivity observed at the LGM in cores off western Greenland. 57 
They suggested instead that the GrIS margin was protected by either a belt of fringing ice shelves 58 
and/or perennial sea-ice –a scenario in line with Hulbe et al.30– that prevented deposition of ice-59 
rafted debris (IRD) and enabled marine advection and food supply during the LGM. Alternatively, 60 
a scenario of an ice shelf from a northern source of ice grounded in northern Baffin Bay has been 61 
so far unaddressed, in a context where the marine-terminating Lancaster Sound and Smith Sound 62 
ice streams captured several major tributaries from the LIS, IIS and GrIS17,21, creating ideal 63 
conditions for the formation of an ice shelf that potentially controlled the stability of other ice 64 
streams outflowing from the eastern Canadian Arctic Archipelago and western Greenland17,24,25.  65 

Solving the ice shelf issue in Baffin Bay is therefore necessary for evaluating the effects of 66 
buttressing on ice flow, ice streams stability and ice sheet mass balance changes during a key stage 67 
of deglaciation of the Arctic and a period of major meltwater flow into the ocean. Here we present 68 
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geophysical (swath bathymetry, acoustic profiles) datasets and a compilation of previously 69 
published sediment core data collected on the outer sector of the cross-shelf trough off Clyde Inlet 70 
(Baffin Island) and its adjacent continental slope of western Baffin Bay that together demonstrate 71 
the existence of an ice shelf in northern Baffin Bay –the Northern Baffin Bay Ice Shelf (NBBIS)– 72 
during the last glacial episode (Fig. 1). This geomorphological evidence and the re-interpretation 73 
of sediment cores allow defining the extent of the LIS on the continental shelf at the LGM and 74 
examining the potential impact of an ice shelf collapse on the evolution of ice streams of the three 75 
marine-terminating ice sheets in Baffin Bay. 76 

 77 

 78 

 79 

 80 

 81 

 82 
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 89 

 90 

 91 

 92 

 93 

Fig. 1: Location map of the investigated area. Location of Clyde Trough (CT), sediment cores and 94 
maximum extent of grounded ice on western Baffin Bay (thick line), compiled and modified from 95 
previous works21,25,26 and this paper. BT: Buchan Trough; ST: Scott Trough; SFT: Sam Ford Trough. 96 
Red rectangles represent study areas shown in greater details in Figs 2 and 5. (Inset) Location of 97 
Baffin Bay north of the Labrador Sea and between Greenland (GR) and the Canadian Arctic 98 
Archipelago (CAA). 99 
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Results and discussion 100 

The geomorphological signature of the NBBIS 101 

Three ridges running in parallel to the continental slope off Clyde Trough between 300 and 420 102 
meters below sea-level (mbsl) are observed on the swath bathymetry imagery (Fig. 2a-b). These 103 
ridges are independent from grounding zone wedges (GZWs) constructed by outlet glaciers and 104 
ice streams emanating from Baffin Island. The central ridge is the largest; it is 30 m high, ~300-m 105 
wide and extends almost continuously for >30 km along the slope off Clyde Trough (Fig. 2a and 106 
3). It has an asymmetric profile showing a gentler ocean-facing slope and is observed at 107 
progressively decreasing depths from north (330 mbsl) to south (300 mbsl). Although it appears 108 
to be streamlined along the continental slope, one of the segments of the central ridge (Fig. 2b and 109 
2c) shows evidence of sediment accretion by ice push in a NW-SE direction (i.e., towards Baffin 110 
Island). Additionally, two 5-10 m-high subdued ridges occur on both sides of the main ridge at 111 
420 and 310 mbsl, extending for <5 km in front of Clyde Trough and showing geomorphic 112 
similarities to the neighbouring central ridge (Fig. 2b). Similar ridges are also observed at 350 113 
mbsl off Sam Ford Trough and 410 mbsl south of Scott Trough, 40 and 100 km northwest of Clyde 114 
Trough, respectively (Fig. 4). These ridges probably correspond to the central ridge observed on 115 
the upper continental slope off Clyde Trough as they are also ~30 m high with a gentler ocean-116 
facing slope. 117 

