Improving Robustness of Deep Reinforcement Learning Agents: Environment Attack based on the Critic Network - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2022

Improving Robustness of Deep Reinforcement Learning Agents: Environment Attack based on the Critic Network

Amélioration de la Robustesse d'Agents Entraîné par Renforcement Profond : Attaque de l'Environnement basée sur le Réseau Critique.

Résumé

To improve policy robustness of deep reinforcement learning agents, a line of recent works focus on producing disturbances of the environment. Existing approaches of the literature to generate meaningful disturbances of the environment are adversarial reinforcement learning methods. These methods set the problem as a two-player game between the protagonist agent, which learns to perform a task in an environment, and the adversary agent, which learns to disturb the protagonist via modifications of the considered environment. Both protagonist and adversary are trained with deep reinforcement learning algorithms. Alternatively, we propose in this paper to build on gradient-based adversarial attacks, usually used for classification tasks for instance, that we apply on the critic network of the protagonist to identify efficient disturbances of the environment. Rather than learning an attacker policy, which usually reveals as very complex and unstable, we leverage the knowledge of the critic network of the protagonist, to dynamically complexify the task at each step of the learning process. We show that our method, while being faster and lighter, leads to significantly better improvements in policy robustness than existing methods of the literature.

Dates et versions

hal-03797085 , version 1 (04-10-2022)

Identifiants

Citer

Lucas Schott, Hatem Hajri, Sylvain Lamprier. Improving Robustness of Deep Reinforcement Learning Agents: Environment Attack based on the Critic Network. 2022 International Joint Conference on Neural Networks (IJCNN), Jul 2022, Padua, France. pp.1-8, ⟨10.1109/IJCNN55064.2022.9892901⟩. ⟨hal-03797085⟩
77 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More