
HAL Id: hal-03793759
https://hal.science/hal-03793759

Submitted on 1 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection and identification of beehive piping audio
signals

Dominique Fourer, Agnieszka Orlowska

To cite this version:
Dominique Fourer, Agnieszka Orlowska. Detection and identification of beehive piping audio signals.
7th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2022, Nov 2022,
Nancy, France. �hal-03793759�

https://hal.science/hal-03793759
https://hal.archives-ouvertes.fr


Detection and Classification of Acoustic Scenes and Events 2022 3–4 November 2022, Nancy, France

DETECTION AND IDENTIFICATION OF BEEHIVE PIPING AUDIO SIGNALS

Dominique Fourer and Agnieszka Orlowska

IBISC (EA 4526) - University of Evry / Paris-Saclay∗

Evry-Courcouronnes, France
dominique.fourer@univ-evry.fr

ABSTRACT

Piping signals are particular sounds emitted by honey bees during
the swarming season or sometimes when bees are exposed to spe-
cific factors during the life of the colony. Such sounds are of inter-
est for beekeepers for predicting an imminent swarming of a bee-
hive. The present study introduces a novel publicly available dataset
made of several honey bee piping recordings allowing for the eval-
uation of future audio-based detection and recognition methods.
First, we propose an analysis of the most relevant timbre features
for discriminating between tooting and quacking sounds which are
two distinct types of piping signals. Second, we comparatively as-
sess several machine-learning-based methods designed for the de-
tection and the identification of piping signals through a beehive-
independent 3-fold cross-validation methodology.

Index Terms— bees piping signals, quacking, tooting, audio
signal recognition, smart beekeeping

1. INTRODUCTION

Nowadays, smart beekeeping is gaining interest since it aims at de-
veloping innovative methods for enhancing the monitoring of bee-
hives using AI techniques. To this end, the audio-based approach
[1, 2] is promising since it allows to use low-cost sensors for moni-
toring a bee colony. Recent work pioneered the bee sound analysis
problem through a machine learning approach to predict the differ-
ent health states of a beehive. For example, the task of predicting
the bee queen presence is investigated in [3, 4] and could help bee-
keepers to reduce the number of inspections which are stressful for
a beehive. The prediction of colony swarming from audio signal
is investigated [5, 6] and can be related to specific sounds emitted
by the bees. Several studies analyze different piping sounds and
show their interest for beekeepers [7, 5, 6]. Other studies explain
that piping signals can also have other functions for synchronizing
the colony activity [7, 8]. Such particular sounds can respectively
be emitted by bee workers or by a queen and can easily be distin-
guished from classical background beehive sounds. A more recent
study [9] proposes an acoustic analysis of piping signals which can
be segregated into two classes with specific audio signatures: toot-
ing and quacking. Both tooting and quacking signals can occur
about 1 day before swarming and their occurrences can increase ev-
ery 10 minutes during approximately 6 hours.

The present study pursues the piping sounds investigation with
an analysis of the most relevant audio features using a machine
learning-based methodology. Our contributions are manifold. First,
we introduce a new publicly available audio piping dataset made of

∗This work is partly supported by the French ANR ASCETE project
(ANR-19-CE48-0001).

several recordings collected from various beekeepers which were
manually segmented and annotated as tooting or quacking. Second,
we present an acoustic analysis through timbre features to discrim-
inate between the tooting and the quacking signals. Finally, we
assess several methods for a supervised detection and classification
of audio field recordings of beehive sounds. This paper is organized
as follows. In Section 2, we explain the differences between piping
signals and we introduce our new proposed dataset. In Section 3, we
perform an acoustic analysis of piping sounds using timbre features.
Section 4 presents our audio detection and classification results us-
ing several proposed methods. Finally, the paper is concluded by a
discussion with future work directions in Section 5.

