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Abstract

In this paper, we present in two and three dimensional space Galerkin least squares (GLS)
methods allowing the use of equal order approximation for both the velocity and pressure
modeling the Stokes equations under Tresca’s boundary condition. We propose and analyse
two finite element formulations in bounded domains. Firstly, we construct the unique weak
solution for each problem by using the method of regularization combined with the monotone
operators theory and compactness properties. Secondly, we study the convergence of the
finite element approximation by deriving a priori error estimate. Thirdly, we formulate
three numerical algorithms namely; projection-like algorithm couple with Uzawa’s iteration,
the alternative direction method of multiplier and an active set strategy. Finally some
numerical experiments are performed to confirm the theoretical findings and the efficiency
of the schemes formulated.

Keywords: Tresca friction law; variational inequality; GLS; convergence; augmented
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1 Introduction

The objective in this work is to design a finite element procedure that allow the utilization
of polynomial with equal degree for calculating the velocity and the pressure for the Stokes
equations under nonlinear slip boundary condition of friction type. It is well documented
(see [1, 2]) that the couple velocity-pressure for this problem comes with the so-called “inf-
sup” condition which restricts the choice of the finite elements spaces needed. The numerical
analysis of a flow model (for example Stokes or Navier-Stokes) with a non-classical boundary
conditions has been the subject of intensive scrutiny over the years. One of the main reasons
for this surge interest in our view is the fact that for applied mathematicians and numerical
analysts, flows with such boundary conditions have always been a permanent source of
challenging theoretical and computational questions. Given the boundary condition (2.6),
it is well documented that the weak formulation associated to the problem is a variational
inequality for which one of the early reference in the mathematical analysis is the book by
Duvaut-Lions [3]. The two pillars of the solution methodology that we are going to describe
(analyse) are; (i) mixed approach for the Galerkin least squares (GLS) formulation associated
to the Stokes with Tresca’s boundary condition with equal approximation order for both the
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velocity and pressure reminiscent of the one used in [4, 5], and (ii) iterative schemes based
on Lagrange multiplier.

In [6, 7, 8, 9], just to cite a few, a priori error estimates of Stokes under Tresca’s boundary
condition are studied with the velocity and pressure being inf-sup stable. In this work,
because we want to use equal order for polynomials approximating the velocity and the
pressure, a sort of compensation is needed to bypass the inf-sup condition. For that purpose,
we select the GLS approach, but we observe that many others techniques are possible and the
readers interested in stabilization techniques can consult the excellent work of Brezzi-Fortin
[10], where many stabilisations schemes are formulated and analysed.The GLS method has
been introduced in the early 80’s when T. J. R. Hughes and co-workers realized the lack of
stability when analysing advection dominated diffusion problems. Then, they formulated and
analysed new methods for advection-dominated diffusion problems and for incompressible
flows in [11, 12, 13, 14, 15, 16, 17], and later extended their studies to compressible flows
[18, 19]. In [20, 21] some stabilization procedures are formulated and analysed for Stokes
problem with Dirichlet boundary condition. The main idea of this stabilization approach
reside in the combination of the traditional formulation with the least squares terms of the
differential equations. The main advantage of this approach is that the classes of finite
element spaces that can be used are considerable big, and the mathematical foundations of
the method is now well grounded.

The equations of Stokes or Navier-Stokes with Tresca’s boundary condition has been con-
sidered with pressure stabilization in [22, 23, 24, 25, 26], but in our knowledge similar study
with GLS stabilization has not yet been considered and it is the object of this work. Thus
our challenge is to analyse how the added terms will affect the stability, convergence, and the
actual computation. The GLS formulation correspond to this modified formulation in which
the solution of the continuous problem is unchanged under some regularity assumptions, but
the approximate solution is very different. The thinking behind the use of a “perturbed”
formulation is that the discrete approximation has a better behavior with respect to stabil-
ity issues and sometimes convergence. It should be made clear that the GLS method is an
over-stabilization strategy following the terminology in [10], but it has the advantage that it
does not change the symmetry/unsymmetry structure of the system. Two GLS methods are
formulated in this work. The first one corresponds to the situation where all possible sta-
bilization terms are added in a least squares manner following the presentation in [4], while
the second GLS approach is a “reduced method” because only selected terms are added to
the original variational formulation. It is worth mentioning that the second GLS method
formulated here had been introduced and analysed in [17] in a particular context. It is clear
that from the point of view of computation, the second strategy is more efficient because
it has less terms. It should be mentioned that the structure of the “reduced formulation”
may not necessarily be maintained with respect to symmetry/unsymmetry structure of the
original system. In this work, the GLS are introduced within the context of the finite element
discretization in a polygonal/polyhedron domain. After the formulation of the two methods,
we show the existence and uniqueness of the finite element approximations without restric-
tion on the data by using a technique based on the regularization-monotone-compactness.
Also, on the theoretical front, we study convergence of the finite element solution by deriving
a priori error estimates. It is then clear (see Theorem 5.1) that the error is dominated by the
interpolation error on the friction zone. This is a classical result for variational inequalities
of second kind (see [6, 7, 8, 9, 25, 27]). Thus one can say that the added terms do not
increase the convergence rate, but instead we have ignored the inf-sup condition which plays
a key role in mixed problems. Having in mind Theorem 5.1, it appears in particular that if
piecewise linear approximations are used for both the velocity and the pressure, then optimal
(sub-optimal) a priori error estimates for both GLS schemes are obtained depending on the
regularity of the solution of the continuous problem on the friction zone. Now, describing our
contribution on the computational side, we observe that the system of equations to be solved
is nonlinear. Hence iterative or incremental method should be formulated for the actual
computation of the solution. We formulate three iterative schemes namely; the projection-
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like algorithm, the alternating direction method of multiplier, and the primal dual active
set algorithm. One notes at this level that the formulation of both the projection-like algo-
rithm and the alternating direction method of multiplier borrow a lot from the presentation
in [27, 28], while the active set strategy emanate from [29]. The projection-like method is
based on the introduction of a new variable which permits to eliminate the inequality at the
expense of adding a new equation. Thus Uzawa type iteration is used for the computation
of the solution. The alternative direction method of multiplier and the active set strategy
are based on the introduction of a functional for which the characterization of the saddle
point is crucial. The iterative schemes discussed in this work make use of Lagrange mul-
tipliers with the common goal of “softening” the difficulties by introducing new unknowns.
The convergence analysis of the projection-like algorithm and the alternating direction of
multipliers formulated can be done by following the techniques presented in [27, 28], while
the convergence analysis of the active set strategy is done by following [30, 31]. The rest of
the paper is organized as follows:

• Section 2 is concerned with the governing equations and the continuous weak formula-
tion.

• Section 3 is devoted to the formulation of GLS methods.

• Section 4 is devoted to the existence theory of the GLS methods formulated within the
context of element approximations.

• Section 5 is about the error analysis together with convergence of GLS methods when
the discretization parameter h tends to zero.

• Section 6 and Section 7 are devoted to the formulation of iterative schemes.

• Section 8 is concerned with the validation via numerical simulations of the theoretical
findings and some conclusions are drawn in the last paragraph.

2 Governing equations and variational formulation

Let Ω ⊂ Rd, d=2,3 be an open bounded set with boundary ∂Ω assume to be Lipschitz-
continuous. We consider the steady incompressible Stokes equations modeled by the equa-
tions

−2µdiv ε(u) +∇p = f in Ω, (2.1)

divu = 0 in Ω , (2.2)

where u = (ui)
d
i=1 is the velocity, pressure p(x) and f(x) is the external body force applied to

the fluid, while µ is the kinematic viscosity and 2ε(u) = ∇u+ (∇u)T is the symmetric part
of the velocity gradient. These equations are complemented by boundary conditions. For
that purpose, we assume that ∂Ω is made of two components S and Γ, such that ∂Ω = S ∪ Γ,
with S ∩ Γ = ∅. We assume the homogeneous Dirichlet condition on Γ, that is

u = 0 on Γ . (2.3)

Γ is the porous or artificial boundary where the fluid is prescribed. On the other part of the
boundary S, we assume the impermeability condition

u · n = 0 on S , (2.4)

where n : S −→ Rd is the normal outward unit vector to S, and S is an impermeable solid
surface along which the fluid may slip. The force within the fluid is the Cauchy stress tensor
T given by the relation

T = 2µε(u)− pI on Ω ,

with I the d-dimensional identity matrix. In general for any vector w defined on ∂Ω, we
set wτ = w − (w · n)n. Thus, the tangential stress (Tn)τ stands for the projection of the
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normal stress into the corresponding tangent plane. Taking the scalar product of u and the
balance of linear momentum (2.1), we obtain∫

Ω

T : ε(u)dx+

∫
S

(−Tn)τ · uτ dσ =

∫
Ω

f · udx , (2.5)

with dσ being the surface measure associated to S. The expression on the left hand side
of (2.5) stand for the energy that is dissipated and transformed to other forms of energy.