We rule out the possibility of these landforms being terminal moraines of the LIS on the upper 118 
continental slope as its geometry does not appear to be influence by the location of cross-shelf 119 
troughs. If they indeed originated from flowing ice across the Baffin Island continental shelf, one 120 
would expect some bulge in front of the trough. Instead, we observe a curvature in the orientation 121 
of these ridges into Clyde Trough (Fig. 2a). These ridges are therefore interpreted as lateral 122 
moraines of the NBBIS on the basis of (a) their geomorphology similar to previously reported ice-123 
shelf moraines in the Canadian Arctic Archipelago35-40, and (b) their location, depth and orientation 124 
along the continental slope off Baffin Island. The progressively decreasing depths of these ice shelf 125 
lateral moraines comply with a paleoglaciological reconstruction including a seaward thinning of 126 
the ice shelf. The smaller subdued ridges could represent different phases and/or thickness changes 127 
of the NBBIS during the LGM, although their relatively subdued appearance could also suggest 128 
formation during prior glaciations (i.e., MIS-6). 129 

In outer Clyde Trough (Fig. 2a and 3), the absence of gullies on the trough-mouth fan and of 130 
streamlined glacial bedforms at the continental shelf edge suggest that the Clyde Ice Stream (CIS) 131 
did not reach the continental shelf break at the LGM –in contrast with other ice streams on 132 
northeastern Baffin Island25– and was probably not connected to the NBBIS. This disconnection 133 
between the CIS and the NBBIS in outer Clyde Trough is supported by the presence of two GZWs 134 
located ~10 km landward from the continental shelf edge and ~15 km west of the slope ridge 135 
system (Fig. 5), leaving an open area between the CIS margin in the outer trough and the grounded 136 
NBBIS on the slope. 137 
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 159 

Fig. 2: Geophysical data along the Baffin Shelf margin off Clyde Trough. (a) Bathymetry of the 160 
outer Clyde Trough and adjacent upper continental slope. Dashed lines represent GZW1 and 161 
GZW2 positions. (b) Bathymetry along the continental slope of off Clyde Inlet showing the ice 162 
shelf lateral moraines and the deep iceberg ploughmarks. (Inset in b) Bathymetric profile across 163 
the ice shelf lateral moraine. (c) Zoom on the central ridge of the ice shelf lateral moraine. (d) 164 
Parasound profile across the ice shelf lateral moraine.  165 
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 178 

Fig. 3: The ice shelf lateral moraines on the continental slope off Clyde Trough. 3D imagery 179 
generated using the QPS Fledermaus software showing the ice shelf lateral moraines and iceberg 180 
ploughmarks. 181 
 182 

More to the north, a GZW located ~20 km off Scott Trough at ~450 mbsl and associated with 183 
streamlined bedforms oriented parallel to the continental slope indicate grounded ice flowing 184 
southeastward along the shelf (Fig. 4a and 4b). The streamlined bedforms are similar to mega-185 
scale glacial lineations41-43 or sub-ice shelf keel scours6,44 and were recognized to be the product 186 
of ploughing across the seafloor by an ice shelf. This system therefore suggests that ice flowing 187 
out of the Scott Trough was either 1) deflected from its along-trough original flow by an obstacle 188 
(i.e., a floating ice shelf in Baffin Bay); or 2) a large independent ice body expanding all the way 189 
up to Clyde Trough (i.e., a fringing ice shelf). The first hypothesis is more probable as there is no 190 
explanation for the divergence of the Scott Ice Stream from an along-trough to along-slope 191 
orientation without a buttressing mechanism. These landforms, together with the ice shelf lateral 192 
moraines observed at shallower depths than the bottom of Scott Trough (>600 mbsl; 193 
Supplementary Fig. 1), suggest that, in contrast to Clyde Trough, the Scott Ice Stream –and 194 
probably other systems of northeastern Baffin Island– merged with the NBBIS. Mega-scale glacial 195 
lineations, ice stream lateral moraine and ‘lift-off’ moraines identified by Brouard and 196 
Lajeunesse25 on the Scott trough-mouth fan in turn indicate an ice streaming phase extending to 197 
the shelf edge (Fig. 4a). Initially interpreted as features of LGM ages25, they could instead 198 
correspond to a local subsequent readvance prior to 14.2 kyr BP45. 199 
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 220 

 221 

Fig. 4: Geophysical data along the northwestern Baffin Shelf margin. (a) Bathymetry of the 222 
upper continental slope between Scott Trough and Clyde Trough (see Fig. 1). (b) Bathymetry 223 
along the continental slope of Baffin Island showing a GZW south of Scott Trough aligned with 224 
the ice shelf lateral moraine and sub-ice shelf keel scours. (Inset in b) bathymetric profile of the 225 
ice shelf lateral moraine near Sam Ford Trough. (c) Airgun profile 78029_AG_274_1516 showing 226 
the ice shelf lateral moraine near Scott Trough. 227 

