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1 Aix-Marseille Université, CNRS, ISM, Marseille, 13009 Marseille, France
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Abstract—Estimating the distance traveled while navigating in a
GPS-deprived environment is key for aerial robotic applications. For
drones, this issue is often coupled with weight and computational
power constraints, from which stems the importance of minimalistic
equipment. In this study, we present a visual odometry strategy based
solely on two optic flow magnitudes perceived by two optic flow
sensors oriented at ±30◦ on either side of a drone’s vertical axis.
As results, (i) we measured the local optic flow divergence and the
local translational optic flow respectively as the subtraction and the
sum of the two optic flow magnitudes perceived (ii) we validated
experimentally the visual odometer on a hexarotor oscillating up-
and-down while following a 50m-long circular trajectory under three
illuminance conditions (117lux, 814lux and 1518lux). The measured
optic flow divergence was used to estimate the flight height by means
of an Extended Kalman Filter. The estimated flight height scaled the
measured translational optic flow, which was integrated to perform
minimalistic visual odometry.

I. INTRODUCTION

The estimation of the 2D position of a drone navigating in an
unknown environment in the absence of GPS is a challenging
task. One solution is concomitant onboard visual odometry and
mapping as well as onboard SLAM (Simultaneous Localisation
and Mapping), which requires complex computationally-intensive
algorithms [6, 11, 13]. A minimalistic alternative is IMU (Inertial
Measurement Unit) based dead reckoning – i.e. an inertial integra-
tion – [18]. Navigation strategies based on dead reckoning can be
implemented on aerial robots flying from landmark to landmark with
prior knowledge of the distances in-between. The dead reckoning
position signal can be used by an aerial robot to get close enough to
detect a landmark before reaching it, giving a new known starting
point. We applied and tested on a hexarotor a method to estimate
the distance traveled called SOFIa (Self-scaled Optic Flow time-
based Integration model), that has been previously assessed in
bio-plausible simulations [2]. The SOFIa method is based on the
integration of the translation Optic Flow (OF) scaled by the distance
with respect to a surface: the SOFIa method can therefore be seen
as an OF-based dead reckoning, without any feedback from the
environment (such as detection of a beacon or feedback from a
map).

In the case of indoor drones, reducing Size, Weight, and Power
(SWaP) of the perception equipment is particularly interesting to
estimate the local height and therefore to scale the OF. Thus,
the ability to rely only on minimalistic equipment is key. Several
strategies based on the use of cameras have been presented, such
as performing obstacle avoidance using stereo vision [3, 15, 14]
or detecting depth by means of monocular vision [17]. These
methods rely on computer vision algorithms, which often require
high computational power. A less demanding alternative is the use
of OF cues. Several visual odometric approaches involving the use

of OF have been successfully tested on flying robots [9, 19, 5].
All these approaches require ground height information providing
the factor scaling the visual information, which is often determined
separately by using a static pressure sensor [9] or stereovision [19,
5], for example.

Self-oscillations have been observed in honeybees flying both
in horizontal and vertical tunnels ([10] and [16] respectively). The
self-oscillatory movement generates a series of expansions and con-
tractions in the OF vector field, known as OF divergence. Previous
authors have shown that the changes in vertical speed and flight
height make the state vector of an oscillating drone observable [8].
Instabilities due to depth variation have been used to determine the
OF scale factor of the observed scene associated with bathymetric
information onboard an underwater vehicle [4]. In [1], the local
OF divergence was measured by means of two OF magnitudes
perceived by two OF sensors set on a chariot performing back-and-
forth oscillatory movements in front of a moving panorama. The
local OF divergence was then used to estimate the distance between
the chariot and the moving panorama by means of an Extended
Kalman Filter (EKF).

In this study, we tested the SOFIa method on a hexarotor equipped
with two OF sensors oriented downwards flying oscillating up-and-
down while following a circular trajectory. Tests were performed
in a flying arena under different illuminance conditions and with
different oscillation frequencies. We showed that the local OF
divergence and the local translational OF can be measured reliably
on the hexarotor respectively as the subtraction and as the sum of
two OF magnitudes perceived by two OF sensors. The measured
local OF divergence was then used to estimate the drone’s flight
height by means of an EKF. The estimated flight height scaled the
measured local translational OF, which was integrated to perform
visual odometry.

