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Abstract—In many situations, it is of interest for authentication
systems to adapt to context (e.g., when the user’s behavior
differs from the previous behavior). Hence, during authentication
events, it is common to use contextually available features to
calculate an impersonation risk score. This paper proposes an
explainability model that can be used for authentication decisions
and, in particular, to explain the impersonation risks that arise
during suspicious authentication events (e.g., at unusual times
or locations). The model applies Shapley values to understand
the context behind the risks. Through a case study on 30,000
real world authentication events, we show that risky and non-
risky authentication events can be grouped according to similar
contextual features, which can explain the risk of impersonation
differently and specifically for each authentication event. Hence,
explainability models can effectively improve our understanding
of impersonation risks. The risky authentication events can be
classified according to attack types. The contextual explanations
of the impersonation risk can help authentication policymakers
and regulators who attempt to provide the right authentication
mechanisms, to understand the suspiciousness of an authentica-
tion event and the attack type, and hence to choose the suitable
authentication mechanism.

Index Terms—Explainable AI, Shapley Values, Authentication,
Impersonation Risk

I. INTRODUCTION

Authentication technique weaknesses, like password-based
authentication, are known, and service operators often im-
plement additional authentication mechanisms to limit the
restraints of the individual techniques [6], [13], [18]. During
authentication events, contextually available features are used
to calculate a risk score. Such risk scores are typically clas-
sified into three buckets: low, medium, and high [5], [8], [11].
Additional authentication mechanisms are required if a high
risk is detected [21]. Therefore, the impersonation risk scores
are often referred to as black boxes, even if they do not contain
any information about the context. The question of which
authentication mechanisms are suitable (e.g., appropriate
for security and usability) in the context can not be answered
only based on the score. For example, a “verification code send
per SMS” can not be bypassed by an attacker who has stolen
the password, but it can be bypassed by one who owns the

victim’s device. To decide which authentication mechanism to
require, contextual explanations giving insights about the risk
type (e.g., password theft, device theft) in addition to the risk
score are necessary.

Explainable AI models provide details or reasons to make
the functioning of Artificial Intelligence (AI) straightforward
or easy to understand. Explanations can answer different
kinds of questions about what the AI model is learning,
which parts of the inputs are the most important for the
prediction and can we trust the model’s decision [12]. From a
mathematical viewpoint, “simple” statistical learning models,
such as linear and logistic regression models, provide high
interpretability but, possibly, limited predictive accuracy. On
the other hand, “complex” machine learning models, such
as neural networks, provide high predictive accuracy at the
expense of a limited interpretability [12]. The same holds
for impersonation risk scores calculated based on available
contextual features during the authentication event. “Simple”
statistical estimations are easy to understand, but when more
“complex” models are used, it becomes hard to understand
the risk prediction of an authentication event. Hence, it be-
comes difficult for authentication policymakers and regulators
to provide the suitable authentication mechanisms. Among
other dimensions, explainability models can be distinguished
according to the scope of explications they provide. There
are global explainability models which aim to explain the
model as a whole and local explainability models that seek to
explain individual predictions and that we propose to use to
explain the risk of a specific authentication event. Also, we
can distinguish between model-specific and model-agnostic
explainability models. The latter, in contrast to the former,
can be used without any knowledge about the AI model [12].
Shapely values provide local and model-agnostic explanations
of AI algorithms by assuming that each feature is a player and
the prediction is the outcome of the game. The Shapley value
of a feature is the average of all its marginal contributions
to all possible coalitions of contextual features [12]. Instead
of how fair the distribution of a game’s payout is, we want to
analyze how each contextual feature contributes to the risk



score of an authentication event that estimates the risk of im-
personation. We aim to answer the question of how to explain
the risk of a suspicious authentication attempt. Our “game”
is the risk score estimation. The “players” are the contextual
features. They contribute to the risk score. The “gain” of one
specific contextual feature is its marginal contribution to the
risk score. Within this work, we propose a contextual feature
engineering approach based on Shapley values. With the help
of a case study on real-world authentication events, we show
that the risk of impersonation can be explained differently
and specifically for each authentication event. Through this
case study we show that explainable machine learning models
can effectively improve our understanding of impersonation
risks. Authentication policymakers and regulators can use this
explanations in addition to the risk score to identify risk
types and to choose the suitable authentication mechanisms.
Predicting when an authentication event is risky can be of use
but more importantly, understanding the risk score can help
to identify sets of clusters (authentication events with similar
characteristics) that are at high risk. This will lead to better
and appropriate authentication mechanisms adapted to the risk
type of an authentication event. Our contribution consists of
a case study to show that our proposed explainable AI model
can help to understand the risks of impersonation. We provide
a framework for authentication regulators and practitioners to
apply the methodology of Shapley values to risky authentica-
tion events. We also propose a clustering of the explanations
and a novel reasoning about risk types (authentication attacks)
with the help of contextual information. Our application case
study shows for 30,000 real world authentication events that
it is possible to explain the risk of impersonation differently
and specifically for each authentication event and that those
explications can help authentication practitioners to reason
about different attack types.