 228 
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 233 

 234 

Fig. 5: Seismic evidence of ice extent in Clyde Trough.  Airgun profile 80028_AG_RAYT_257_0200 235 
showing GZW1 and deeply buried glacigenic debris-flows in outer Clyde Trough (location in Fig. 236 
2a). 237 
 238 

In addition, the continental slope along Baffin Island is heavily affected by curvilinear scours 239 
between 5-10 m deep and down to >750 mbsl (Figs. 2a, 3 and 4a). These scours, interpreted as 240 
iceberg ploughmarks, indicate extensive calving from a thicker body of ice in northern Baffin Bay 241 
probably after the LGM15. 242 

The available swath bathymetry and seismostratigraphic data do not allow identifying ice shelf 243 
lateral moraines south of Clyde Trough with confidence and, therefore, precisely addressing the 244 
NBBIS extent toward southern Baffin Bay. Faint bedforms similar to those presented above are 245 
observed on the bathymetry some 120 km to the south, but their association with those off Clyde 246 
Trough is ambiguous as they are located at greater depths (400 mbsl; Supplementary Fig. 2). The 247 
timing of formation of this lateral ice-shelf moraine is also unknown as no sediment core, thus no 248 
direct dating, were retrieved on this bedform. In this context, the presence of an extensive ice shelf 249 
on the Arctic ocean during MIS-642,46 could suggest contemporaneity on Baffin Bay. Such an ice 250 
shelf is supported by a raised marine sediment sequence identified on Eastern Baffin Island47,48 251 
that was dated at this period49, suggesting a more extensive ice cover during the penultimate 252 
glaciation. Additionally, several studies provided evidence for the presence of the LIS along the 253 
eastern margin of Baffin Island throughout MIS-4 to MIS-250-55. However, sediment records in 254 
Baffin Bay and along the Baffin Island continental shelf allow discussing the potential timing and 255 
extent of the NBBIS.   256 

The sedimentary signature of the NBBIS 257 

The previously published sediment records from Baffin Bay (Fig. 6)14,21,45,56-60 are compatible with 258 
the presence of an ice shelf during the LGM. The buildup of ice sheet in northern Baffin Bay prior 259 
to the LGM is marked by a layer of IRD and carbonate-rich sediments originated from northern 260 
Baffin Bay termed Baffin Bay Detrital Carbonate (BBDC) layer, which is identified basin-wide 261 
and dated between 26-24.7 kyr BP (BBDC-245,56,57,60). The quasi-absence of IRD throughout the 262 
LGM (~24.7-~16.5 kyr BP) in most cores of Baffin Bay suggests an extensive ice cover, either as 263 
perennial sea ice61 or an ice shelf6,34. The occasional clasts observed in some cores of northern 264 
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Baffin Bay could be explained by their relatively short distance from the ice grounding line as it 265 
is affected by mass flows and the rain out of ice shelf basal debris6,33,62,63,64. Provenance study on 266 
core 16PC, located 100 km east of Clyde Trough in central Baffin Bay (Fig. 1), shows uniform 267 
mineralogic composition dominated by a Greenland-sourced sediment assemblage and a restricted 268 
Baffin Island-sourced input during the LGM interval57. Localized and uniform mineralogic 269 
assemblages are typical of sub-ice shelf setting reflecting uniform conditions in which transport is 270 
dominated by meltwater plumes6,65. A coarsening-upward trend with frequent IRD in cores of 271 
Baffin Bay starts at ~16.5 kyr BP57,58,60 and is followed by the deposition of carbonate-rich BBDC-272 
1 between ~14.5 and ~13.7 kyr BP57,60. Such a coarsening-upward sequence typifies the 273 
progressively more open water conditions that usually follow ice shelf collapse events6,64. This 274 
sedimentary record is therefore in support to the hypothesis of an ice shelf in Baffin Bay during 275 
the LGM. In addition, it provides a time framework suggesting that break-up started at ~16.5 kyr 276 
BP and ended with the onset of BBDC-1 at ~14.5 kyr BP15,57,60. 277 