The expression

∫
Ω

T : ε(u)dx is the dissipative energy mechanisms in bulk. We clearly

observe that

∫
Ω

T : ε(u)dx = 2µ

∫
Ω

|ε(u)|2 dx which is positive. The term

∫
S

(−Tn)τ ·uτ dσ
represent the dissipative energy on the boundary S. It is a non negative quantity. So we
need a functional relation between (Tn)τ and uτ for the dissipative energy on S to be
non negative. We note that if (Tn)τ is zero, then one obtains the perfect slip boundary
condition, while if the tangential velocity is zero, then one gets no-slip boundary condition.
On the other hand, if the tangential component is expressed in the form (Tn)τ + αuτ = 0,
with α ≥ 0, then one gets Navier’s slip boundary condition. In this text, we are interested
in threshold-slip (or stick-slip) boundary condition. Thus we let g : S −→ [0,∞) be a non-
negative function called threshold slip or barrier function. The stick-slip boundary condition
we consider in this work was formulated by Fujita [32, 33] and reads as follows:

If |(Tn)τ | < g ⇒ uτ = 0,

If |(Tn)τ | = g ⇒ uτ 6= 0 , and − (Tn)τ = g
uτ
|uτ |

 on S , (2.6)

where |v|2 = v · v is the Euclidean norm. We note that

∫
S

(−Tn)τ · uτ dσ =

∫
S

g |uτ | dσ

is positive. The stick-slip law (2.6) differ from the one formulated by Le Roux [34], which
reads

If |(Tn)τ | > g, then slip occurs and (Tn)τ = −(g + κ|uτ |)
uτ
|uτ |

If |(Tn)τ | ≤ g then no slip and uτ = 0 .
(2.7)

The most general relation between uτ and (Tn)τ is the implicit constitutive relation

ψ(uτ , (Tn)τ ) = 0 (2.8)

where ψ is function. We note that (2.6), or (2.7) are special cases of (2.8). For the mathemat-
ical setting of the problem, some notations need to be introduced and we refer to [35, 36]. We
use standard notation on Lebesgue and Sobolev spaces, (·, ·) denotes the L2 scalar product,
and ‖ · ‖ the L2 − norm. Having in mind the definition of the sub-differential, (2.6) reduces
to

for all vector v , g|vτ | − g|uτ | ≥ −(Tn)τ · (vτ − uτ ) on S . (2.9)

In order to introduce the functions spaces for the analysis of the boundary value (2.1)–(2.6),
we take once and for all that g ∈ L∞(S) and f ∈ L2(Ω)d. (2.5) is reduced to

2µ

∫
Ω

|ε(u)|2dx+

∫
S

g|uτ |dσ −
∫

Ω

p divudx =

∫
Ω

f · udx . (2.10)

We introduce from (2.10), (2.3), and (2.4), we the following functions spaces

V = {u ∈ H1(Ω)2, u|Γ = 0 , u · n|S = 0},

M = L2
0(Ω) =

{
q ∈ L2(Ω) with

∫
Ω

q dx = 0

}
.
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With the spaces V and M , one can introduce the weak formulation of the boundary value
(2.1)–(2.6) . We thus multiply (2.2) by q ∈ L2(Ω) and integrate over Ω. Next, we take the
dot product between (2.1) and v − u with v ∈ V, integrate the resulting equation over Ω,
apply Green’s formula and the boundary conditions (2.3), (2.4) and (2.9). We obtain the
following variational problem:

Find (u, p) ∈ V×M such that for all (v, q) ∈ V×M ,

a(u,v − u)− b(v − u, p) + j(v)− j(u) ≥ `(v − u) ,

b(u, q) = 0

(2.11)

where we used the identity
∑

1≤i,j≤d
εij(u)

∂vi
∂xj

=
∑

1≤i,j≤d

εij(u)εij(v) which is the consequence

of the symmetry of ε(u). We recall that

a(u,v) = 2µ

∫
Ω

ε(u) : ε(v)dx , b(v, q) =

∫
Ω

q div vdx, (2.12)

j(v) =

∫
S

g|vτ | dσ , `(v) =

∫
Ω

f · vdx ,

with A : B =
∑

1≤i,j≤d
AijBij .

Remark 2.1 In some contributions, the conservation of the momentum is expressed in
terms of the Laplacian of the velocity which gives rise to the bilinear form ã(u,v) = 2µ (∇v,∇u),
instead of a(·, ·) defined before. Although at a continuous level

divu = 0 implies that div ε(u) = ∆u,

from a modeling viewpoint it may be important to work with symmetric tensor. For instance,
the problem (2.1)—(2.6) gives directly the natural boundary condition in term of the force
(traction force) exerted by the fluid on its boundary.

It is worth recalling that the existence of solutions of (2.11) is well established in the literature
(see [37]). One needs in particular the following inf-sup condition to hold: there exists β
such that

β‖q‖ ≤ sup
06=v∈V

b(v, q)

‖v‖1
for all q ∈M . (2.13)

In fact (2.13) is obtained by observing that H1
0 (Ω)d ⊂ V and the pair (H1

0 (Ω)d,M) is inf-sup
stable (see [1, 2]), hence there exists γ such that

for all q ∈M , sup
0 6=v∈V

b(v, q)

‖v‖1
≥ sup

0 6=v∈H1
0 (Ω)d

b(v, q)

‖v‖1
≥ γ‖q‖ .

From the numerical point of view, (2.13) should also be satisfied in the finite element sub-
spaces and choosing equal order approximations for u and p, does not lead to a stable scheme.
The GLS is exactly designed to avoid the condition (2.13) by adding extra terms to the vari-
ational formulation. We discuss next the stabilization procedures for the utilization of equal
order approximations for the velocity and pressure within the finite element context.

3 Galerkin Least squares methods

3.1 First stabilized approach

We assume that Ω is a polygon when d = 2 and a polyhedron when d = 3, so that it can be
completely meshed. Now, we describe the discretization space. A regular (see Ciarlet [38])
family of triangulations (Th)h of Ω, is a set of closed non degenerate triangles or tetrahedra,
called elements, satisfying
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(i)

Ω =
⋃

1≤i≤M

Ki ;

(ii) The intersection of two distinct elements K in Th is either empty, a common vertex,
or an entire common edge or face;

(iii) the ratio of the diameter of an element K in Th to the diameter of its inscribed circle
or ball is bounded by a constant independent of h, this is to say that there exists a
constant σ, independent of h and K, such that

for all K ∈ Th,
hK
ρK

= σK ≤ σ, (3.1)

where hK is the diameter of K and ρK is the diameter of the circle (ball) inscribed in
K.

As usual, h stands for the maximum of the diameter of all elements of Th.
For each non-negative integer l and any K in Th, Pl(K) is the space of restrictions to K of
polynomials with d variables and total degree less than or equal to l. In what follows, c is a
generic constant which may vary from line to line but is always independent of h. For a given
triangulation Th, the velocity and pressure are approximated with continuous polynomials
of order l ≥ 1, that is

Vlh = {vh ∈ C(Ω)d ∩ V : for all K ∈ Th, vh|K ∈ Pl(K)d} ,
M l
h = {qh ∈M ∩ C(Ω), for all K ∈ Th, qh|K ∈ Pl(K)} .