In section II, we discuss the method presented to measure the
local OF cues. In section III, we discuss the model of the visual
odometer. In section IV, we describe the details of the experiments
performed. In section V, we show experimentally that it is possible
to measure the local OF cues solely on the basis of two OF
magnitudes perceived by two OF sensors on the hexarotor. Finally,
we used the local OF cues to perform minimalistic in-flight visual
odometry.

II. COMPUTATION OF THE LOCAL OPTIC FLOW CUES BY MEANS

OF TWO OPTIC FLOW MAGNITUDES

The translational OF is the pattern generated on the OF vector
field by the translational motion of a drone flying above the ground
[7]. The local translational OF ωth

T can be expressed as the ratio



Fig. 1: a) The hexarotor equipped with two Optic Flow (OF) sensors flying along a bouncing circular trajectory in the Marseille’s flying
arena. b) Example of the hexarotor’s flight over 53m (3 oscillations per turn at 0.28Hz for a total of 10 turns).

Fig. 2: A hexarotor flies forward while oscillating up-and-down
above the ground at a flight height h. The drone’s velocity V can be
decomposed in the components vx and vh. The drone is equipped
with two Optic Flow (OF) sensors set at angles ϕ and −ϕ with
respect to its vertical axis and located at a distance D with respect
to the ground. The OF sensors perceive the OF magnitudes ω(ϕ)
and ω(−ϕ) respectively.

between the vx component of the drone’s velocity and the flight
height h (see Figure 2):

ωth
T =

vx
h

(1)

We can mathematically demonstrate that the local translational
OF can be measured as the sum of two OF magnitudes ω(ϕ) and
ω(−ϕ) perceived by two OF sensors oriented at angles ±ϕ with
respect to the normal to a surface, divided by a known factor of
2 · cos(ϕ)2 (see mathematical proof in Appendix A):

ωmeas
T =

ω(ϕ) + ω(−ϕ)

2 · cos(ϕ)2 =
vx
h

(2)

The series of contractions and expansions generated in the OF
vector field by an oscillatory movement is known as OF divergence.
When a drone flies forward while oscillating up-and-down above the
ground, in the OF vector field the OF divergence is superimposed
on the translational OF. Due to the oscillatory movement, the state
vector X = [h, vh]

T of the drone is locally observable [8] (see
Figure 2). The local OF divergence ωth

div can be expressed as the

ratio between the vh component of the drone’s velocity and h:

ωth
div =

vh
h

(3)

In [1], the authors have mathematically demonstrated that the
local OF divergence can be measured as the subtraction between
two OF magnitudes ω(ϕ) and ω(−ϕ) perceived by two OF sensors
oriented at angles ±ϕ with respect to the normal to a surface,
divided by a known factor of sin(2ϕ):

ωmeas
div =

ω(ϕ)− ω(−ϕ)

sin(2ϕ)
=

vh
h

(4)

To discard peaks due to noise, ωmeas
div was bounded at ±2rad/s:

when ωmeas
div > 2rad/s we considered ωdiv = 2rad/s, while when

ωmeas
div < −2rad/s we considered ωdiv = −2rad/s.

III. THE VISUAL ODOMETER METHOD

In [2], the authors have assessed in simulation a bio-inspired
visual odometer called SOFIa (Self-scaled Optic Flow time-based
Integration model). The SOFIa model is based on the integration
of the local translational OF scaled by the estimates of the distance
with respect to the ground ĥ:

X̂SOFIa =

∫
ωT · ĥdt (5)

In this study, we use the same principle: the translational OF
measured as the sum of the two OF magnitudes perceived by the
two OF sensors (as in equation (2)) is scaled by the estimates of
the flight height ĥ and integrated in order to measure the traveled
distance X̂SOFIa onboard a multirotor.