Sediment cores collected on the Baffin Island continental slope (Fig. 6) allow defining the position 278 
of the LIS margin on the continental shelf off Baffin Island during the LGM and early deglaciation. 279 
The base of most cores is marked by ice-proximal dark grey-brown diamicton interpreted as 280 
glacigenic debris-flows deposits and correlated to an ice advance at ~25 kyr BP45. In 77PC, a gold 281 
brown mud layer located halfway along the core was correlated to BBDC-226,45 and therefore 282 
correspond to the ice advance observed in the other cores along the continental slope. Provenance 283 
study on this core indicates that a localized source of carbonate sediments, originating from a 284 
Paleozoic outcrop east of the Home Bay66,67, area also contributed to the composition of the gold 285 
brown mud layer68. Cores from the continental slope offshore Baffin Island (Fig. 1) typically 286 
consist of laminated red brown mud with rare or absent IRD during the LGM interval. Jenner et 287 
al.45 noted, however, that coarse IRD-rich beds from the basal diamicton gradually decrease in 288 
abundance upwards into laminated red brown mud and very fine sand with IRD in cores 61PC off 289 
Scott Trough. These laminated red brown muds are interpreted as lateral sediment supply from NE 290 
Baffin Island, as they thin in deeper water off the trough mouth fans14,45, an interpretation 291 
corroborated by their mineral composition60. They are, however, absent in core 73PC (Fig. 1), 292 
suggesting the absence of grounded ice at the shelf break in Clyde Trough during the LGM, in line 293 
with the receded position of GZWs and the presence of predominantly Greenland-sourced 294 
sediments in core 16PC58. Except for 77PC, located off Home Bay in southern Baffin Bay, the 295 
laminated red brown muds are characterized by an absence of bioturbation and microfossils45. 296 
According to the ice-shelf sedimentary model of Smith et al.6, this sequence might represent an 297 
ice advance to the continental shelf edge at the LGM (stratified diamicton), followed by ice shelf 298 
buildup with frequent iceberg calving (turbidites interbedded with IRD layers) and, ultimately, a 299 
full ice shelf cover (laminated red brown mud). A second diamicton overlying the red brown 300 
laminated muds is observed immediately below BBDC-1 in cores north of Clyde Trough45,69, 301 
representing glacigenic debris-flows deposits correlated to a smaller localized advance from 302 
northeastern Baffin Island ice streams to the shelf break prior to 14.2 kyr BP45.  303 
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Fig. 6: Sediment assemblages in Baffin Bay and along the Baffin Shelf.  Lithology of piston cores 331 
from Baffin Bay modified from various published datasets (see methods). Radiocarbon ages are 332 
reinterpreted in calendar years using the online software Calib 8.2 with the Marine20 333 
radiocarbon age calibration curve87 and a local reservoir correction (ΔR) of 87±2088. Additionally, 334 
relative paleointensity (*) chronology is also presented for core 16PC59 and 77PC26. Correlations 335 
are based on Baffin Bay detrital carbonate (BBDC) beds and are compiled from original 336 
publications. BBDC events are represented by the brown shaded areas – ages are from Simon et 337 
al.57 and Jackson et al.60: BBDC-2: ~25-24.7 kyr BP; BBDC-1: ~14.2-13.7 kyr BP; BBDC-0: ~12.7-11 338 
kyr BP. The grey shaded horizon represents ice shelf setting on Baffin Bay; note the quasi-absence 339 
of IRD during that interval.  340 
 341 

 342 

To our knowledge, no sediment core has been collected or published from the Greenland side of 343 
northern Baffin Bay to allow direct comparison with Baffin Island continental slope assemblages. 344 
In southern Baffin Bay, sediment core data show similar sequence as those from the Baffin Island 345 
continental slope34,70,71. However, widespread foraminifera assemblages and bioturbation during 346 
the LGM interval suggest the presence of perennial sea-ice61 and/or a nearby ice shelf 347 
margin62,72,73. A thorough discussion on sediment assemblages and their relation to ice shelf and/or 348 
perennial sea-ice on the continental slope of western Greenland was provided by Jennings et al.34. 349 

Evidence of ice shelf inception in northern Baffin Bay  350 

The presence of an ice shelf in northern Baffin Bay at the LGM and during the early stage of 351 
deglaciation is supported by invoking the Marine Ice Cliff Instability (MICI) theory, which 352 
stipulates that fracturing due to longitudinal stresses exceeding the yield strength initiate ice cliff 353 
failures when a marine-based ice-margin reaches ~1 km in thickness74-76. Till wedges, GZWs and 354 
mega-scale glacial lineations identified on the upper continental slope off Lancaster Sound21,25 and 355 
Smith Sound (Supplementary Fig. 2) indicate grounded ice as deep as 1350 mbsl. Accounting for 356 
a coeval higher relative sea-level (RSL) of ~75 m based on the modeled RSL values from a nearby 357 
Baffin Island site77, ice thickness can be estimated using: 358 