(3.2)

We recall that for the choice given in (3.2), the discrete version of (2.13) does not hold as
pointed out in [1, 2]. Following [11], we introduce the augmented functional

Jα(v, q) =
1

2
a(v,v) + j(v)− b(v, q)− `(v)

− α
∑
K∈Th

h2
K

2

∫
K

|2µdiv ε(v)−∇q + f |2 dx .
(3.3)

The saddle point problem associated with Jα(·, ·) reads:

Find u, p ∈ V×M such that

Jα(u, q) ≤ Jα(u, p) ≤ Jα(v, q) for all v, q ∈ V×M .
(3.4)

With the problem (3.4) in mind, the corresponding finite element problem reads as follows:
Find (uh, ph) ∈ Vlh ×M l

h such that for all (v, q) ∈ Vlh ×M l
h,

A(uh,v − uh) +B(v − uh, ph) + j(v)− j(uh) ≥ `1(v − uh) ,

B(uh, q)− C(q, ph) = `2(q) ,
(3.5)

with (see (2.12))

A(u,v) = a(u,v)− α
∑
K

h2
K

∫
K

2µdiv ε(u) · 2µdiv ε(v)dx,

B(v, q) = −b(v, q) + α
∑
K

h2
K

∫
K

2µdiv ε(v) · ∇qdx

C(p, q) = α
∑
K

h2
K

∫
K

∇p · ∇qdx ,

`1(v) = `(v) + α
∑
K

h2
K

∫
K

f · 2µdiv ε(v)dx ,

`2(q) = −α
∑
K

h2
K

∫
K

f · ∇qdx .
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Remark 3.1 One notes that if (u, p) is the solution of (2.11) with u ∈ H2(Ω) and p ∈
H1(Ω) then (3.5) is reduced to

a(u,v)− b(v, p) + j(v)− j(u) ≥ `(v − u) ,

b(u, q) = 0 .

3.2 Second stabilized approach

One notes from (3.5) that the crucial term added that permits to avoid the compatibility
condition between the velocity and the pressure is the expression C(p, q). The following
formulation can be regarded as a reduced GLS (see [17] ) because it has less stabilizing
expressions. It reads as follows: find (uh, ph) ∈ Vlh ×M l

h such that for all (v, q) ∈ Vlh ×M l
h{

a(uh,v − uh)− b(v − uh, ph) + j(v)− j(uh) ≥ `(v − uh) ,

B(uh, q)− C(q, ph) = `2(q) .
(3.6)

Remark 3.2 The second equation in fact is

−b(uh, q) + α
∑
K∈Th

∫
K

h2
K (2µdiv ε(uh)−∇ph + f) · ∇qdx = 0 .

Thus if the solution (u, p) of (2.11) belong to H2(Ω) × H1(Ω), then (u, p) solves (3.6)
regardless of q ∈M l

h.

Remark 3.3 (3.6) has less terms than (3.5), hence computationally, it is more attractive.
(3.5) has the symmetry structure of the original system for any degree of approximation and
can be re-written as optimization of a lower semi-continuous, and non-differentiable convex
functional. Thus its belong to “convex analysis” for which one has a numerous algorithms
for its resolution. In conclusion, these two choices present some interesting aspects.

We study next the existence theory of problems (3.6) and (3.5).

4 Existence of solutions

In this section, we will address the solvability of both (3.5) and (3.6). In what follows, c is a
positive constant that may vary from one line to the next but always independent of h. The
following inverse inequality will be used throughout∑

K∈Th

h2
K‖ div ε(v)‖2K ≤ c2I‖ε(v)‖2 for all v ∈ Vlh . (4.1)

We introduce the discrete-norm

||q||2h =
∑
K∈Th

h2
K‖∇q‖2K , for q ∈M l

h .

The continuity requirement in M l
h, together with the zero mean-value condition easily imply

that this is a norm on M l
h for which the following inverse inequality is valid: there exists c

independent of h such that

||q||h ≤ c‖q‖ for all q ∈M l
h . (4.2)

We claim that
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Proposition 4.1 There are positive constant c1, c2, c3 independent of h such that for all
(v,u, q, p) ∈ Vlh × Vlh ×M l

h ×M l
h

A(u,v) ≤ c1‖u‖1‖v‖1 ,
B(v, q) ≤ c2‖v‖1‖q‖ ,
C(p, q) ≤ α‖p‖h‖q‖h ≤ c3‖p‖‖q‖ ,

Let the stabilization parameter α such that α < (2µc2I)
−1 with cI given by (4.1). Then one

can find a positive constant c4 independent of h such that for all v ∈ Vlh

A(v,v) ≥ c4‖v‖21 .

Proof. Using Cauchy-Schwarz’s inequality, Hölder’s inequality together with (4.1), we ob-
tain

A(u,v) ≤ 2µ‖ε(u)‖‖ε(v)‖+ 4µ2α

(∑
K

h2
K‖div ε(v)‖2K

)1/2(∑
K

h2
K‖ div ε(u)‖2K

)1/2

≤ 2µ‖ε(u)‖‖ε(v)‖+ 4µ2αc‖ε(v)‖‖ε(u)‖
≤ (2µ+ 4µ2αc)‖v‖1‖u‖1 .

Next from Cauchy-Schwarz’s inequality, Hölder’s inequality together with (4.2), we obtain

B(v, q) ≤ ‖v‖1‖q‖+ 2µα

(∑
K

h2
K‖ div ε(v)‖2

)1/2(∑
K

h2
K‖∇q‖2K

)1/2

≤ (1 + 2cµα)‖v‖1‖q‖ .

Thirdly Cauchy-Schwarz’s inequality, Hölder’s inequality together with (4.2), gives

C(p, q) ≤ α‖p‖h‖q‖h ≤ c3‖p‖‖q‖ .

Finally

A(u,u) ≥ 2µ‖ε(u)‖2 − 4c2Iµ
2α‖ε(u)‖2

≥ 2µ(1− 2c2Iµα)‖ε(u)‖2 .

So, it suffice to take α such that α < (2µc2I)
−1 with cI given by (4.1) and apply Korn’s

inequality. �

Remark 4.1 It is manifest that for piecewise linear approximation, we have coercivity of
A(·, ·) without restriction on the stability parameter α because div ε(uh) = 0.

The next result is the a priori bounds of the solutions of (3.5). In fact we claim that

Proposition 4.2 Let Th satisfies (3.1), and assume that for d = 3, the boundary ∂Ω is
Lipschitz-continuous. Let the stabilization parameter α satisfies the inequality α < (2µc2I)

−1

with cI given by (4.1). Let (uh, ph) be the solution of (3.5). Then, there is c independent of
h such that

‖uh‖21 + ‖ph‖2h + ‖ph‖2 + j(uh) ≤ c‖f‖2 .

Proof. Recall that (uh, ph) is solution of{
for all (vh, qh) ∈ Vlh ×M l

h ,

K(uh, ph;vh − uh, qh) + j(vh)− j(uh) ≥ `1(vh − uh)− `2(qh) .
(4.3)
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with K(u, p;v, q) = A(u,v) + B(v, p) − B(u, q) + C(p, q). We take vh in (4.3) such that
vh − uh = ±wh ∈ Vlh ∩ {vh|S = 0} = Wh. Thus one obtains{

for all (wh, qh) ∈Wh ×M l
h ,

K(uh, ph;wh, qh) = `1(wh)− `2(qh) .

Next, from [4] (see Lemma 3.2), there exists c independent of h such that

c
(
‖uh‖21 + ‖ph‖2

)1/2 ≤ sup
06=(wh,qh)∈Wh×M l

h

K(uh, ph;wh, qh)

(‖wh‖21 + ‖qh‖2)
1/2

≤ sup
0 6=(wh,qh)∈Wh×M l

h

`1(wh)− `2(qh)

(‖wh‖21 + ‖qh‖2)
1/2

.

Using Cauchy-Schwarz’s inequality,(4.1), (4.2) and the fact that Th satisfies (3.1), one gets

`1(wh)− `2(qh) ≤‖f‖‖wh‖1 + 2µαcI

(∑
K

h2
K‖f‖2K

)1/2

‖wh‖1 + αc

(∑
K

h2
K‖f‖2K

)1/2

‖qh‖

≤c‖f‖
(
‖wh‖21 + ‖qh‖2

)1/2
.

Hence
‖uh‖21 + ‖ph‖2 ≤ c‖f‖2 . (4.4)

Next, we take qh = ph, vh = 0 and vh = 2uh in (4.3) which yields

A(uh,uh) + C(ph, ph) + j(uh) = `1(uh)− `2(ph) .

Now applying proposition 4.1, Cauchy-Schwarz’s inequality,(4.1), (4.2), Young’s inequality
and the fact that Th satisfies (3.1), one gets

‖uh‖21 + ‖ph‖2h + j(uh) ≤ c‖f‖2 ,

which together with (4.4) leads to the asserted result. �

The variational problem (3.5) is a mixed variational inequality of second kind. Its existence
theory will be analysed by making use of; regularization, properties of monotone operator,
a priori estimates and passage to the limit. We claim that

Proposition 4.3 Assume that the mesh Th satisfies (3.1), and let the stabilization parameter
α such that α < (2µc2I)

−1 with cI given by (4.1). Then the variational problem (3.5) admits

exactly one solution (uh, ph) in Vlh ×M l
h.