2. MATERIALS

2.1. Tooting and Quacking

Piping sounds (cf. Fig. 1) are among the most noticeable signs of
swarming. Tooting corresponds to the sound emitted by a virgin
queen bee who announces her presence by releasing pheromones
and by tooting. Tooting corresponds to a series of pulsed, high-
pitched sounds produced by pressing her thorax and operating her
wing-beating mechanism without spreading her wings [10]. Ma-
ture queens still confined within their queen cells answer the toot-
ing with a distinct piping sound, called Quacking. A chorus of syn-
chronized quacking follows each tooting, and those specific swarm-
ing sounds are broadcasting in the bee nest as vibrations of the
combs and perceived by vibration detectors in the workers’ tarsi
[11]. Toots and quacks are made of different varying pulses: during
the process of tooting, the queen produces a one-second-long pipe
immediately followed by several bursts of less than half a second.
The fundamental frequency increases with the age of queens, rang-
ing from 200 to 550 Hz, and is usually observed around 400 Hz
[12]. Quacks are made of several short pulses which are typi-
cally less than 0.2 seconds at a lower fundamental frequency around
350 Hz [13]. Piping sounds are not only emitted by queens but also
by workers in queenless colonies: laying-workers and guarding-
workers [14]. More recent studies show that workers could emit
piping sounds to prepare a synchronized liftoff [7]. This prompts
a conclusion that workers pipe in a variety of circumstances, while
queens pipe only in the context of colony reproduction [15]. The
queens’ toots and quacks last several seconds and are broken up
into syllables [12]. Piping sounds emitted by workers come from
several sources and have a duration below one second. It often con-
sists of a single pulse [14].

2.2. New Proposed Piping Dataset

We introduce a novel dataset of natural honey bee piping audio
signals which was built by collecting 44 different recordings pub-
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Figure 1: Spectrograms with highlighted F0 and waveforms with
RMS envelope of two distinct piping signals.

lished on the YouTube platform by various beekeepers around the
world.These audio recordings were obtained in field conditions us-
ing various non-professional microphones located close to the bee-
hive when a piping signal is emitted. Each recording has a dura-
tion varying from 2 to 13 seconds and is annotated according to
the beekeeper comment respectively as Tooting or Quacking. We
extracted and segmented the audio from 14 distinct videos from
which the signal is recorded without a loss of quality into WAVE
files with a sampling frequency of Fs = 22.05 kHz and a sample
precision of 16 bits. After manually removing the silent and spu-
rious frames, the resulting dataset contains 36 tooting signals and
8 quacking signals which correspond to a duration of 145 seconds
for tooting and 60 seconds for quacking (total 205 seconds). To
avoid possible copyright issues, we only made publicly available
the Short-Time Fourier Transform (STFT) matrices and the timbre
descriptors computed using a matlab implementation of the timbre
toolbox [16] from the post-processed signals used in our experi-
ments. We propose a more detailed description of the dataset con-
taining the links of the original Youtube videos with our matlab
loader codes published on IEEE DataPort [17].

3. ACOUSTIC ANALYSIS

3.1. Signal analysis

We present in Fig. 1 the waveform of a tooting and of a quacking
signal both extracted from our proposed dataset (Toot1 and Quack1)
with almost the same duration of about 6 seconds. Colored in red,
we plot the Root Mean Square (RMS) envelope computed for a
window length of 23ms. We also display the spectrograms of the
same signals where the fundamental frequency (F0) estimated us-
ing the SWIPE method [18] is highlighted. From these observa-
tions, one can notice that tooting and quacking are both harmonic
signals but with very different temporal and spectral structures. The
tooting signal contains longer pulses with a higher F0 (mean value
of µT = 382.97Hz with a standard deviation σT = 61.45 Hz) and
a slightly lower number of pulses for the same observation duration.
For the comparison, the quacking signal contains more pulses with
a lower F0 (µQ = 306.60 Hz, σQ = 23.98 Hz). We also notice
that the F0 decreases at the end of each pulse for both tooting and
quacking signals.

Table 1: Top-10 most relevant timbre descriptors selected using a
mutual information criterion.