HLGM = (ρw/ρi) ∙ (D+ΔDLGM)                                                          (1) 359 
where HLGM is the minimum ice thickness during the LGM, ρw = 1028 kg m-3 and ρi = 910 kg m-3 360 
are the mean densities of sea water and ice, respectively, D is the water depth and ΔDLGM is the 361 
correction for water depth at the LGM74. In the case of the Lancaster Sound and Smith Sound 362 
trough-mouth fans, grounded ice had to be >1550 m-thick. The Lancaster Sound till wedges and 363 
the Smith Sound GZW could not have been deposited without an ice shelf buttressing –and 364 
temporarily stabilising– the front of these ice streams4,76,78. In order to maintain a stable position 365 
without an ice shelf in northern Baffin Bay, the ice margin would have needed to retreat until it 366 
reached the theoretical depth of ~800 m, hence continually calving icebergs throughout the LGM76. 367 
Such a constant calving in northern Baffin Bay is, however, not compatible with the sedimentary 368 
record from the slope and deep basin off Baffin Island (Fig. 6) where a quasi-absence of IRD was 369 
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observed during this interval. Moreover, numerical models indicate that ice grounded at 1500 mbsl 370 
is expected to form a ~500 m-thick ice shelf79; a thickness consistent with observations off Clyde 371 
Trough where ice shelf lateral moraines are observed at ~400 mbsl (i.e., ~475 m at the LGM). 372 

Implications of a NBBIS 373 

Glacial landforms and deposits off Baffin Island continental shelf combined with the Baffin Bay 374 
sedimentary record provide definitive evidence for the presence of a 500 m-thick ice shelf in 375 
northern Baffin Bay at and shortly after the LGM. The scenario of an ice shelf fed by ice streams 376 
located in northern Baffin Bay does not require grounded ice in Davis Strait sealing inflow of food 377 
supply from Labrador Sea waters, therefore reconciling with biological productivity observations 378 
on the continental slopes of southern Baffin Bay during the LGM34,45. This scenario provides a 379 
framework for revising the glaciation development around Baffin Bay and reassessing the potential 380 
impacts of the ice shelf collapse on the reorganisation of major ice streams draining the LIS, IIS 381 
and GrIS during the last glacial cycle (Fig. 7). 382 

Ice shelf inception at the LGM: Based on the presence of BBDC-2 and diamicton along the margin 383 
of eastern Baffin Island, the NBBIS probably started building up with an advancing ice shelf 384 
margin across Baffin Bay between ~26 and ~24.7 kyr BP. The presence of the short-lived BBDC-385 
3 event44 suggests an earlier buildup with frequent break-up of the NBBIS margin. This earlier 386 
buildup would be in line with the presence of the LIS on the Baffin Island continental shelf –and 387 
possibly Lancaster Sound– during MIS-350-55. An extensive LIS during MIS-3 would likely have 388 
facilitated an earlier advance of the ice margin across the other shelves surrounding Baffin Bay. 389 
Regardless of the exact timing of ice shelf inception in northern Baffin Bay, grounded ice flowing 390 
from Lancaster Sound and Smith Sound fed the NBBIS between at least ~24.7 and ~16.5 kyr BP, 391 
which in turn buttressed peripheral glaciers and ice streams of the eastern Canadian Arctic 392 
Archipelago and possibly Western Greenland. The available geological record allows identifying 393 
the southward extent of the NBBIS at least down to the latitudes of Clyde Trough. The relatively 394 
shallow depths of the ice shelf lateral moraine in front of Clyde Inlet (<350m) suggests that the ice 395 
shelf was thinning and its margin was possibly located nearby, therefore making it difficult to 396 
extend farther south to Home Bay and preserve a constant thickness of ~500m for >100km. 397 
Although geophysical data from the Greenland continental shelf do not allow confirmation, it is 398 
probable that the ice shelf had a similar extent across the entire Baffin Bay. The relatively deep 399 
troughs (<500 mbsl) on the Greenland side of northern Baffin Bay possibly prevented the 400 
formation of ice shelf lateral moraines. Similarly to northeastern Baffin Island, ice streams located 401 
off the GrIS may have merged with the NBBIS. The exact extent of the NBBIS in southern Baffin 402 
Bay remains unknown; sediment assemblages45,60 show similarities to those of northern Baffin 403 
Bay, while the record of marine productivity during the LGM suggests openings in sea-ice as 404 
polynias and/or advection under a proximal ice-shelf margin34. It is therefore possible that, while 405 
northern Baffin Bay was covered by a basin-wide ice shelf system, southern Baffin Bay was 406 
characterized by fringing ice shelf and/or perennial sea-ice along both continental shelves, which 407 
could explain the presence of ice shelf lateral moraines off Home Bay. 408 
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 429 