Proof. It is done in three steps.
Step 1: Regularization. The functional j is non differentiable at zero. Let ε > 0, ap-
proaching zero and define the functional jε : Vlh −→ R as follows

jε(v) =

∫
S

g
√
|vτ |2 + ε2 dσ.

One observes that

lim
ε→0

(jε(v)− j(v)) = lim
ε→0

ε2

∫
S

g√
|vτ |2 + ε2 + |vτ |

dσ = 0 .

The functional jε is lower semi-continuous and twice Gateaux-differentiable with

Djε(u) · v =

∫
S

g
uτ · vτ√
|uτ |2 + ε2

dσ ,

D2jε(u)(v,w) =

∫
S

g
(vτ ·wτ )(|uτ |2 + ε2)− (uτ ·wτ )(uτ · vτ )

(|uτ |2 + ε2)3/2
dσ .

(4.5)
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With (4.5) in mind, one easily show that D2jε(u) is symmetric that is

D2jε(u)(v,w) = D2jε(u)(w,v) for all v,w ,

and positive definite that is

D2jε(u)(v,v) ≥ 0 for all v .

Also because jε is convex and differentiable, then Djε is monotone that is

〈Djε(u)−Djε(v),u− v〉 ≥ 0 for all v,u ∈ V . (4.6)

The regularized problem reads (with obvious notation)
Find (uε, pε) ∈ Vlh ×M l

h such that for all (v, q) ∈ Vlh ×M l
h,

A(uε,v − uε) +B(v − uε, pε) + jε(v)− jε(uε) ≥ `1(v − uε) ,

B(uε, q)− C(q, pε) = `2(q) .

(4.7)

Since jε is differentiable, then (4.7) is equivalent to the variational problem (see [3] where
similar examples are treated)

Find (uε, pε) ∈ Vlh ×M l
h such that for all (v, q) ∈ Vlh ×M l

h,

A(uε,v) +B(v, pε) +Djε(u
ε) · v = `1(v) ,

B(uε, q)− C(q, pε) = `2(q) ,

(4.8)

which is re-written as follows:{
Find (uε, pε) ∈ Vlh ×M l

h such that for all (v, q) ∈ Vlh ×M l
h

A(uε,v) +B(v, pε) +Djε(u
ε) · v −B(uε, q) + C(q, pε) = `1(v)− `2(q) .

(4.9)

(4.9) is a nonlinear monotone problem and to study it, it is convenient to introduce the
mapping (u, p) −→ H(u, p) such that

〈H(u, p); (v, q)〉 = A(u,v) +B(v, p) +Djε(u) · v −B(u, q) + C(q, p) .

Hence for the existence of solutions of (4.9), we need to show the following conditions (see
[39], Chap 2)

(a) H is monotone, i.e for all u,v ∈ Vlh × Vlh, and p, q ∈M l
h ×M l

h

〈H(u, p)−H(v, q); (u− v, p− q)〉 ≥ 0 .

Indeed one has

〈H(u, p)−H(v, q); (u− v, p− q)〉 =A(u− v,u− v) + 〈Djε(u)−Djε(v),u− v〉
+ C(p− q, p− q)

which is non negative because of proposition 4.1, (4.6) and C(p, p) is non-negative.

(b) H is coercive meaning that for all (v, q) ∈ Vlh ×M l
h(

1

(‖v‖21 + ‖q‖2h)1/2
〈H(v, q); (v, q)〉

)
→∞ if (‖v‖21 + ‖q‖2h)1/2 →∞ .

Indeed from (4.6), α < (2µc2I)
−1 and using Korn’s inequality

〈H(v, q); (v, q)〉 = A(v,v) + C(q, q) + 〈Djε(v),v〉
≥ 2µ(1− 2µαc2I)‖ε(v)‖2 + α‖q‖2h
≥ min

(
2µ(1− 2µαc2I), α

) (
‖v‖21 + ‖q‖2h

)
from which we deduce the coercivity of H.
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(c) H is hemi-continuous in Vlh ×M l
h, i.e for u,v ∈ Vlh × Vlh, and p, q ∈ M l

h ×M l
h the

mapping

t −→ 〈H(u+ tv, p+ tq); (v, q)〉 is continuous from R into R .

Indeed

〈H(u+ t1v, p+ t1q)−H(u+ t2v, p+ t2q); (v, q)〉
=(t1 − t2) [A(v,v) +B(v, p)−B(v, q) + C(q, q)] + (Djε(u+ t1v)−Djε(u+ t2v))v

=(t1 − t2)

[
A(v,v) + C(q, q) +B(v, p)−B(v, q) +

∫ 1

0

D2jε(u+ t2v − θ(t2 − t1)v)(v,v)dθ

]
,

which tends to zero with t1 − t2 because u,v, p, q are fixed.

We then conclude partially that (4.9) has a solution (uεh, p
ε
h) ∈ Vlh ×M l

h. But because H is
strictly monotone,then the solution (uεh, p

ε
h) is unique.

In the next lines, we study the limit when ε approaches zero of (uεh, p
ε
h) solution of (4.9).

Step 2: a priori estimates and passage to the limit. The a priori estimates obtained
in proposition 4.2 are valid due to the equivalence between (4.8) and (4.7). Hence

‖uεh‖21 + ‖pεh‖2 +
∑
K∈Th

h2
K

∫
K

|∇pεh|2dx+ j(uεh) ≤ c‖f‖2 .

We deduce that the sequences (uεh)ε and (pεh)ε are respectively H1 and L2 bounded. More-
over one has

h2
K‖∇pεh‖2K <

∑
K∈Th

h2
K

∫
K

|∇pεh|2dx ≤ c‖f‖2 .

Thus, for hK fixed, one has

‖∇pεh‖2 =
∑
K∈Th

‖∇pεh‖2K ≤
∑
K∈Th

c

h2
K

‖f‖2 <∞ .

Hence we can find a subsequence, denoted also (uεh, p
ε
h) ∈ Vlh ×M l

h, such that

uεh → uh weakly in H1(Ω)

pεh → ph weakly in H1(Ω) .
(4.10)

One notes that the regularized problem (4.7) is re-written as follows

for all (v, q) ∈ Vlh ×M l
h ,

A(uεh,u
ε
h) +B(uεh, p

ε
h) + jε(u

ε
h)

≤ A(uεh,v) +B(v, pεh) + jε(v)− `1(v − uεh) (4.11)

B(uεh, q)− C(q, pεh) = `2(q) . (4.12)

The weak convergence properties in (4.10) allows one to pass to the limit in (4.12) and one
obtains

for all q ∈M l
h, B(uh, q)− C(q, ph) = `2(q) . (4.13)

Owing to the compactness of the imbedding of H1(Ω) into L4(Ω), there exits a subsequence,
still denoted by (uεh), such that

uεh → uh weakly in H1(Ω) and uεh → uh strongly in L4(Ω) . (4.14)

For the right hand side of (4.11), one notes that jε → j when ε → 0 together with (4.10)
leads to

lim
ε

inf [A(uεh,v) +B(v, pεh) + jε(v)− `1(v − uεh)]

≤A(uh,v) +B(v, ph) + j(v)− `1(v − uh) .
(4.15)
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For the left hand side of (4.11), the convergence properties (4.14), (4.10) and the fact that
jε → j when ε→ 0 yield

A(uh,uh) +B(uh, ph) + j(uh) ≤ lim
ε

inf [A(uεh,u
ε
h) +B(uεh, p

ε
h) + jε(u

ε
h)] . (4.16)

Putting together (4.15) and (4.16) implies that{
for all v ∈ Vlh
A(uh,uh − v) +B(uh − v, ph) + j(uh)− j(v) ≤ `1(uh − v) .

(4.17)

Whence the existence of solutions of (3.5) which is (4.13) and (4.17).

Having constructed the weak solution (uh, ph) of (3.5), we now address its unique solvability.
Step 3: uniqueness. Let (u1, p1) and (u2, p2) be the solutions of (3.5). A classical algebraic
manipulation reveals that{

A(u1 − u2,u1 − u2)−B(u2 − u1, p1 − p2) ≤ 0

C(p1 − p2, p1 − p2) +B(u2 − u1, p1 − p2) = 0 .

We then deduce that

A(u1 − u2,u1 − u2) + C(p1 − p2, p1 − p2) ≤ 0 .