II. MOTIVATIONAL SCENARIOS

In order to determine the suitable authentication mechanism
for a particular context, which is the role of Risk Based
Authentication (RBA) approaches, it is crucial to understand
the context behind a risk of impersonation beyond the score.
The relevance of authentication mechanisms cannot simply be
determined by a one-dimensional risk score, as different types
of risks need to be differentiated.

a) Scenario 1: Let us assume a legitimate user who
authenticates regularly with username, password, and an One
Time Password (OTP). An attacker was able to get the user
credentials through a phishing attack. Using social engineer-
ing, the attacker calls the user and convinces him to give away
an OTP. Then, the attacker enters the credentials and types in
the OTP, getting access to the protected resource.

b) Scenario 2: Another possible scenario is a user who
authenticates regularly with username, password, and push-
authentication1. The attacker hacked the phone, and malware

1A mobile-centric authentication mechanism whereby the service provider
sends the user a notification and the user responds to the challenge by
performing an action (e.g.,“OK” button)

ended up being installed by an attacker, giving him complete
control of the user’s phone. Push is not protected by a PIN
or biometric. The attacker would use stolen credentials to
authenticate, while monitoring the user’s phone. When the
push arrives, the attacker will use the control of the phone
to approve the push and get access to the resource.

The two scenarios illustrate that for high-risk authentication
attempts, there are different types of attacks. These differences
are not considered when the context information is exclusively
used to calculate a one-dimensional risk score. Therefore, there
is a need for a modelling framework that enables a complex
and fine-grained mapping between context information and
authentication mechanisms. The following example further
illustrates the importance of taking into account context infor-
mation for authenticating legitimate users in different contexts
and not only denying access in the case of high-risk.

c) Scenario 3: Let us consider Bob, a German traveler
in Spain. He checks his e-mails at 2:00 am in a poorly lit
room. He enters the username and password correctly. His e-
mail provider can acquire contextual information: geolocation,
luminosity, time, and typing speed. Bob’s e-mail provider
determines some threats: Bob is not located in Germany as
usual, he is checking his e-mails at an unusual time, it is
dark around him, and he is typing slower than usual. All
these threats make the e-mail provider assume that there is
a risk that an intruder who has Bob’s password might try to
access Bob’s e-mails. Bob has registered facial recognition
and fingerprint as authentication mechanisms. Password-based
authentication can be bypassed by the intruder who has stolen
Bob’s password. Face recognition is not efficient to use in the
dark. Bob needs to be authenticated with his fingerprint.

The three presented scenarios would all have led to a high
score in a risk-score-based approach. However, we see that to
properly fend off attackers and allow legitimate users access,
more information about the conetxt is necessary.

III. METHODOLOGY

In this section, we first present a statistical approach to
measure impersonation risks, which is proposed in [5]. Since
RBA is not a standardized procedure, multiple solutions exist
in practice. We focus on Freeman et al.’s [5] implementation,
since other works showed good performance [21]. Also, this
RBA model is known to be widely used, e.g., by popular
online services like Amazon, Google, and LinkedIn [20], [21].
Afterwards, we explain how to exploit the explanatory context
information contained in the impersonation risk score with
the help of Shapley values. The Shapley method is agnostic
(model neutral) applied to the predictive output, regardless of
which model generated it. Hence, the method can be applied to
any impersonation risk score estimation model. Also, with the
Shapley method, local explanations can be obtained, and we
can hence explain every authentication event separately.
There are other local, model-agnostic explanation methods,
e.g., Individual Conditional Expectation (ICE), Local Surro-
gate (LIME), Counterfactual Explanations and Scoped Rules
(Anchors) [12]. According to [12], Shapley values might be



the only method to deliver a full explanation, which is based
on a solid theory. The problem of allocating responsibility
for risks plays an important role in other domains as well
(e.g., in finance to evaluate the risk of an individual asset in
a portfolio). We identify a set of works proposing the use of
Shapley values for allocating responsibility for risks [2], [3],
[14].

