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ABSTRACT
Precise estimation of ground displacement maps at re-

gional scales from optical satellite imaging is fundamental for
the comprehension of natural disasters, such as earthquakes.
Current methods make use of correlation techniques between
two acquisitions in order to retrieve a fractional pixel shift.
Yet, differences in local lighting conditions between the two
acquisitions can lead to high image differences which will
bias the estimation of the displacement, and data-driven meth-
ods could have the ability to overcome these errors. From the
generation of a realistic simulated database based on Landsat-
8 satellite pairs of images with added simulated shifts, we de-
veloped a Convolutional Neural Network (CNN) able to re-
trieve a sub-pixel displacement.

Index Terms— optical image correlation, image registra-
tion, satellite imagery, deep learning, geodesy

1. INTRODUCTION

Image registration is a key operation in image processing
with applications in different domains, such as computer vi-
sion, biomedical imaging and remote sensing [1]. Focusing
on the latter, Digital Image Correlation (DIC) has revolution-
ized satellite geodesy and particularly the study of ground
deformation, peculiarly useful for natural hazards such as
earthquakes. DIC is used to retrieve displacements fields
between two images acquired on two different dates (days,
weeks, months, or ever years). The use of optical satellite
images is particularly efficient for capturing the ground dis-
placement over large regions in a quick, cheap, and efficient
way. However, this task is relatively challenging, as ground
displacements are largely in the sub-pixel domain (given the
typical range of earthquake displacements, e.g. 0-15 m,
and pixel resolution of commonly used satellite imagery, e.g.
Landsat-8: 15 m, Sentinel-2: 10 m).
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Current remote sensing sub-pixel registration methods
rely on a sliding window approach, by assuming a uniform
shift at a local scale. Image registration is often undertaken in
the spatial domain, or the frequency domain [2, 3, 4]. Local
spatial cross correlation coupled with SINC-based resam-
pling, non-linear cost-functions [5] and regularization [6] has
been implemented in the MicMac software [7]. It allows a
robust correlation computation, even with small correlation
windows. However, this procedure can suffer from heavy
computations. Phase correlation for sub-pixel registration [8]
is another efficient technique, based on frequency-domain
correlation. The relative displacement between two images
is estimated from the phase difference of their Fourier trans-
forms. Splitting the sub-pixel problem in two steps (first, a
pixel-wise displacement estimation, second, a sub-pixel dis-
placement estimation, using a minimization algorithm [9]) is
an efficient approach that has been developed in the software
COSI-Corr [10]. It can reach an accuracy of 0.1 pixel. Phase
correlation works well with large correlation windows, but is
less satisfactory when using smaller correlation windows (due
to increased sensitivity to high frequency noise). Therefore,
phase correlation may be less suitable for obtaining spatial
detail compared with more robust spatial domain methods.

Image registration and displacement field estimation
have been successfully addressed by data-based methods
and particularly Deep Learning (DL) models (in the field of
medical-imaging [11], for video surveillance, robotics, and
self-driving systems [12]). The advantages of DL are that
it exploits the large amount of available data as well as its
particular structure (such as Convolutional Neural Networks
(CNN) for image-like data [13]). Most of the work in DL
applied to image registration is based on optical flow and
motion estimation, such as the model FlowNet [14], using
CNNs to estimate the motion of objects. However, the large
majority of registration problems involve estimating large
displacements (> 1 pixel), while the estimation of sub-pixel
shifts has been less studied. In the field of material science,
recent experiments using DL to retrieve sub-pixel displace-



Fig. 1. The proposed CNN model for sub-pixel shift estimation from pairs of remote sensing windows.

ment and/or strain fields [15, 16] have been conducted on
speckle images, demonstrating the feasibility of data-based
approaches for sub-pixel measurements. Yet, the data and
the particular issues in remote sensing (such as differences in
illumination and ground evolution) are substantially different,
so these tools can not be used directly.