So by coercivity of A(·, ·) one obtains

c3‖u1 − u2‖21 + ‖p1 − p2‖2h ≤ 0

which implies that u1 = u2 and p1− p2 = cK in each element K of Th. Having in mind that
p1 − p2 is an element of M l

h, hence continuous, it appears that cK = c, the same constant

throughout. Next, knowing that

∫
Ω

(p1 − p2) = 0, we deduce that c = 0 and p1 = p2. Hence

the solution is unique. �

We now turn to the existence theory of (3.6) and claim that

Proposition 4.4 Assume that the mesh Th satisfies (3.1). Let α the stabilization parameter
satisfying the relation α < (2µc2I)

−1 with cI given by (4.1). Then the variational problem

(3.6) admits exactly one solution (uh, ph) ∈ Vlh × M l
h and there is a positive constant c

independent of h such that

‖uh‖21 + ‖ph‖2h + ‖ph‖2 + j(uh) ≤ c‖f‖2 . (4.18)

Proof. We start with the a priori estimate.
We take respectively vh = 0 and 2uh in (3.6), compare the two inequalities and deduce that
(with q = ph)

a(uh,uh)− b(uh, ph) + j(uh) = `(uh) ,

−b(uh, ph) + α
∑
K

h2
K

∫
K

2µdiv ε(uh) · ∇phdx− α‖ph‖2h = −α
∑
K

h2
K

∫
K

f · ∇phdx .
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Subtracting these equations, and using standard inequalities together with (3.1), one gets

2µ‖ε(uh)‖2 + α‖ph‖2h + j(uh)

=α
∑
K

h2
K

∫
K

2µdiv ε(uh) · ∇phdx+ `(uh) + α
∑
K

h2
K

∫
K

f · ∇phdx

≤2µα

(∑
K

h2
K

∫
K

|div ε(uh)|2dx

)1/2(∑
K

h2
K

∫
K

|∇ph|2dx

)1/2

+ ‖f‖‖uh‖

+α

(∑
K

h2
K

∫
K

|f |2dx

)1/2(∑
K

h2
K

∫
K

|∇ph|2dx

)1/2

≤2µαcI‖ε(uh)‖‖ph‖h + c‖f‖‖ε(uh)‖+ αc‖f‖‖ph‖h .

We apply Young’s inequality with α < (2µc2I)
−1 and αcI < γ1 < (2µcI)

−1 and obtain

µ

(
1− αcI

γ1

)
‖ε(uh)‖2 + α

(
1

2
− µcIγ1

)
‖ph‖2h + j(uh) ≤ c

µ
‖f‖2 + αc‖f‖2 .

The L2 estimate on the pressure is obtained as in Proposition 4.2 and will not be repeated
here.
To proof the existence of solutions of (3.6), we adopt the same strategy used to prove propo-
sition 4.3. Thus we introduce the regularized problem associated with (3.6) which reads:

Find (uε, pε) ∈ Vlh ×M l
h

such that for all (v, q) ∈ Vlh ×M l
h

a(uε,v)− b(v, pε) +Djε(u
ε) · v = `(v) ,

B(uε, q)− C(q, pε) = `2(q) .

(4.19)

We define the mapping (u, p) −→ K(u, p) such that

〈K(u, p); (v, q)〉 = a(u,v)− b(v, p) +Djε(u) · v −B(u, q) + C(q, p) ,

K is monotone. Indeed, let u1,u2,v elements of Vlh and p1, p2, q elements of M l
h; we have

(K(u1, p1)−K(u2, p2); (u1 − u2, p1 − p2))

=a(u1 − u2,u1 − u2) + (Djε(u1)−Djε(u2)) · (u1 − u2)︸ ︷︷ ︸
≥0

+C(p1 − p2, p1 − p2)

− α
∑
K

h2
K

∫
K

2µdivε(u1 − u2) · ∇(p1 − p2)

≥ 2µ ‖ε(u1 − u2)‖2 + α ‖p1 − p2‖2h − 2αµcI ‖ε(u1 − u2)‖ ‖p1 − p2‖h
≥ 2µ

(
1− 2αµc2I

)
‖ε(u1 − u2)‖2 +

α

2
‖p1 − p2‖2h

which is non-negative as long as α < (2µc2I)
−1.

K is coercive. Indeed, let v, q elements of Vlh ×M l
h, one has

K(v, q)(v, q) =a(v,v) +Djε(v) · v︸ ︷︷ ︸
≥0

+C(q, q)− α
∑
K

h2
K

∫
K

2µdivε(v) · ∇q

≥ 2µ ‖ε(v)‖2 + α ‖q‖2h − 2αµcI ‖ε(v)‖ ‖q‖h
≥ 2µ

(
1− 2αµc2I

)
‖ε(v)‖2 +

α

2
‖q‖2h .
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K is hemi-continuous in Vlh ×M l
h. We invite the reader to see similar manipulations in

Proposition 4.3. We then conclude partially that (4.19) has a solution (uεh, p
ε
h) ∈ Vlh ×M l

h.
But because K is strictly monotone, then the solution (uεh, p

ε
h) is unique.

Next, the passage to the limit when ε approaches zero of (uεh, p
ε
h), solution of (4.19) is done

using the bound (see how (4.18) is derived)

‖uεh‖21 + ‖pεh‖2h + ‖pεh‖2 + j(uεh) ≤ c‖f‖2 ,

and follow to the line the reasoning adopted in the proof of Proposition 4.3. Thus we have
constructed the solutions of (3.6).
The unique solvability of (3.6) is obtained as Step 3 in Proposition 4.3. �

Remark 4.2 For l ≥ 2, (3.5) and (3.6) are stable only for some values of α (see proposition
4.1 and proposition 4.4). But if l = 1, then these schemes are the same and stable for all
values of α.

5 A priori error estimates

The goal of the section is to establish the convergence by estimating the difference between
the continuous solution (u, p) and the finite element solution (uh, ph).
We first claim that

Theorem 5.1 Let the mesh Th satisfies (3.1), and assume that for d = 3, the boundary ∂Ω is
Lipschitz-continuous. Let (u, p) ∈ V×M be the solution of (2.11). Let (uh, ph) ∈ Vlh×M l

h the
solution of (3.5). Let α be the stabilization parameter satisfying the inequality α < (2µc2I)

−1,
with cI given by (4.1). Then, there is a positive constant c independent of h such that for
all (vh, qh) ∈ Vlh ×M l

h

‖uh − u‖1 + ‖ph − p‖h ≤ c‖g‖1/2L∞(S)‖vh,τ − uτ ‖
1/2
L1(S)

+ c (‖vh − u‖1 + h‖vh − u‖2 + ‖qh − p‖+ h‖∇(qh − p)‖) .

Proof. Let (vh, qh) in Vlh ×M l
h, having in mind K(· , ·) defined in (4.3), then from propo-

sition 4.1 there exists c independent of h such that

c
(
‖uh − vh‖21 + ‖ph − qh‖2h

)
≤K(uh − vh, ph − qh;uh − vh, ph − qh)

=K(uh − u, ph − q;uh − vh, ph − qh) +K(u− vh, p− qh;uh − vh, ph − qh)

(5.1)

We now estimate the first term on the right hand side of (5.1). We recall that (u, p) satisfies{
for all (v, q) ∈ V×M ,

K(u, p;v − u, q) + j(v)− j(u) ≥ `1(v − u)− `2(q) .

We take successively (v, q) =

(
uh,

1

2
ph −

1

2
qh

)
, and (v, q) =

(
2u− vh,

1

2
ph −

1

2
qh

)
, add

the resulting equations and obtain

K(u, p;uh − vh, ph − qh) + j(uh)− 2j(u) + j(2u− vh) ≥ `1(uh − vh)− `2(ph − qh) . (5.2)

We consider (4.3) with qh replaced by −ph + qh, we add the resulting equation with (5.2)
and obtain

K(uh − u, ph − p;uh − vh, ph − qh) ≤j(vh)− j(u) + j(2u− vh)− j(u)

≤2j(vh − u) .
(5.3)
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Returning to (5.1) with (5.3), one obtains

c
(
‖uh − vh‖21 + ‖ph − qh‖2h

)
≤ 2j(vh − u) +K(u− vh, p− qh;uh − vh, ph − qh)

≤c‖g‖L∞(S)‖vh,τ − uτ ‖L1(S) + c
(
‖vh − u‖21 + h2‖vh − u‖22 + ‖qh − p‖2 + h2‖∇(qh − p)‖2

)1/2
×
(
‖vh − uh‖21 + ‖qh − ph‖2h

)1/2
,

which by Young’s inequality gives

‖uh − vh‖21 + ‖ph − qh‖2h ≤ c‖g‖L∞(S)‖vh,τ − uτ ‖L1(S) + c‖vh − u‖21 + ch2‖vh − u‖22
+ c‖qh − p‖2 + ch2‖∇(qh − p)‖2 .