Fig. 7: Conceptual model for early deglaciation including the NBBIS and the LIS outlets in Baffin 430 
Bay. Reconstruction of ice sheets in Baffin Bay during the LGM and subsequent deglaciation. LIS: 431 
Laurentide Ice Sheet; IIS: Innuitian Ice Sheet; and GrIS: Greenland Ice Sheet. CT: Clyde Trough; 432 
ST: Scott Trough. Blue arrows indicate an advancing or stable ice margin and black triangles 433 
indicate a retreating ice margin. Brown lines represent ice shelf lateral moraines along Baffin 434 
Island continental shelf.   435 
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Ice shelf break-up and collapse: Rising sea level and/or enhanced incursion of relatively warm 436 
Atlantic waters via the Western Greenland Current34,80 may have provoked a destabilization and 437 
collapse of the NBBIS front between ~16.5 and ~14.2 kyr BP (Supplementary Fig. 3). The 438 
initiation of this break-up is recorded by an increase in IRD and coarse-grained sediments in cores 439 
from Baffin Bay57,60. Such a break-up would have been accelerated by warming summer 440 
temperatures81 providing the necessary heat to produce sufficient meltwater to fill crevasses and 441 
induce hydrofracturing 10,11, in turn favouring the production of small icebergs rather than large 442 
tabular icebergs 1,4,30. The final collapse of the NBBIS corresponds to the onset of widespread 443 
delivery of northern Baffin Bay-sourced detrital carbonates in Baffin Bay – BBDC-115,58,60. 444 

Ice streams acceleration: As the NBBIS rapidly collapsed by ~14.2 kyr BP, ice streams of 445 
northeastern Baffin Island became unbuttressed, thereby thinning due to their acceleration, 446 
similarly to observations made on present-day ice shelves in Antarctica1,5,7,8. The accelerated 447 
discharge from northeastern Baffin Island ice streams probably led to the deposition of the younger 448 
diamicton identified on the continental slope north of Clyde Trough45. The MSGLs and ice stream 449 
lateral moraine at the shelf edge in Buchan and Scott troughs25 further supports this acceleration 450 
of ice streams. The presence of ‘lift-off’ moraines at the shelf break25 suggests tidally related 451 
buoyancy at the grounded ice sheet margin82, which could potentially be a sign of ice stream 452 
thinning. The absence of the second diamicton south of Clyde Trough suggests that no readvance 453 
nor glacier acceleration occured in Clyde Trough, probably because the CIS was not initially 454 
buttressed by the NBBIS. The occurence of ridges similar to ‘lift-off’ moraines on Melville Bay 455 
trough-mouth fans24 could hint to a similar history as northeastern Baffin Island ice streams. Ice 456 
streams acceleration around northern Baffin Bay are coeval to a period marked by exceptionally 457 
high rates of global sea-level rise (Meltwater Pulse 1A12,83,84) suggesting contribution of the North 458 
America high-arctic ice sheets to this event.  459 

Ice retreat in cross-shelf troughs: Ice stream fronts retreated landward within their troughs at ~14.2 460 
kyr BP45, consistent with previous age constraints of ice retreat from the Baffin Island continental 461 
shelf19,20,45. The previous event of ice purge may have resulted in their episodic retreat in 462 
northeastern Baffin Island due to their destabilisation25, whereas the initially unbuttressed CIS 463 
margin underwent a slower retreat. Furthermore, ice retreat in Lancaster Sound and Smith Sound 464 
led to the increased delivery of IRD-rich carbonates and deposition of BBDC-1 in Baffin 465 
Bay15,45,56-58,60.  466 

Conclusion 467 

Identifying landforms associated with modern ice shelves remains a challenge due to their scarcity, 468 
the difficulty to access sub-ice-shelf environments and technological limitations of sonar imaging 469 
systems. However, the last decades witnessed improvements in ship-bound technologies (i.e., 470 
high-resolution multibeam echosounder, autonomous underwater vehicle and 2D/3D seismic 471 
imagery) allowing the identification of submarine bedforms diagnostic of past ice shelves, such as 472 
sub-ice-shelf keel scours/mega scale glacial lineations41-43, GZWs42 and corrugation ridges44. A 473 
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more comprehensive understanding of such landforms is of particular interest as they provide 474 
direct and key evidence for past ice shelves in the Arctic, which may have considerable 475 
implications on glacial dynamics at the margin of continental ice sheets that was so far little 476 
studied.  477 