Based on the promising application of DL in similar do-
mains, we propose, for the first time (to the best of our knowl-
edge), a DL solution for ground deformation estimation using
remotely sensed optical satellite images. In this preliminary
study, we develop a specific CNN to reproduce a correlator
that estimates sub-pixel surface displacements (e.g. for an
area subject to a ground motion, such as an earthquake), us-
ing satellite imagery. We formulate the problem as a uniform
shift between a pair of tiles and estimate the 2D displacement
for each window independently, similar to current correlator
methods [10, 7]. This proposed method has the potential to
overcome issues related to image differences due to different
acquisition times of the two images being correlated (differ-
ences in illumination conditions can bias the correlation [17],
thus leading to registration inaccuracy correlated with topog-
raphy, etc.). One major contribution of this work is the devel-
opment of a variety of synthetic databases by combining real
acquisitions with simulated sub-pixel shifts. Once trained on
our synthetic database, our CNN model is applied on a dis-
tinct pair of satellite images using a sliding window process
in order to infer the complete displacement map. We com-
pare different models by varying the training database settings
and evaluate the precision of the estimated shifts. A com-
plete comparison with a phase cross correlation method [18]
and with a state-of-the-art correlation tool optimized for re-
trieving earthquake ground displacements (COSI-Corr [10])
is performed on a realistic earthquake experimental dataset.

2. METHODOLOGY

2.1. Problem statement

We consider two windows W1 and W2 linked by a rigid
2D translation (dx, dy). The image registration problem
using traditional correlation is solved by identifying a trans-
lation vector (d̂x, d̂y) such that the correspondence between

W1(x, y) and W2(x + d̂x, y + d̂y) is maximized (according
to some measure of correspondence). The shift between the
two images can be addressed by finding

(d̂x, d̂y) = argmax(dx,dy) r (I1(x, y), I2(x+ dx, y + dy)) ,

in which r refers to cross-correlation. In this work we con-
sider it as a regression problem on a local scale, with a data-
driven approach, in which (d̂x, d̂y) = f̂(W1,W2) where f
is a function learned from a set of N reference training data
{Xn;Yn}Nn=1 with Xn = (W1,W2)n and Yn = (dx, dy)n
such that

f̂ = argminf L (f(Xn), Yn) ,

with L(·, ·) being a function computing the loss between the
displacement estimated by a regressor f and the reference
displacement (here taken as the mean squared error). The
proposed approach is to approximate a rigid and non-rotating
transformation, by evaluating the displacement (dx, dy) for
every image patch of size k × k (with k the size of the corre-
lation window in pixels).

2.2. Extraction of a rigid 2D shift with a Convolutional
Neural Network (CNN)

In this work, a CNN is used to retrieve this bi-directional dis-
placement. Figure 1 gives an overview of the architecture of
the network performing the correlation. As input, the model
processes a pair of windows of size k × k = 16 × 16 pix-
els. This size of window allows to have a sufficient amount
of data (pixels) for the model to retrieve the shift, yet small
enough to have a relatively good spatial resolution. This pair
represents a pre- and post-event window spanning a source of
ground deformation (such as an earthquake). For the archi-
tecture, convolutional layers are used to extract feature maps,
and to reduce the size of the data (as the window is small and
no padding was used). Four layers using an increasing num-
ber of 3 × 3 kernels are used (see Figure 1 for the details).
The chosen hyper-parameters represent a trade-off between
computation time and accuracy. Based on our experiments,
increasing the number of feature maps per layer instead of
increasing the number of layers is more valuable, and going



above four layers does not improve the results. The size of the
kernels 3 × 3 was selected in order to extract small features.
A Fully Connected (FC) layer is attached after this structure
to reshape the data, and to output a vector (two values) repre-
senting the shift in two directions (horizontal and vertical).