A. Statistical Approach to Measure Impersonation Risks

Impersonation risk models are usually employed to esti-
mate the expected risk of impersonation of an authentication
event a of a given user u ∈ U . The most important component
of an impersonation risk model is a risk score, which is usu-
ally estimated statistically employing context scoring models
[21]. sa = p(Xa, u, Ya) is the risk score of an authentication
event a of a user u, where Xa = (x1

a, ..., x
d
a) ∈ X indicates

a d-dimensional vector of explanatory context information
characterizing an authentication event (e.g. IP address, user
agent). Ya ∈ G, I is the class label of a genuine authentication
event (G) or an imposter authentication event (I) and f is a
classification function f : s → Y .

B. Exploiting the Explanatory Context Information

We now explain how to exploit the explanatory context
information contained in the risk score with the help of
Shapley values. For an authentication event a, we propose
to calculate the Shapley value for each contextual feature
xi
a ∈ Xa = {x1

a, ..., x
d
a} characterising a. For each feature

xi
a, the Shapley value is defined as

θxi
a
(a) =

∑
za⊆Xa\xi

a

|za|! (d− |za|−1)!

d!

[p(za ∪ xi
a, u, Ya)− p(za, u, Ya)] (1)

where p is the risk score estimation model and Xa the
input vector of all d contextual features characterising the
authentication event a. za ⊆ Xa \ xi

a is a subset of Xa that
does not contain the contextual feature xi

a for that the Shapley
value is calculated. The quantity

[p(za ∪ xi
a, u, Ya)− p(za, u, Ya)] = MCxi

a,za
(2)

is the contribution of the contextual feature xi
a to the im-

personation risk estimation in the coalition za ∪ xi
a. This

contribution is calculated as the difference between the risk
score p estimated from za ⊆ Xa \ xi

a and p estimated
from za ∪ xi

a. In Equation 2, we summarize the marginal
contributions of xi

a to all possible subsets za ⊆ Xa \ xi
a. The

fraction
|za|! (d− |za|−1)!

d!
(3)

is a weighting function of MCxi
a,za

. Depending on the number
of contextual features in the subset za and the total number
of contextual features d, MCxi

a,za
is weighted differently. If

a contextual feature is added to an already large number of
contextual features in za and yet the risk score is strongly

influenced, then this must be weighted more than if the
contextual information is added to an empty set. In the latter
case, it is normal that the risk score is then strongly influenced.

a) Example: Let us take the example of Xa =
{device, IP, location} with d = 3 illustrated in Table I.

We want to calculate the Shapley value of xlocation
a . There

are four subsets za ⊆ Xa \ xlocation
a (column 1). The risk

score can be estimated for these four sets (column 2)and
then for the union of these four sets and xlocation

a (column
4). MCxlocation

a ,za (column 5) is the difference between the
estimated risk scores. Depending on the number of contextual
features in za we calculate the weighting function (column 6).
To obtain θxlocation

a
(a) we multiply MCxlocation

a ,za with the
weight (column 7) and sum up all the values: θxlocation

a
(a) =

0.198 + 0.051 + 0.034 + 0.099 = 0.382. The Shapley value
of xlocation

a feature is equal to 0.382. We can calculate the
Shapley values for all the contextual features and compare
their values to understand which contextual features contribute
the most to the impersonation risk. The Shapley values can
be used to indicate which contextual features contribute
more to the prediction of the impersonation risk of an
authentication event. Not only in general, as it is typically
done by statistical models, but differently and specifically for
each authentication event.

b) Appropriateness of Shapley Values for Risk Attribu-
tion: Before explaining how we applied our methodology
to a real-world dataset, we now explore, why the Shapley
value properties (efficiency, symmetry, linearity, null-player)
are appealing in the context of risk attribution [14].
Efficiency means that the sum of the Shapley values of all
features equals the value of the coalition of all features, so
that all the gain (risk) is distributed among the features [12].
Hence, the Shapley values reflect the risk diversification at
the system level (at the authentication event level in our
case). Symmetry means that for two equal features xi

a and
xj
a MCxi

a,za
= MCxj

a,za
∀za ∈ Xa [12]. The symmetry

property means that the labeling of individual components
does not affect their measured contribution to system-wide
risk. Linearity means that when two risk estimation models
described by p1 and p2 estimate the risk of impersonation,
then θ(xi

a,p1)+(xi
a,p2) = θ(xi

a,p1) + θ(xi
a,p2) and θ(xi

a,p1)∗λ =
λ ∗ θ(xi

a,p1) [12]. The linearity property is useful in contexts,
where model and parameter uncertainty calls for robust es-
timates. Such estimates are often obtained by combining the
outcomes of competing risk estimation models. The linearity
property of the Shapley Value implies that a robust estimate
of a contextual feature’s contribution to the impersonation risk
of an authentication event would be the (weighted) average
of the Shapley values for this feature across different risk
estimation models. A contextual feature is a null-player if
p(za ∪ xi

a, u, Ya) = p(za, u, Ya)∀za. The Shapley value of
a null-player is zero [12]. Given a player set Xa, the Shapley
value is the only map from the set of all risk score estimations
to risk score vectors that satisfies all four properties: efficiency,
symmetry, linearity and null-player. Given the one-to-one
mapping between two risk estimation models, we henceforth



za p(za, u, Ya) za
⋃

xa p(za
⋃

xi
a, u, Ya) MCxi

a,za
|za|!(d−|za|−1)!

d!