Timbre feature Relevance score
1 ERB-gammmatone Spectral Centroid 0.428
2 ERB-gammatone Spectral Kurtosis 0.419
3 ERB-fft Spectral Kurtosis 0.402
4 ERB-gammatone Spectral Skewness 0.373
5 ERB- fft Spectral Skewness 0.373
6 ERB-fft Spectral Centroid 0.371
7 ERB-fft Spectral Spread 0.334
8 Zero-crossing rate 0.321
9 STFT Spectral Kurtosis 0.314
10 STFT Spectral Roll-Off 0.311

3.2. Timbre Feature Selection

The timbre toolbox proposed by Peeters et al. [16] proposes a large
set of hand-crafted audio features used in various audio recogni-
tion tasks. These features are expected to convey information about
the perceived timbre of an arbitrary sound. They include tempo-
ral, spectral, harmonic and perceptual descriptors which are directly
computed from the waveform and from the time-frequency repre-
sentation of the analyzed signal. In this study, we investigate a
total of 164 timbre features (cf. [19] Table. 2 for details) summa-
rized by median and Inter Quartile Range (IQR) statistics related
to the signal acoustic parameters. In Table 1, we present the top-
10 most relevant features sorted by descending order of relevance
according to the mutual information (MI) criterion [20] by consid-
ering the tooting/quacking classification problem. Our computation
uses the scikit-learn MI python implementation which shows that
perceptual-based Equivalent-Rectangular-Bandwith (ERB) spectral
features appear to be the most relevant. Fig. 2a plots in 3 dimen-
sions the whole dataset where each individual corresponds to a one-
second-long frame where the axes correspond to the top-3 most rel-
evant features. This figure shows that the components can almost
be separated into two distinct clusters corresponding to tooting and
quacking signals (plotted with different colors) using only 3 rele-
vant features. In Fig. 2b, we plot a whole dataset projection using
Principal Component Analysis (PCA) which is a dimension reduc-
tion method reducing the redundancy between the features while
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preserving original data inertia. This second projection shows that
the separation between tooting and quacking sounds is not trivial
despite each cluster seem located in a different area. Finally, we
perform a Linear Discriminant Analysis (LDA) [21] which can be
viewed as a supervised PCA providing the optimal linear projection
of the dataset which maximizes the Euclidean distance between in-
dividuals of different classes while minimizing the distance between
individuals of the same class. Fig. 2c shows that there exists a lin-
ear combination of the original timbre features enabling to perfectly
separate tooting and quacking sounds. This result paves the way of
a supervised classification investigated in Section 4.

4. DETECTION AND CLASSIFICATION RESULTS

4.1. Experimental Setup

We focus on two distinct tasks which consist of the detection of
piping signals and the discrimination between tooting and quacking
piping signals. To this end, we consider three distinct experiments.
Experiment 1 focuses on the detection of piping signals from bee-
hives recordings. We address this problem through a binary classi-
fication problem involving samples from our proposed dataset and
beehive recordings from the OSBH dataset1 made of several bee-
hives sounds. Experiment 2 focuses on the binary piping audio
classification problem which consists in identifying respectively
tooting and quacking signals where 145 recordings are labeled as
tooting and 60 recordings as quacking. Experiment 3 considers
both the detection and the classification problem that is addressed
through a 3-label supervised classification approach consisting in
predicting if a signal is a tooting, a quacking or a non-piping signal.
For each experiment, datasets are preprocessed by splitting signals
into one-second-long chunks sampled at Fs = 22.05 kHz. Each
signal is centered by subtracting the mean and the amplitude is nor-
malized by dividing each sample by max(|x|). Our evaluation uses
a 3-fold cross-validation methodology (2 training folds and 1 testing
fold) where the recordings are beehive-independent to avoid overfit-
ting and to assess over the whole dataset the generalizing capability
of the trained models. Hence, all recordings from the same Youtube
video are only present into a unique fold and cannot simultaneously
appear in both the training and testing sets. In experiments 1 and 3
involving non-piping signals, we randomly add bee signals from the
OSBH dataset to obtain the same number of piping and non-piping
signals in each fold.