(5.4)
The asserted result follows after application of the triangle’s inequality. �

Remark 5.1 It should be noted that the consistency argument has not been used in the proof
of Theorem 5.1. Similar arguments are used in [2, 10] to derive a priori error estimates for
a class of mixed problems with Dirichlet boundary condition. For Stokes equations under
Dirichlet boundary condition, GLS methods were formulated and analysed in [4, 5], and
convergence is obtained if consistency is required.

Remark 5.2 If (uh, ph) are approximated by piecewise linear functions, then for all values
of α, the error estimate becomes

‖uh − u‖1 + ‖ph − p‖h ≤ c‖g‖1/2L∞(S)‖vh,τ − uτ ‖
1/2
L1(S) + ch‖u‖2

+ c (‖vh − u‖1 + ‖qh − p‖+ h‖∇(qh − p)‖) .

Using interpolation operators constructed by V. Girault and F. Hecht [40, Chap 5] to take
into account the slip boundary condition, we have:
• If the solution is such that uτ |S ∈ H2(S), and (u, p) ∈H2(Ω)×H1(Ω)), then

‖vh,τ − uτ ‖L1(S) ≤ c‖uτ − vh,τ ‖S ≤ ch2‖uτ ‖2,S .

Thus
‖u− uh‖1 + ‖p− ph‖h ≤ c h .

• If the solution (u, p) ∈H2(Ω)×H1(Ω), then from [41, p.39] and 1 ≤ p <∞, there exists
c such that

‖v‖Lp(∂Ω) ≤ c‖v‖
1−1/p
Lp(Ω)‖v‖

1/p
W 1,p(Ω) , for all v ∈W 1,p(Ω) .

Hence
‖u− uh‖1 + ‖p− ph‖h ≤ ch3/4 .

It should be noted that these results are not new, and confirmed results obtained before (see
[6, 7, 8, 9]). We can also conclude at this level that the stabilization procedure do not change
the convergence rate, but rather we have the possibility to use a larger class of finite element
approximations.

Remark 5.3 Let (uh, ph) ∈ Vlh × M l
h the solution of (3.6). Given the assumptions of

theorem 5.1, then there is a positive constant c independent of h such that for all (vh, qh) ∈
Vlh ×M l

h

‖uh − u‖1 + ‖ph − p‖h ≤ c‖g‖1/2L∞(S)‖vh,τ − uτ ‖
1/2
L1(S)

+ c (‖vh − u‖1 + ‖qh − p‖+ h‖∇(qh − p)‖) .

Theorem 5.1 is concerned with the mesh dependent norm on the pressure and the question
we answer next is to know whether it is possible to have a control on the pressure with the
L2 norm. For that purpose, we claim that
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Theorem 5.2 Assume that the mesh Th satisfies (3.1), and assume that for d = 3, the
boundary ∂Ω is Lipschitz-continuous. Let (u, p) ∈ V × M be the solution of (2.11). Let
(uh, ph) ∈ Vlh ×M l

h the solution of (3.5). Let α be the stabilization parameter satisfying
the relation α < (2µc2I)

−1 with with cI given by (4.1). Then there is a positive constant c

independent of h such that for all (vh, qh) ∈ Vlh ×M l
h

‖ph − p‖ ≤ c‖g‖1/2L∞(S)‖vh,τ − uτ ‖
1/2
L1(S) + c‖vh − u‖1 + ch‖vh − u‖2 + c‖qh − p‖

+ch‖∇(qh − p)‖+ ch‖qh − p‖ .

Proof.
We recall that (u, p) and (uh, ph) satisfy for all (v,vh) ∈ V× Vlh{

A(u,v − u) +B(v − u, p) + j(v)− j(u) ≥ `1(v − u)

A(uh,vh − uh) +B(vh − uh, ph) + j(vh)− j(uh) ≥ `1(vh − uh) .

Let w ∈ H1
0 (Ω)d, and H1

0h(Ω)d the conforming finite element space approximating H1
0 (Ω)d.

We take v − u = ±w and vh − uh = ±wh. Thus one obtains{
A(u,w) +B(w, p) = `1(w)

A(uh,wh) +B(wh, ph) = `1(wh) ,

which implies that (wh ∈ H1
0h(Ω)d ⊂ H1

0 (Ω)d)

A(uh − u,wh) = B(wh, p− ph)

which by linearity gives

B(wh, qh − ph) = B(wh, qh − p) +A(uh − u,wh) . (5.5)

From [4] (see Lemma 3.2), there exists c1, c1 independent of h such that

c1‖ph − qh‖ ≤c2‖ph − qh‖h + sup
06=wh∈H1

0h(Ω)d

(divwh, ph − qh)

‖wh‖1

which together with (5.5), the definition of B(·, ·), standard inequalities and (5.4) yields

‖ph − qh‖
≤c‖ph − qh‖h + c‖qh − p‖+ ch‖qh − p‖+ c‖uh − vh‖1 + c‖vh − u‖1 + ch‖vh − u‖2
≤c‖g‖1/2L∞(S)‖vh,τ − uτ ‖

1/2
L1(S) + c‖vh − u‖1 + ch‖vh − u‖2 + c‖qh − p‖+ ch‖∇(qh − p)‖

+ ch‖qh − p‖ .

The asserted result is obtained after application of the inequality of the triangle. �
The next sections are concerned with the solution strategy for (3.5) and (3.6), and their
numerical simulations. We assume that both the velocity and pressure are approximated
by linear piecewise functions. Hence problem (3.5) and (3.6) coincide. The problem (3.5)
is a mixed elliptic variational inequalities of second kind for which several approaches are
available in the literature (see [27, 28], or more recently [30, 42]) for its resolution. But in
this work we propose to solve it with the following strategies

(i) Projection-like method based on the introduction of a Lagrange multiplier field.

(ii) Alternative direction method of multiplier associated with the augmented Lagrangian
method based on the introduction of a new variable aiming to decouple the velocity
u from its tangential part uτ , and a Lagrange multiplier field aiming to enforce the
relation uτ − φ = 0.

(iii) Active set approach associated with the augmented Lagrangian method based on the
introduction of Lagrange multipliers link to the constraints u · n = 0 and divu = 0.
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6 Dual approximation methods

6.1 Projection-like algorithm

This approach relies on the equivalence between (3.5) and the following one: there exists a
vector value λh ∈ Λ such that

for all (v, q) ∈ V1
h ×M1

h ,

a(uh,v) + b(v, ph) +

∫
S

gλh · vτ = `(v),

b(uh, q)− C(q, ph) = `2(q) ,

uτ ,h · λh = |uτ ,h| a.e. in S,

(6.1)

with
Λ = {α|α ∈ L∞(S) , |α| ≤ 1 a.e. in S} .

At this step, it is worth noting that one of the difficulties in implementing (6.1) is to enforce
the relation λh ·uτ ,h = |uτ ,h| a.e. in S. We provide next an equivalent characterization of
that relation for a better derivation of iterative schemes. We claim that

Lemma 6.1 [27] Given that g is non-negative, the following problems are equivalent

(a) Find λ ∈ Λ such that λ · uτ = |uτ | a.e. in S,

(b) Find λ ∈ Λ such that

∫
S

guτ · (µ− λ)dσ ≤ 0 for all µ ∈ Λ .

(c) λ = PΛ(λ+ γguτ ) for all γ > 0 ,

with

PΛ : L2(S) −→ Λ , PΛ(α)(x) =
α(x)

max (1, |α(x)|)
.

Using Lemma 6.1, we formulate the following equivalent problem more suitable for the deriva-
tion of iterative methods

Find (uh, ph, λh) ∈ V1
h ×M1

h × Λ such that ,

for all (v, q, ρ) ∈ V1
h ×M1

h and all γ > 0

a(uh,v) + b(v, ph) +

∫
S

gλh · vτ = `(v),

b(uh, q)− C(q, ph) = `2(q) ,

λh = PΛ(λh + γguτ ,h) a.e. in S .