2.3. Synthetic data generation

As we use a supervised machine learning approach, a reliable
training set for learning the image registration operator is re-
quired. As too few datasets with real images and reference
displacements are available, we create realistic synthetic data
for this process. We define two windows W1 and W2, taken
at two different dates t1 and t2. We consider a synthetic dis-
placement field D : R2 → R2 with D(x, y) = (dx, dy) with
(dx, dy) ∈ [−1, 1]2. In order to simulate a uniform shift, a 2D
translation on every window is artificially applied, by crop-
ping the window shifted by a fraction of a pixel in row and
column (giving a 2D synthetic offset), from the larger satel-
lite image. A re-sampling algorithm is necessary, because the
shift is sub-pixel. In this process, the Lanczos 6×6 kernel size
[19] is used for the interpolation. This way, we can incorpo-
rate a uniform synthetic displacement field D(x, y) in a pair
of windows. Three different training datasets are created and
standardized (re-scaled with a 0-mean and a unit variance)
from real Landsat-8 acquisitions, in order to evaluate which
type of data allows the model to reach the highest accuracy
(see Table 1):

No noise dataset (NN dataset): pairs of windows are
built from the same satellite image. We apply a random shift
on half of the sample pairs and the rest is kept with a zero
shift. We have: W2,NN(x, y) = W1(x+ dx, y + dy);

Synthetic noise dataset (SN dataset): pairs of windows
are also built from the same image, but a synthetic Gaus-
sian noise is added within the second image. Similarly, we
applied a random shift on half of the samples. We have:
W2,SN(x, y) = W1(x+dx, y+dy)+U(x, y), where U(x, y)
is uniform random noise with a dynamic range consistent with
the global image;

Difference in Acquisition Time dataset (DATe dataset):
pairs of windows of the same area are taken at a different
acquisition times (supposedly without any pre-existing dis-
placement). This allows to create samples containing realistic
perturbations in illumination, vegetation, etc. Again, we ap-
plied a random sub-pixel shift on half of the samples. We
have W2,DATe(x, y) = g∆t(W1(x, y))(x+ dx, y + dy) with g
the natural evolution of the ground acquisition during ∆t.

The CNN model is trained with each dataset separately,
and also with a combination of the three datasets. There-
fore, four distinctly trained models are evaluated and com-
pared to the phase cross correlation (PCC) method from the
scikit-image python library. The evaluation is made on simi-
lar Landsat-8 data, albeit imagery acquired on different dates

∆t Acquisition Nb samples
Dataset Noise time difference train eval.
NN 0 0 6000 4000
SN Gaussian 0 6000 4000
DATe ”Real” 1 to 24 months 9000 4000

Table 1. Description of the datasets used to train and evaluate
the model.

and at different locations, to guarantee that there is no com-
mon data used in both training and evaluation.

3. RESULTS

3.1. Evaluation of the models

We use Mean Average Error (MAE) to compare the precision
of the outputs of the models and the PCC method. This crite-
rion evaluates the absolute difference between the prediction
and the true value of the shift vector (in pixels).

SN dataset DATe dataset
no shift shift no shift shift

PCC 0.003 0.183 0.051 0.234
CNN-NN 0.052 0.065 0.127 0.157
CNN-SN 0.037 0.063 0.089 0.152

CNN-DATe 0.015 0.068 0.056 0.125
CNN-all 0.015 0.054 0.058 0.128

Table 2. Mean absolute error (in pixels) on the SN and DATe
evaluation datasets, for the PCC and different CNN models.

Table 2 compares the four CNN models and PCC, evalu-
ated on DATe and SN test datasets. On non-shifted data, the
PCC method performs better than our trained models, with
very similar results between PCC, CNN-DATe and CNN-all
on DATe non-shifted. On shifted data, the CNN-all and CNN-
DATe have the best score. This shows that our method is
able to retrieve accurate displacements vectors. The model
that gives the lowest MAE on the most realistic data (DATe
dataset) is CNN-DATe. Therefore, this latter model has been
selected for the following evaluations on larger images.

3.2. Results on realistic synthetic regional data

The second stage of validation addresses an effective way to
evaluate the precision of our CNN by comparing it against
PCC and COSI-Corr on a test case using Landsat-8 satellite
images re-sampled to include a realistic synthetic offset.