IV. MATERIALS AND METHODS

A. The hexarotor

We used a hexarotor developped together with HexadroneTM, with
as onboard low-level flight controller the PX4 autopilot system [12].
We also used a trajectory tracking algorithm1 to apply the up-and-
down oscillating trajectories on the hexarotor. PX4 is particularly
convenient thanks to its adaptability to the nature of the drone
(air-wing, quadrotor, hexarotor, etc.) and its reliability when the
drone is associated with QGroundControl, a Ground Control Station
(GCS), and the MAVLINK protocol. The position and orientation
of the drone used in the drone controllers came from the MOCAP
system installed in the Marseille’s flying arena. The flying arena
was equipped with 17 motion-capture cameras covering a 6 × 8

1https://github.com/gipsa-lab-uav/trajectory control



× 6 m volume using a VICONTM system. Based on the intrinsic
attitude stability of the hexarotor, we can consider that there is no
rotational component measured by our OF sensors. Furthermore,
we consider that pitch and roll are negligible despite the circular
bouncing trajectory.

We designed two printed circuit boards to embed the Pixart
PAW3903 OF sensors (see Table I), that were set below the
hexarotor at ϕ = ±30◦ with respect to its vertical axis as illustrated
in Figure 2. The angle ϕ was set at 30◦ to take into consideration
the OF sensors’ view-field and the average flight height with respect
to the ground. Since we used the VICON MOCAP system as a
localisation system, we reported the height of the OF sensors as the
drone’s flight height.

Each test consisted of a circular trajectory of about 50m with up-
and-down oscillations above the ground with an average flight height
of 0.55m (see Figure 1). The oscillation peak-to-peak amplitude
was 0.5m. Datasets were saved on rosbag files after each test and
processed with the Matlab/Simulink 2021 software.

Specifics OF sensors
OF sensor chip Pixart PAW3903
OF sensor PCB 2 × 2g
Hardware read-out of the 4 sensors Arduino Nano

TABLE I: Table of the specifics of the Optic Flow (OF) sensors
equipped on the hexarotor.

B. The Extended Kalman Filter calculations for the estimation of
the drone’s flight height

We chose to model the hexarotor’s system as simply as possible
by using a double integrator and by giving the acceleration az on
the z axis available on the drone’s IMU as input to the state space
model. The hexarotor’ state space representation can be expressed
as: Ẋ = A ·X +B · az =

[
0 1

0 0

]
·X +

[
0

1

]
· az

Y = g(X) = [X(2)/X(1)] = vh/h = ωdiv

(6)

where X =
[
h, vh

]T is the hexarotor’s state vector.
To estimate the drone’s flight height ĥ, we used an EKF that re-

ceived as input the acceleration of the drone az and as measurement
the local OF divergence ωmeas

div measured as in equation (4). The
use of an EKF was necessary due to the non-linearity of the local
OF divergence (see equation (3)). See Appendix B for the EKF
calculations.

V. RESULTS

To show experimentally that the signals measured by means of
equations (4) and (2) on the hexarotor were indeed respectively the
divergence and the translational OF cues, 12 tests were performed
at an oscillation frequency of 0.28Hz for each of the following
illuminance conditions: 1518lux (2.71 · 10−4W/cm2), 814lux
(2.15·10−5W/cm2) and 117lux (5.36·10−6W/cm2). As shown in
Figure 3.a, the values of the measured local OF divergence ωmeas

div

of the 12 tests performed at 1518lux pooled together and of the
corresponding theoretical local OF divergence ωth

div (computed as
in equation (3)) presented a linear relation, as did those of the
measured local translational OF ωmeas

T and of the corresponding
theoretical local translational OF ωth

T (computed as in equation
(1)). Similar results were obtained for the 12 tests performed at
117lux (see Figure 3.b). Thus, we can use equation (4) to measure

Fig. 3: The plots show the characteristics of the measured Optic
Flow (OF) cues with respect to their theoretical counterparts as
perceived onboard the hexarotor oscillating vertically at 0.28Hz.
The median values and the curves representing the Median Average
Deviation (MAD) of the OF cues are shown to display the range of
values measured. At 1518lux, the local OF divergence presented a
MAD of 0.48rad/s (a.i), while the local translational OF presented
a MAD of 0.43rad/s (a.ii). At 117lux, the local OF divergence
presented a MAD of 0.47rad/s (b.i), while the local translational
OF presented a MAD of 0.6rad/s (b.ii). All plots show linear
relations between the measured OF cues and the theoretical OF cues
computed under the same illuminance conditions. Therefore, they
can be considered as experimental counterparts of the mathematical
proofs of equations (4) and (2) respectively.

the local OF divergence cue and equation (2) to measure the local
translational OF cue reliably onboard the hexarotor.