The ice shelf scenario in northern Baffin Bay provides a satisfactory explanation for the landforms 478 
observed along the continental slope between Scott and Clyde troughs, as well as in Lancaster and 479 
Smith sounds. It is also in agreement with sediment assemblages identified on the continental 480 
slopes off Baffin Island and Greenland, as well as in Baffin Bay itself during the LGM. With a 481 
surface of at least 150 000 km2 –an area comparable to some of the largest ice shelves of present-482 
day Antarctica– the NBBIS constitutes an analogue from the past for understanding future changes 483 
to the cryosphere in a warming world in a context of disintegration of buttressing ice shelves. The 484 
demise of the NBBIS would have provided an ideal setting for triggering the acceleration of ice 485 
streams and the rapid loss of glacial ice to the ocean, thereby influencing drastically the ice flow 486 
regimes of the LIS, IIS and GrIS. These findings could further support the hypothesis that the 487 
North America High Arctic ice sheets did not have considerable contribution to rising sea level 488 
before Meltwater Pulse 1A83,84. Defining the extent of the NBBIS and the chronology of its history 489 
is, however, necessary for assessing a scenario that should include the acceleration of major Arctic 490 
ice streams following ice shelf collapse when identifying sources for Meltwater Pulse 1a. This 491 
paper provides the basis for further investigations aiming at documenting –both offshore and 492 
onshore– lateral ice shelf moraines of past ice shelves of the Arctic seas. 493 
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Methods 510 

Geophysical data along the Baffin Island continental slope 511 

Swath bathymetric data was collected in 2017 during expedition MSM66 of the RV Maria S. 512 
Merian85 using a Kongsberg Simrad EM122 (12 kHz) system, which allowed the coverage of 513 
Clyde Trough. This dataset is complemented by swath bathymetric data from ArcticNet cruises 514 
collected during transits from 2003 to 2016 onboard the CCGS Amundsen, equipped with a 515 
Kongsberg Simrad EM302 (30 kHz). These datasets were processed for anomalous data points 516 
and artefacts removal using Caris Hips and Sips software and gridded at a 10 m cell-size resolution. 517 
They were then imported into ESRI ArcGIS software for geomorphological mapping and 518 
landforms identification. The International Bathymetric Chart of the Arctic Ocean (IBCAO) data86, 519 
gridded at a 500 m cell-size resolution, was also used to show overall bathymetry of Baffin Bay 520 
and its adjacent shelves. Parasound profiles were acquired onboard the RV Maria S. Merian using 521 
a Teledyne-Reson Parasound DS P-70 (secondary low frequency ca. 4 kHz). The raw data were 522 
recorded into ASD and PS3 format and then converted into SEGY using ps32segy software of. Dr. 523 
Hanno Keil (University of Bremen). The shallow-acoustic profiles were then imported into the 524 
IHS Markit Kingdom software for processing and interpretation. Seismic lines 525 
78029_AG_274_1516 and 80028_AG_RAYT_257_0200 were acquired by the Geological Survey 526 
of Canada during airgun surveys in 1978 and 1980, respectively. Extraction and interpretation 527 
were done using the LizardTech GeoViewer® software. Both acoustic and seismic data were then 528 
transferred into Adobe Illustrator® for figure production. Thicknesses and water depth were 529 
calculated using a velocity of 1500 m/s. 530 

Sediment cores and chronology 531 

Sediment cores were compiled from previous studies to describe the lithostratigraphy along the 532 
Baffin Island continental slope and in Baffin Bay. Jenner et al.45 noted that cores 64PC, 61PC, 533 
74PC and 77PC (all included in this study) typify the regional lithostratigraphy along the northeast 534 
Baffin margin from north to south. Additionally, core 73PC45 was included in the compilation as 535 
it was located nearby Clyde Trough. Cores located directly in front of the Baffin Island troughs in 536 
which the LGM assemblages were mostly dominated by glacial debris-flows and turbidites we not 537 
included. Cores from Baffin Bay were selected to allow a north to south representativity and to 538 
avoid redundant information. In general, the lithofacies provided a good correlation between them 539 
on the basis of radiocarbon dating. For full description of the cores, readers are referred to the 540 
original publications - 16PC57; 34PC and 36PC56; 61PC, 64PC, 73PC, 74PC and 77PC45; 67PC21; 541 
SL17460. 542 

Radiocarbon ages were calibrated within the age-depth modelling process using the online 543 
software Calib 8.2 with the Marine20 radiocarbon age calibration curve87 and a local reservoir 544 
correction (ΔR) of 87±2088 commonly used on northeastern Baffin Island26,45,57,60 (Supplementary 545 
Table 1). This reservoir correction is in line with the one currently used for radiocarbon date 546 
calibrations of central West Greenland34,71, that indicate a reservoir correction (ΔR) of 140 ± 35 547 
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years89. We recognize that an offset caused by a well-mixed ocean was most likely variable through 548 
time and the appropriate ΔR reservoir correction for the region might have been larger than the 549 
one used and provide younger ages. However, this would not considerably change the 550 
interpretation of the ice shelf scenario. 551 