We developed an algorithm that randomly generates real-
istic synthetic displacement fields. This physics based algo-
rithm is able to mimic an earthquake realistic rough surface
discontinuity and associated displacement field (with surface
displacement fields computed considering an homogeneous
elastic half-space [20]). These displacement fields D(x, y)



are used to warp satellite images using a quintic spline re-
sampling algorithm [21]. Here, D(x, y) is now not uniform,
as it describes a realistic fault, and the warped satellite images
are larger than before (k = 128). The pair of images gener-
ated and the synthetic displacement map are given in Figure
2. We apply the different models (CNN, PCC and COSI-Corr)
as a sliding 16×16 window to obtain the displacement maps.

Fig. 2. Pre-image (left) and post-image (center) warped with
the synthetic displacement map (right).

Fig. 3. (top) North(red)-South(blue) displacement maps;
(bottom) West(red)-East(blue) displacement maps for the
CNN, PCC, and COSI-Corr approaches.

From Figure 3, all three methods recover the first-order
features of the input synthetic displacement maps. How-
ever, because the displacement maps are constructed using a
sliding window operation, the resulting displacement field is
subject to a spatial smoothing controlled by the correlation
window size. Furthermore, whenever the correlation win-
dow straddles the discontinuity (representing the earthquake
ground rupture), the assumption of a simple 2D translation
breaks down, and the retrieved values will be biased. N-S
residual displacement maps (correlation minus synthetic) are
shown in Figure 4. The large residual close to the synthetic
discontinuity reflects the inability of the correlation window
to reliably capture the displacement when the window crosses
the discontinuity. Table 3 gives the mean, the standard devia-
tion (std), and the maximum error around the fault artificially
created. PCC has high mean and std error for the N-S compo-
nent, while CNN is closer to the state-of-the-art COSI-Corr.
The latter contains the best mean and std results, yet with
some outliers (larger maximal errors).

Fig. 4. North(red)-South(blue) residual displacement maps

Mean Std Max
WE NS WE NS WE NS

CNN 0.066 0.059 0.065 0.077 0.97 0.98
PCC 0.047 0.12 0.069 0.14 0.97 1.14

C-Corr 0.041 0.046 0.059 0.071 1.74 1.81

Table 3. Displacement errors (mean, standard deviation and
maximum) of our CNN, PCC and C-Corr correlators.

4. DISCUSSION AND CONCLUSIONS

This paper presented a technique to perform estimation
of ground deformation using satellite images (medium-
resolution Landsat-8), based on CNN. 4 models were evalu-
ated, and the one with most accurate results was selected, with
a precision below 0.1 pixel. The main purpose of the study
was to demonstrate, with an evaluation on realistic synthetic
displacement maps, the feasibility of a machine learning ap-
proach for accurate sub-pixel measurement in the context of
surface deformation estimation from remotely sensed satellite
imagery. We showed that we already have competitive results
with respect to state-of-the-art methods.

Yet, various issues remain to be further explored to im-
prove the results. One significant limitation is the calculation
of the sub-pixel shifted image when creating synthetic data:
fractional pixel re-sampling can introduce bias and error in the
training data which will ultimately limit the precision we can
currently achieve. To some extent, this bias can be learned,
which likely explains why we achieve higher accuracy than
traditional phase correlation methods (which do not learn).
However this bias does not exist in real images. In a future de-
velopment, we will also add non-uniform shifts when training
in order to be more robust to real displacements. The architec-
ture of our model could also be improved in order to operate
with different sizes of windows, or even to output a full dis-
placement field instead of a 2D local vector (e.g. using U-net
architectures [15]). Finally, the advantage of a data-driven
approach is that additional data could be added in the train-
ing step to give the model more information in order to learn
the subtle relationships which contribute to perceived noise
in the final correlation maps. For example, adding illumina-
tion conditions associated with a particular image may allow
the illumination bias to be learned. With this very encourag-
ing preliminary study, we hope that future developments of
data-driven sub-pixel registration techniques will be able to
improve the current resolution of ground displacement maps.
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