4.2. Methods

4.2.1. Classification

We comparatively assess four distinct supervised classification
methods suitable for beehive audio signals. The TTB+SVM
method uses the 164 timbre descriptors investigated in Section 3
combined with a support vector machines (SVM) classifier with a
Gaussian radial basis function kernel [22]. The proposed 1D-
CNN method uses the modulus of the discrete Fourier transform
of the signal as input of a 1D-convolutional neural network (CNN)
with residual connections. This architecture (total: 7,684,226 train-
able parameters) is made of 4 residual blocks with a different num-
ber of kernel filters (sequentially: 16, 32, 64, 128). Each resid-
ual block is made of 3 one-dimensional convolutional layers inter-
spersed by the addition of the input followed by a Rectified Lin-
ear Unit (ReLU) activation and a max-pooling. Output of the last
residual block is average-pooled and connected to 3 fully-connected

1https://zenodo.org/record/1321278

(a) Top-3 most relevant timbre features

(b) PCA

(c) LDA

Figure 2: Three-dimensional projections of our proposed piping
dataset where each point corresponds to a one-second-long excerpt.

(FC) layers including flatten and with ReLU and softmax activation
for the final output. The MFCC+CNN and the STFT+CNN are
based on the same 2D-CNN architecture (total: 404,770 trainable
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parameters) with 2 distinct inputs: Mel-Frequency Cepstral Coeffi-
cients (MFCC) and the spectrogram defined as the squared modulus
of the short-time Fourier transform (STFT). The proposed 2D-CNN
architecture is inspired from [2] and consists of 4 convolutional
blocks containing 16 kernel filters of size 3×3, a 2×2 max-pooling
layer and a 25% dropout layer. The output is connected to a 3 FC
layers including 2 dropout layers of respectively 25% and 50% fol-
lowed by a softmax activation function to compute the output pre-
dicted label. Convolutional and FC layers both use a LeakyReLU
activation function defined as LeakyRELU(x) = max(αx, x),
with α = 0.1.

4.2.2. Detection

For detecting piping in an arbitrary audio signal as proposed in Ex-
periment 1, we also consider the 4 proposed classification meth-
ods using a binary piping/non-piping taxonomy. We also consider
two additional methods based on the stochastic modeling of the
estimated F0 distribution respectively for piping and non-piping
signals. This later approach is motivated by the harmonic prop-
erty of piping signals described in Section 3. The F0 Gaussian
model estimates the parameters θ = [µ, σ2] of a Gaussian proba-
bility distribution used to model respectively piping and non-piping
signals. Thus, given the estimated F0 denoted fx of a signal, the
decision to detect a piping signal is made when p(fx|θpiping) >
p(fx|θnon−piping). The F0 kernel model is a variant of the F0
Gaussian model where p(fx|θpiping) is estimated using the empir-
ical distribution (i.e. histogram) of the estimated F0 smoothed by a
convolution product using a Gaussian kernel [23]. Our experiments
used the SWIPE F0 estimator [18] for which the median function is
used to summarize a frame of signal with an arbitrary length.

4.3. Implementation details

The 17 first cepstral coefficients of the MFCC+CNN method are
computed each 20 ms. The STFT is computed using a Hann anal-
ysis window with a 50% overlap and a FFT size of M = 1025
(i.e. 512 positive frequency bins). The input of the 1D-CNN is
set to half of the frequency sampling due to the Fourier transform
Hermitian symmetry of a real signal (i.e. 11,025 real-valued co-
efficients). During the testing of each of the 3 folds, we use data
augmentation (DA) [24] to artificially increase the number of train-
ing recordings by generating new samples from the original ones
by the addition of a white Gaussian noise (SNR = 25dB) and by
the application of temporal random circular shifts. The results re-
ported in Tables 2, 3 and 4 correspond to the best ones obtained after
several iterations (no significant improvement is shown by data aug-
mentation). The training of our CNN methods is configured for a
constant number of 25 epochs for the 1D-CNN and 50 epochs for
the 2D-CNN, with a batch size of 16. The overall evaluation frame-
work and the TTB+SVM method are implemented in matlab. The
deep learning methods are implemented in Python using Keras with
Tensorflow frameworks. Our codes are freely available online2 for
the sake of reproducible research.