The measured local OF divergence ωmeas
div was an oscillating

signal slightly distorted as theoretically expected (see example in
Figure 4.a). The local OF divergence measured for the 12 tests
performed at 1518lux presented a Signal-to-Noise Ratio (SnR,
computed as the squared ratio of the root mean square of the signal
and the root mean square of its noise) ranging between 4.44dB and
5dB, with a median of 4.86dB. Similar results were obtained for
the 12 tests performed at 117lux: the SnR ranged between 4.07dB
and 5.14dB, with a median of 4.97dB. As illustrated in Figure 4.a,
the estimates of the flight height ĥ obtained by means of an EKF
receiving as measurement ωmeas

div converged within 4s to the ground
truth h given by the MOCAP system. Figure 4.b shows the median
and the Median Average Deviation (MAD) of the percentage errors
of ĥ with respect to h of all 36 tests pooled together. In particular,
for the 12 tests performed at 1518lux the average percentage errors
ranged between −8.04% and 3.06%, with a median of −2.04%
(corresponding to about 0.01m). For the 12 tests performed at
814lux, the average percentage errors ranged between −8% and
6.26%, with a median of −2.3% (corresponding to about 0.012m).
For the 12 tests performed at 117lux the average percentage errors
ranged between −2.76% and 13.52%, with a median of 5.13%
(corresponding to about 0.026m).

The measured local translational OF ωmeas
T was an oscillating

signal also slightly distorted as theoretically expected (see example
in Figure 5). For the 12 tests performed at 1518lux ωmeas

T presented



Fig. 4: (a) Example of test performed at 1518lux with an oscillation
frequency of 0.28Hz. (i) The measured local Optic Flow (OF)
divergence ωmeas

div was an oscillating signal, with a Signal-to-Noise
Ratio (SnR) of 4.87dB. (ii) ωmeas

div was used as measurement by
the Extended Kalman Filter (EKF) to estimate the hexarotor’s flight
height ĥ (in dashed line), which converged within 4s to the ground
truth h (in continuous line). (iii) The percentage error of ĥ with
respect to h ranged between −55.39% and 51.66%, with an average
of −3.97%. (b) The percentage errors of ĥ with respect to h
of all 36 tests performed at 1518lux, 814lux and 117lux were
pooled together: after convergence, they ranged between −8.04%
and 13.52%. The median values and the curves representing the
Median Average Deviation (MAD) are shown to display the range
of percentage errors computed. The MAD after convergence ranged
between 10.04rad/s and 29.57rad/s.

a SnR ranging between 23.18dB and 31.15dB, with a median of
26.84dB. Similar results were obtained for the 12 tests performed
at 117lux: the SnR ranged between 22.42dB and 27.96dB, with
a median of 25.08dB. To assess the accuracy of the visual odom-
etry performed, the final percentage error in the estimates of the
distance traveled X̂SOFIa with respect to the ground truth Xgt

traveled along the horizontal component of the circular trajectory
was computed. As shown in Figure 6, the final percentage errors
of the 12 tests performed at 1518lux had a median of 1.55%
(corresponding to about 0.78m), the final percentage errors of the 12
tests performed at 814lux had a median of −1.87% (corresponding
to about 0.94m), and the final percentage errors of the 12 tests
performed at 117lux had a median of 5.04% (corresponding to
about 2.52m).

To analyse the robustness of the visual odometry strategy pre-
sented to different trajectories, we performed 12 tests at an oscilla-
tion frequency of 0.25Hz and 12 tests at an oscillation frequency
of 0.31Hz under an illuminance of 1518lux (see Figure 7). At
an oscillation frequency of 0.25Hz, the average percentage error
of the estimates of ĥ with respect to h ranged between −6.49%
and 10.37%, with a median of −2.08%. Similarly, at an oscillation
frequency of 0.31Hz the average percentage error ranged between
−7.14% and 8.59%, with a median of 4.12%. At 0.25Hz the

Fig. 5: Example of test performed at 1518lux with an oscillation
frequency of 0.28Hz. (i) The estimates of the hexarotor’s flight
height ĥ presented an average percentage error after convergence
(4s) of −3.97%, with a minimum value of −55.39% and a
maximum value of 51.66%. (ii) The measured local translational
Optic Flow (OF) ωmeas

T ranged between 0rad/s and 2.84rad/s,
with a median of 0.82rad/s and a Signal-to-Noise Ratio (SnR) of
24.98dB. (iii) The estimates of the distance traveled X̂SOFIa were
computed as the integration of ωmeas

T scaled by ĥ and compared
to the ground truth Xgt. The final percentage error of the visual
odometry performed was −3.10%.