Data availability 552 

The swath bathymetric data collected in 2017 during expedition MSM6685 have been deposited in 553 
the PANGAEA repository, available under https://doi.org/10.1594/PANGAEA.902341. The 554 
swath bathymetric data from ArcticNet cruises can be visualized on the Université Laval Géoindex 555 
+ website (http://geoindex-plus.bibl.ulaval.ca). The Parasound profiles collected in 2017 during 556 
expedition MSM6685 have been deposited in the PANGAEA repository, available under 557 
https://doi.pangaea.de/10.1594/PANGAEA.944843. The seismic reflection data along with the 558 
acquisition specifics are available on the Marine Data Holding public repository of National 559 
Resources Canada (http://geogratis.gc.ca/). 560 
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 772 

 773 

Supplementary Fig. 1: Longitudinal transect of the NBBIS in northern and central Baffin Bay. 774 
Location of the ice shelf lateral moraines discussed in this paper are in dark gray. Core locations 775 
in Baffin Bay are tentatively given. BT: Buchan Trough; ST: Scott Trough; SFT: Sam Ford Trough; 776 
CT: Clyde Trough. 777 

 778 
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 779 

Supplementary Fig. 2: Geomorphological evidence of the presence of an ice shelf in northern 780 
Baffin Bay. Arrows indicate GZWs and moraines. (a) Location of figure S2b cores and maximum 781 
extent of grounded ice on western Baffin Bay (thick line). (b) Bathymetry off Smith Sound showing 782 
GZWs between ~900 and ~1200 mbsl, and possibly a moraine at ~1700 mbsl. (c) Chirp profile in 783 
Smith Sound showing the two GZWs at ~900 and ~1200 mbsl. (d) Bathymetry off Home Bay 784 
showing a potential ice shelf lateral moraine at ~400 mbsl. 785 
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 786 

Supplementary Fig. 3: Chronology of the last deglaciation in Baffin Bay and regional climatic 787 
events. (a) Baffin Bay Ice Shelf history. (b) Baffin Bay Detrital Carbonate layers based on 788 
radiocarbon dating57,60 (1) and relative paleointensity (RPI) chronology59 (2). (c) Meltwater Pulse 789 
events84. (d) Greenland mean-annual temperatures reconstructed using δ15N gas-phase81 (red 790 
line). (e) Ice volume equivalent sea-level80 (blue line) presented with one standard-deviation. The 791 
grey shaded area represents the Bølling–Allerød warm interval. 792 
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Supplementary Table 1: Radiocarbon ages for cores used in this study. 
            
Sample information  Conventional radiocarbon age  Calibrated radiocarbon ages yrs BP (2σ)  Reference 
Core  Depth in core 14C age years BP ±   Minimum Maximum Median     
16PC  66  11 905 40  12980 13302 13141  Simon et al., 2012 

  79  12 470 40  13573 13980 13752   
  111  13 820 130  15324 16134 15737   
            

34PC  37  12 380 105  13374 13976 13650  Andrews et al., 1998 
            

64PC  135  9200 35  9484 9852 9639  Jenner et al., 2018 
  275  13 850 95  15443 16111 15777   
  330  12 500 45  13596 14002 13796   
            

73PC  123  19 900 80  22621 23192 22921  Jenner et al., 2018 
            
77PC  137  10 550 40  11 270 11 736 11 504  Jenner et al., 2018 
  200  12 750 55  13 867 14 442 14 137   
  638  37 900 1 600  38 410 41 213 43 542   
            
SL174  97  9793 120  10 122 10 859 10 456  Jackson et al., 2017 
  122  10 390 40  11 104 11 495 11 276   
  142  10 997 110  11 831 12 553 12 202   
  169  11 010 85  11 888 12 515 12 226   
  196  11 410 50  12 506 12 817 12 673   
  215  12 000 80  13 038 13 455 13 234   
  233  12 580 60  13 656 14 111 13 895   
  278  14 510 120  16 256 16 990 16 629   
  294  15 060 110  16 963 17 698 17 294   

Ages were calibrated within the age-depth modelling process, using the online software Calib 8.2 with the Marine20 radiocarbon age calibration curve87. A 
local reservoir correction (ΔR) of 87±20 was used to account for the regional offset of the world ocean 14C age88. 
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