4.4. Comparative results

According to Table 2, the best detection results in terms of ac-
curacy for Experiment 1 are obtained using the TTB+SVM and
the MFCC+CNN method which both obtain 94%. The best pip-
ing classification (Experiment 2) results (cf. Table 3) are obtained

2https://fourer.fr/dcase22

using the STFT+CNN method with an overall accuracy of 95%,
followed from far by the MFCC+CNN method which obtains an
accuracy of 78%. Despite efforts, the two other techniques fail to
identify quacking sounds and obtain poorer results with a quacking
F-measure below 0.5. These poor quacking recognition results are
confirmed in Experiment 3 (cf. Table 4) where the best method re-
main STFT+CNN for which the results are poorer than in Experi-
ment 2. This suggests the best pipeline which detects piping signals
using MFCC+CNN or TTB+SVM before attempting to discrimi-
nate between tooting and quacking signals using STFT+CNN.

Table 2: Experiment 1: Piping signals detection comparative re-
sults.

Method Feat. dimension Label Recall Precision F - score Accuracy

F0 kern. model 1
Piping 0.68 0.96 0.79

0.84Non-piping 0.97 0.78 0.87

F0 Gauss. model 1
Piping 0.69 0.99 0.81

0.85Non-piping 1 0.79 0.88

TTB+SVM 164
Piping 0.91 0.96 0.94

0.94Non-piping 0.97 0.93 0.95

1D-CNN 11,025
Piping 0.84 1.00 0.91

0.93Non-piping 1.00 0.88 0.93

MFCC+CNN 17×47
Piping 0.87 1.00 0.93

0.94Non-piping 1.00 0.90 0.94

STFT+CNN 512×42
Piping 0.86 0.96 0.91

0.92Non-piping 0.97 0.89 0.93

Table 3: Experiment 2: Piping signals binary classification compar-
ative results.

Method Feat. dimension Label Recall Precision F - score Accuracy

TTB+SVM 164
Tooting 0.78 0.85 0.71

0.66Quacking 0.24 0.18 0.38

1D-CNN 11,025
Tooting 0.97 0.72 0.82

0.71Quacking 0.08 0.50 0.14

MFCC+CNN 17×47
Tooting 0.93 0.79 0.86

0.78Quacking 0.42 0.71 0.53

STFT+CNN 512×42
Tooting 0.94 0.98 0.96

0.95Quacking 0.96 0.87 0.92

Table 4: Experiment 3: Simultaneously Detection and classification
classification comparative results.

Method Feat. dimension Label Recall Precision F - score Accuracy

TTB+SVM 164
Tooting 0.88 0.78 0.83

0.82Quacking 0.03 0.12 0.05
Non-piping 0.99 0.89 0.94

1D-CNN 11,025
Tooting 0.93 0.84 0.88

0.85Quacking 0.10 0.54 0.16
Non-piping 0.99 0.86 0.92

MFCC+CNN 17×47
Tooting 0.88 0.81 0.84

0.84Quacking 0.18 0.45 0.26
Non-piping 0.99 0.90 0.95

STFT+CNN 512×42
Tooting 0.94 0.97 0.95

0.91Quacking 0.50 0.76 0.60
Non-piping 0.99 0.89 0.94

5. CONCLUSION

We introduced a new dataset made of beehive piping sounds de-
signed for identifying tooting and quacking signals emitted by
bees. The most relevant timbre features were presented and re-
veal a link with perceptual spectral features. Our numerical ex-
periments involving several state-of-the-art approaches show that a
time-frequency represention combined with a 2D-CNN is currently
the most promising approach for addressing the tooting/quacking
binary classification problem and can obtain an accuracy above
85%. Future work consists in evaluating new methods in more real-
istic application scenarios involving embedded systems.
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