Fig. 6: The error in the estimates of the distance traveled X̂SOFIa

with respect to the ground truth Xgt was expressed in % for all
the 36 tests performed with an oscillation frequency of 0.28Hz.
For the 12 tests performed at 1518lux the final percentage error
ranged between −8.85% and 5.54%, with a median of 1.55%. For
the 12 tests performed at 814lux the final percentage error ranged
between −8% and 11.44%, with a median of −1.87%. For the 12
tests performed at 117lux the final percentage error ranged between
−4.74% and 14.83%, with a median of 5.04%.

final percentage error of the odometry had a median of 0.96%
(corresponding to about 0.48m), while at 0.31Hz it had a median
of 3.37% (corresponding to about 1.69m).

VI. CONCLUSION

The need to perform visual odometry with minimalistic equip-
ment stems from weight and computational power constraints
observed on drones. In this study, we presented a minimalistic
visual odometry strategy based solely on the use of two OF sensors
placed on a hexarotor at ±ϕ with respect to its vertical axis. The
performance of the minimalistic visual odometry strategy presented
was not influenced by illuminance conditions ranging between
117lux and 1518lux. To test the robustness to different trajectories,
we performed tests at oscillation frequencies of 0.25Hz, 0.28Hz



Fig. 7: (a) Examples of test trajectories performed with oscillation
frequencies of 0.25Hz (in black), 0.28Hz (in blue) and 0.31Hz (in
red) at 1518lux. (b) The error in the estimates of the distance trav-
eled X̂SOFIa with respect to the ground truth Xgt was expressed in
%. For the 12 tests performed at 0.25Hz the final percentage error
ranged between −8.61% and 14.58%, with a median of 0.96%. For
the 12 tests performed at 0.28Hz the final percentage error ranged
between −8.86% and 5.54%, with a median of 1.55%. For the 12
test performed at 0.31Hz the final percentage error ranged between
−9.13% and 11.09%, with a median of 3.37%.

and 0.31Hz under an illuminance of 1518lux. The performance of
the method presented was similarly accurate for all three oscillation
frequencies considered.

The visual odometry strategy presented is interesting for aerial
robotic applications in GPS-denied environments, such as buildings
or tunnels, to assess the flight distance in order to travel from
landmark to landmark. The low weight of the OF sensors and
the low computational power required to measure the local OF
cues make this method particularly interesting for micro-flyers. We
acknowledge that the final traveled distance estimates are subject
to a small error as the odometry strategy is a dead-reckoning
method without any feedback from the environment. However, such
minimalistic OF based odometry strategy would allow a future drone
to assess if it comes in proximity of its base station without GPS.
For experimental reasons, tests were performed over flat ground.
However, previous studies have shown that the SOFIa model is
robust to ground irregularities. Thus, future work will include tests
in the presence of ground irregularities, such as small slopes, both
in the flying arena and outdoors. Future work will possibly include
tests under a wider range of illuminance conditions, oscillation
frequencies, trajectories and oscillation amplitudes.

APPENDIX A
COMPUTATION OF THE LOCAL TRANSLATIONAL OPTIC FLOW BY

MEANS OF TWO OPTIC FLOW MAGNITUDES

The local translational OF can be measured as the sum of two OF
magnitudes ω(ϕ) and ω(−ϕ) perceived by two OF sensors oriented
at angles ±ϕ with respect to the normal to a surface, divided by a
known factor of 2 · cos(ϕ)2:

ωmeas
T =

ω(ϕ) + ω(−ϕ)

2 · cos(ϕ)2 =
vx
h

(2)

Proof. We consider a drone equipped with two OF sensors oriented
toward the ground at angles ϕ and −ϕ with respect to its vertical

axis. We can express the OF magnitudes perceived by each OF
sensor as:

ω(ϕ) =

∥∥∥−→V ∥∥∥
D

· sin
̂(
D⃗, V⃗

)
=

∥∥∥−→V ∥∥∥
D

· sin(π
2
− ϕ+ α)

We can express the two components of the velocity vector
−→
V of

the drone flying above the ground as:

vx =
∥∥∥−→V ∥∥∥ · cosα

vh =
∥∥∥−→V ∥∥∥ · sinα

with ∥∥∥−→V ∥∥∥ =
√

v2x + v2h

From which we obtain:

cosα =
vx√

v2x + v2h

sinα =
vh√

v2x + v2h

Thus

ω(ϕ) =

∥∥∥−→V ∥∥∥
D

· sin
̂(
D⃗, V⃗

)
=

√
v2x + v2h

D
· sin

(π

2
− ϕ+ α

)
=

√
v2x + v2h

D
·
(
sin

(π

2
− ϕ

)
· cosα+ cos

(π

2
− ϕ

)
· sinα

)
=

vx

D
· sin

(π

2
− ϕ

)
+

vh

D
· cos

(π

2
− ϕ

)
=

vx

D
· sin

(π

2
− ϕ

)
+

vh

D
· sinϕ

=
∥v⃗x∥
D

· sin
̂(
D⃗, v⃗x

)
+

∥v⃗h∥
D

· sin
̂(
D⃗, v⃗h

)
We can then express the OF magnitudes ω(−ϕ) and ω(ϕ)

perceived by the two OF sensors as:

ω(−ϕ) =
vx

D
· sin

(π

2
− ϕ

)
−

vh

D
· sinϕ

ω(ϕ) =
vx

D
· sin

(π

2
− ϕ

)
+

vh

D
· sinϕ

Thus, the local translational OF can be measured as:

ω(ϕ) + ω(−ϕ) = 2 · vx
D

· sin(π
2
− ϕ)

Since h = D·cos(ϕ) is the distance of the drone from the ground,
we obtain:

ω(ϕ) + ω(−ϕ) = 2 · vx
h

· sin(π
2
− ϕ) · cos(ϕ) (7)

By means of the trigonometric formula sin(π
2
− ϕ) = cos(ϕ),

we can express equation (7) as follows:

ωmeas
T = ω(ϕ) + ω(−ϕ) =

vx
h

· 2 · cos(ϕ)2

where ω is the OF magnitude, ϕ is the visual direction of the OF
sensor with respect to the axis z and h is the drone’s flight height.



APPENDIX B
EXTENDED KALMAN FILTER CALCULATIONS

The discretized model of the hexarotor (equation (6)) can be
expressed as: {

X[k + 1] = Φ ·X[k] + Γ · U [k]
Y [k] = Ck ·X[k] +Dk · U [k]

(8)

with 
Φ = eA·dt

Γ = (
∫ dt

0
eA·τdτ) ·B = (AT · eA·dt −AT ) ·B

Ck = h(Xk) =
[
X2[k]
X1[k]

]
Dk = 0

(9)

where dt is the discretization time. To estimate the flight height h,
the EKF took the following iterative steps for each kth time:
Prediction step
(a) One-step ahead prediction

Xk/k−1 = Φ ·Xk−1/k−1 + Γ · Uk−1/k−1 (10)

(b) Covariance matrix of the state prediction error vector

Pk/k−1 = Φ · Pk−1/k−1 · ΦT +Q (11)

Correction step
(c) Measurement update

Xk/k = Xk/k−1 +Kk · (Yk −Hk ·Xk/k−1) (12)

with Kk Kalman gain defined as:

Kk = Pk/k−1 ·HT
k · [Hk · Pk/k−1 ·HT

k +Rk]
−1 (13)

and Hk Jacobian matrix for the non linear function defined as
follows:

Hk =
∂h

∂X
|X=Xk/k−1

=
[

− ḣ
h2

1
h

]
(14)

(d) Covariance matrix of state estimation error vector

Pk/k = Pk/k−1 +Kk · [Hk · Pk/k−1 ·HT
k +Rk] ·KT

k (15)

(e) Innovation
Ỹk = Yk −Hk ·Xk/k (16)
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