(6.2)

From (6.2), we consider the Algorithm 1 based on Uzawa iteration
clearpage

Remark 6.1 Proving the convergence of Algorithm 1 (for γ > 0 and sufficiently small) is a
classical exercise and we refer the interested reader to [27, 28]. Note that the equations for
GLS 2 and GLS 1 are identical when using piecewise linear elements because div ε(v) = 0.

6.2 Alternating Direction Method of Multiplier (ADMM)

With piecewise linear polynomial approximation, i.e. with the finite element pair P1/P1,
Lagrangian functional (3.3) can be simplified. Indeed, with P1 finite element, the additional
stabilization terms involving derivatives of order greater than one vanish and we obtain

Jα(v, q) =
1

2
a(v,v)− `(v) + j(v)− b(v, q)− C(q, q)− `2(q) . (6.3)

To derive ADMM algorithm for the numerical approximation of (6.3), we introduce an
auxiliary variable φ on S and we replace Jα by the following augmented Lagrangian functional
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Algorithm 1 : Uzawa iterative algorithm

Initialization: Given λ0
h = (0, 1) ∈ Λ, we compute (u0

h, p
0
h) such that

for all (v, q) ∈ Vh ×Mh,

a(u0
h,v) + b(v, p0

h) = `(v)−
∫
S
gλ0

h · vτ ,

b(u0
h, q)− C(q, p0

h) = `2(q) .

Iteration k ≥ 0 By induction, knowing {uk
h, p

k
h,λ

k
h} , we compute {uk+1

h , pk+1
h ,λk+1

h } itera-
tively as follows.

Step 1: For all (v, q) ∈ V1
h ×M1

h , solve

a(uk+1
h ,v) + b(v, pk+1

h ) = `(v)−
∫
S
gλk

h · vτ dσ ,

b(uk+1
h , q)− C(q, pk+1

h ) = `2(q) .

Step 2: For γ > 0, compute the Lagrange multiplier

λk+1
h = PΛ(λk

h + γguk+1
τ ,h ) .

Lrα(v, q,φ,µ) =
1

2
a(v,v)− `(v) + j(φ)− b(v, q)− C(q, q)− `2(q)

+ (µ,vτ )S +
r

2
‖ φ− vτ ‖2S .

The idea is to separate the non-differentiable part of the problem (i.e. j) from the differen-
tiable part and to use block relaxation scheme as follows

(uk+1, pp+1) = arg min
v

max
q
Lrα(v, q,φk,λk) , (6.4)

φk+1 = arg min
ψ
Lrα(uk+1, pk+1, ψ, λk) , (6.5)

λk+1 = λk + r(φk+1 − uk+1
τ ) .

Subproblem (6.4) is equivalent to the Stokes problem with tangential traction on S, i.e.

ar(u
k+1,v)− b(v, pk+1) = `(v) + (rφk − λk,vτ )S , ∀v

−b(uk+1, q)− C(pk+1, q) = `2(q), ∀q

where
ar(u

k+1,v) = a(uk+1,v) + r(uk+1
τ ,vτ )S .

Subproblem (6.5) can be solved analytically using Fenchel duality theory, and we get
(see, e.g., [42])

φk+1 =
1

r
max(0, ‖ λk − rφk ‖ −g)

λk − rφk

‖ λk − rφk ‖
.

Gathering the results above, we obtain Algorithm 2. We iterate until the relative error
in (uk, pk,φk,λk) becomes sufficiently small.
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Algorithm 2 : Alternating Direction Method of Multiplier

Initialization k = 0 (φ0, λ0) and r > 0 are given.

k ≥ 0 Compute successively (uk+1, pk+1), φk+1 and λk+1 as follows.

Step 1. Find (un+1, pn+1) ∈ V × L2
0(Ω) such that for all (v, q) ∈ V × L2(Ω)

a(un+1,v) + r(un+1
τ ,vτ )S − b(v, pn+1) = `1(v) + (rφk − λk,vτ )S ,

−b(un+1, q)− C(pk+1, q) = `2(q).

Step 2. Compute the auxiliary unknown

φk+1 =
1

r
max(0, ‖ λk − rφk ‖ −g)

λk − rφk

‖ λk − rφk ‖
.

Step 3. Multiplier update λk+1 = λk + r(φk+1 − uk+1
τ )

7 A Primal-Dual approximation method

As in the previous section, we consider only piecewise linear elements. The primal dual
method we formulate in this section derives from the one proposed by [29]. Just like the
ADMM method, this strategy is based on the introduction of a functional for which the saddle
point plays a crucial role. We recall the basic steps, proceed to the algebraic formalism which
leads to the formulation of the algorithm.

7.1 Active set strategy

We first regularize the non-differentiable term j(v) by using the equality (obtained using
Fenchel duality)

inf
v
j(v) = inf

v
sup
|λ|≤g

(λ,vτ )S .

Let us introduce the set of admissible Lagrange multiplier

Λg =
{
λ ∈ L2(S) | |λ| ≤ g

}
and the new Lagrangian functional

Lα(v, q,µ) = J(v)− b(v, q) + (vτ ,µ)S −
∑
K∈Th

α
h2
K

2

∫
K

|2µdiv ε(v)−∇q − f |2dx.

The saddle-point problem becomes

Find (u, p,λ) ∈ V1
h ×M1

h × Λg such that

Lα(u, q,µ) ≤ Lα(u, p,λ) ≤ Lα(v, q,µ), ∀(v, q,µ) ∈ V1
h ×M1

h × Λg (7.1)

Our aim is to design a primal-dual active set strategy for the numerical approximation of
(7.1). Our primal-dual active set strategy derives from [29] and based on the following facts:

• If |λ| < g then uτ = 0. We can therefore eliminate the corresponding nodal values of
uτ (and λ) from the global system.

• If |λ| = g, then the multiplier is known and acts as a tangential traction.
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7.2 Algebraic formulation

We need the algebraic formulation for the active set strategy. We use the same discrete
formulation as in [31]. Assuming that u ∈ Rdn is the unknown vector of nodal values of the
velocity fields on Ωh, p ∈ Rn the unknown vector of nodal values of the pressure and λ ∈ Rm
the multiplier vector, we introduce the following matrices and vectors:

• A the stiffness matrix (dn × dn symmetric positive definite), C the pressure stiffness
matrix (n× n symmetric positive semi-definite);

• B the divergence matrix, n× dn.

• f , the volume forces (vector of Rdn),

• T, the tangential matrix on S, i.e. Tu = uτ ,

• M, the mass matrix on S,

• g , the vector of slip threshold.

The discrete formulation of the Lagrangian functional (6.3) is therefore

Lα(v, q,µ) =
1

2
v>Av − f> + µ>Mv − q>Bv − αq>Cq− q>Bf .

The (tangential) Lagrange multiplier is such that µ = (µ1, . . . ,µm)> in two-dimensional
problems, and µ = ((µ1,1,µ1,2), . . . , (µm,1,µm,2))> for three-dimensional problems. Then

|µ| = (|µ1|, . . . , |µm|)> for 2D problems

|µ| = ((µ2
1,1 + µ2

1,2)1/2, . . . , (µ2
m,1 + µ2

m,2)1/2)> for 3D problems

Then writing |µ ≤ g means |µi| ≤ gi in 2D, or (µ2
i,1 + µ2

i,2)1/2 ≤ g in 3D.
Gathering the notations above, our primal dual active set method is described in Algo-

rithm 3.

Algorithm 3 : First primal dual active set method

Initialization (u0,p0,λ0) given, set k = 0.

Step 1. Set Ik = {i; |λk
i | < gi}, Ak = {i; |λk

i | ≥ gi}
Step 2. Set λk+1

i = giλ
k
i /|λk

i | for i ∈ Ak

Step 3. Compute (uk+1, pk+1) with uk+1
τ = 0 on Ik such that

Auk+1 −B>pk+1 = f −T>Mλk+1,

Buk+1 − αCpk+1 = Bf

Step 4. Compute λk+1 on Ik as a reaction of uk+1
τ = 0, i.e.

λk+1 = M−1(f −Auk+1 + B>pk+1)

Step 5. Stop if the relative error on (uk+1, pk+1,λk+1) becomes sufficiently small and Ak+1 =
Ak, else set k = k + 1 and got to Step 1.

8 Numerical experiments

We now study the numerical behavior of the algorithms described in the previous sections.
We have implemented Algorithms 1,2 and 3 in MATLAB (R2018a), using vectored assem-
bling functions and the mesh generator provided in [43, 44], on a computer running Linux
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(Ubuntu 16.04) with 3.00GHz clock frequency and 32GB RAM. The test problems used are
designed to illustrate the numerical behavior of the algorithms and validate the theoretical
findings in the paper.

8.1 Driven cavity problem

We consider a classical driven cavity example with stick/slip boundary conditions (see e.g.
[30, 45]). We set Ω = (0, 1)2 and we assume that its boundary consists of two portions ΓD
and S defined as follows

ΓD = {0} × (0, 1) ∪ (0, 1)× {0}
S = S1 ∪ S2, S1 = (0, 1)× {1}, S2 = {1} × (0, 1).

The right-hand side
f = −2µdiv ε(u) +∇p

where µ = 0.1 and (u, p) is

u1(x, y) = −x2y(x− 1)(3y − 2), (8.1)

u2(x, y) = xy2(y − 1)(3x− 2), (8.2)

p(x, y) = (2x− 1)(2y − 1),

from which we deduce that (see [30]);

(Tn)τ = −4µx2(x− 1)

[
1
0

]
on S1 ,

(Tn)τ = −4µy2(y − 1)

[
0
−1

]
on S2 .

For µ = 0.1, a direct calculation reveals that

max
S
|(Tn)τ | = 4µmax

x∈S1

{x2(x− 1)} = 4µmax
x∈S2

{y2(y − 1)} = 0.059 .

Then it follows that if max
S
|(Tn)τ | < g, no slip occurs on S and uτ |S = 0. If max

S
|(Tn)τ | = g

a non-trivial slip occurs.
Figure 1 shows the streamlines obtained, using Algorithm 3, with two values of the slip
bound g. We can notice that for g = 0.059 = max

S
|(Tn)τ | a non-trivial slip occurs, while for

max
S
|(Tn)τ | < g = 0.075, the no slip and uτ = 0. Figure 2 shows the tangential component

of the velocity on S. Hence there is a nonlinear slip on S.

8.2 Convergence

We evaluate the convergence rate of the GLS FEM by deriving a priori error estimate between
(u, p) and (uh, ph). It is noted that because we do not know the exact solution explicitly,
we use an approximate solution on a finer mesh as the reference solution. The convergence
errors are computed as follows

eh(u) = ‖ uh − u∗ ‖L2 (8.3)

eh(u, p) = ‖ uh − u∗ ‖H1 + ‖ ph − p∗ ‖L2 (8.4)

where (u∗, p∗) is the reference solution obtained on a mesh with h = 1/1024.
The convergence rates of the GLS finite element plotted in Figure 3. For the stick case

(g = 0.075) the convergence rates are better than expected and correspond to convergence
rate of the GLS stabilization for the standard Stokes equation. For the slip case (g = 0.059)
the convergence rate is in line with the expected value (Remark 5.2 ) since , from (8.1)–(8.2),
u|S ∈ H2(S).
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(a) (b)

Figure 1: Streamlines for the driven cavity; (a): g = 0.059, (b): g = 0.075

Figure 2: Tangential component of the velocity on S for g = 0.059

Figure 3: Convergence errors eh(u) and eh(u, p) and estimation of the convergence rates; left:
g = 0.059, right: g = 0.075
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8.3 Algorithms comparison

We report in Tables 1-2 the performances of Algorithms 1-3 on the driven cavity problem.
We first notice the poor convergence properties of the Uzawa iteration Algorithm 1, especially
for the slip case. For the largest problem, Uzawa iteration requires almost 10 times more
CPU times than Algorithm 2, and 50 times more iterations than Algorithm 3. In terms
of number of iterations required for convergence, the primal dual Algorithm 3 has the best
property. For the solely sticking case, the convergence is reached after only two iterations. In
this case, the problem is equivalent to the standard Stokes problem with Dirichlet boundary
conditions. The algorithm proposed needs only two iterations to confirm that the active set
is empty. For the slip case (g = 0.059) the number of iterations required for convergence is
asymptotically bounded. In terms of CPU time, Algorithm 2 outperforms the primal dual
active set strategy, even with a higher number of iterations. This is due to the fact that
in Algorithm 2, the matrix is constant during the iterative process. A factorization can be
performed once and for all in the initialization step. The solution of the linear systems during
the iterative process is then reduced to backward-forward substitutions.

Uzawa ADMM PDAS 1
h Iter. CPU Iter. CPU Iter. CPU

1/16 595 0.583 59 0.056 5 0.042
1/32 513 2.341 58 0.236 7 0.185
1/64 512 12.843 58 1.379 8 0.992
1/128 513 83.106 58 5.379 10 7.963
1/256 515 465.077 58 50.050 13 67.176

Table 1: Performances of Algorithms 1,2 and 3 on the driven cavity for g = 0.059

Uzawa ADMM PDAS 1
h Iter. CPU Iter. CPU Iter. CPU

1/16 418 0.089 27 0.026 2 0.069
1/32 369 0.365 16 0.065 2 0.052
1/64 361 1.592 9 0.213 2 0.235
1/128 360 9.096 9 1.139 2 1.434
1/256 359 58.542 9 7.760 2 13.088

Table 2: Performances of Algorithms 1,2 and 3 on the driven cavity for g = 0.075

8.4 3D driven cavity

We consider the cubic cavity Ω = (0, 1)3 with Γ = {x = 0} ∪ {x = 1} ∪ {y = 0} ∪ {y = 1}
and u|Γ = 0. The remaining part of the boundary is S = {z = 0} ∪ {z = 1} where the slip
takes places. We set µ = 1 and, for the right-hand side,

f1(x, y, z) = 80x2(1− x)2 − 20(2 + 12x2 − 12x)z(1− 2z) + 2(2z − 1),

f2(x, y, z) = 20(12x− 6)z2(1− z)2 + 20x(1− 2x)(1− x)(2 + 12z2 − 12z) + 2(2x− 1),

f3(x, y, z) = −20y(1− y).

We use ADMM (Algorithm 2) for the numerical simulation. Figure 4 shows the velocity field
and pressure at the boundary for g = 0.5 and g = 5. One can notice that the friction occurs
for both values of g. In [42], numerical experiments show that, for the 3D lid-driven cavity,
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(a) (b)

Figure 4: Velocity field and pressure for the 3D driven cavity (a): g = 0.5, (b): g = 5

g = 0.5 g = 1 g = 5
h Iter. CPU Iter. CPU Iter. CPU

1/4 3 0. 149 3 0.179 2 0.018
1/8 2 0. 303 2 0.305 2 0. 147
1/16 2 2.761 2 2.828 2 2.820
1/32 2 70.352 2 81. 006 2 73.793

Table 3: Performances of ADMM on the 3D driven cavity with various values of g

the friction always occurs. The performances of the ADMM algorithm are summarized in
Table 3 for various values of g.

As in the 2D case, we evaluate the convergence of the GLS FEM using (8.3)–(8.4), where
the reference solution is obtained with h = 1/64. The reference solution requires solving a
linear system of size 1098500 from a 3D mesh. Table 4 summarize the convergence errors
and rate for the 3D driven cavity problem.

g = 0.5 g = 5
h eh(u) Rate eh(u, p) Rate eh(u) Rate eh(u, p) Rate

1/4 4.4576e-02 1.2385e+00 4.4576e-02 1.2384e+00
1/8 1.9463e-02 1.19 5.9782e-01 1.05 1.9461e-02 1.195 5.9777e-01 1.050
1/16 6.2795e-03 1.63 2.3115e-01 1.37 6.2623e-03 1.635 2.3084e-01 1.372
1/32 1.4692e-03 2.05 7.0530e-02 1.73 1.3508e-03 2.212 6.8552e-02 1.751

Table 4: Convergence errors and rates for the 3D driven cavity with various values of g
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9 Conclusion

We studied theoretically and numerically the GLS methods for the numerical approximation
of the Stokes equations under Tresca’s boundary condition allowing the use of equal order
approximation for both the velocity and the pressure. The resulting variational system of
equations of the model is a nonlinear set of partial differential equations that are effectively
solved by exploiting the rich structure of the formulation. Existence of solutions, a priori
error estimates and convergence of finite element approximations are thoroughly examined.
The numerical experiments exhibited confirms the predictions of the theory. From the sim-
ulations, it appears that the alternating direction method of multiplier (ADMM) and the
primal-dual active set method (PDAS) are the best numerical approximation methods, but
this need to be demonstrated mathematically and it is object of a future research.
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