{device, IP} 0.3 {device, IP, location} 0.9 0.6 0.33 0.198
{device} 0.4 {device, location} 0.7 0.3 0.33 0.051
{IP} 0.2 {IP, location} 0.6 0.4 0.33 0.034
{} 0.1 {location} 0.4 0.3 0.17 0.099

Table I
EXAMPLE: CALCULATION OF THE SHAPLEY VALUE OF xlocation

a FOR Xa = {device, IP, location}

focus exclusively on the risk attribution problem and thus on
the risk measure, s.

IV. APPLICATION CASE STUDY

We now present the application case study of our methodol-
ogy on real-world authentication events. Within this case study
we demonstrate that our proposed framework can be applied
to a dataset of real-world authentication events of a telecom-
munication company and that the obtained explanations are
useful for the authentication policymakers and regulators to
make adapted authentication decisions according to the attack
types. Authentication policymakers from other companies can
apply our framework in the same way and thus get information
about attack types relevant to them.

We first describe the dataset which we used to test our model
and explain the proposed method in detail. Afterwards, we
present the obtained results. By describing our approach in
detail, this chapter provides a framework that can be used by
authentication regulators to apply the method in the same way
on their data.

A. Data

We test our model to data supplied by a telecommunica-
tion company. In summary, the analysis relies on a dataset
composed of contextual information on 30,000 authentication
events mostly based in France for the year 2022. The context
information contains twelve categorical contextual features
(see Table II).

B. Method

Based on [5], we have constructed a statistical estimation
of the impersonation risk. For every authentication event, we
calculate the logarithmic probability that it is a legitimate event
and an imposter event. The actual risk score describes the
difference between these two log probabilities.

sa = log(p(Xa, u, I))− log(p(Xa, u,G)) (4)

We choose a threshold λ for the risk score to label the events
as genuine and imposter events.

First, we calculate some basic descriptive statistics to
summarise the central tendencies, and to analyze how the
values of the contextual features are spread off.

Then, we split the authentication event data between a
training set (80%) and a test set (20%), using random
sampling without replacement. We then get 24,000 training
samples and 6,000 test samples.

On these samples, we run a Logic Regression, a Ran-
dom Forest Classifier, a Decision Tree Classifier, and a
Support Vector Machines (SVC) Classifier. To obtain Ya,
the estimated impersonation risk probability is classified into
“genuine” (G) or “imposter” (I), depending on whether the
threshold is passed or not. For a given threshold T, one
can then count the frequency of the possible outputs: False
Positives (FP): authentication events predicted to imposter,
that are genuine; False Negatives (FN): authentication events
predicted to genuine, which are imposter; True Positives
(TP): authentication events predicted as imposter, which are
imposter; True Negatives (TN): authentication events predicted
as genuine, which are genuine. The misclassification rate of
a model can be calculated as

FP + FN

TP + TN + FP + FN
(5)

and it characterizes the proportion of wrong predictions among
the total number of predictions. False Positive Rate (FPR) and
True Positive Rate (TPR) are then calculated as follows:

FP

FP + TN
(6)

TP

TP + FN
(7)

Further, we analyze the Receiver Operating Characteristic
(ROC) curves of the four classifiers. They plot the FPR on
the Y axis against the TPR on the X axis for a range of
threshold values. The ideal ROC curve coincides with the Y
axis, a situation which cannot be realistically achieved. The
best model will be the one closest to it. The ROC curve is
usually summarised with the Area Under The Curve (AUC), a
number between 0 and 1. The higher the AUC, the better the
model. Next, we calculate the Shapley value explanations of
the authentication event logs in the test set, using the values
of their explanatory contextual features. In particular, we use
the TreeSHapley Additive exPlanations (SHAP) method in
combination with Random Forest. Tree SHAP is a fast and
exact method to estimate Shapley values for tree models and
ensembles of trees [12]. We calculate the local Shapley values
for the 6,000 authentication events of our test sample. We get
6,000 arrays consisting of two sub-arrays. In the first sub-
array, we get the Shapley values for our first class (imposter
authentication events). In the second sub-array, we get the
Shapley values for the second class (genuine authentication
events). The last part of the analysis involves using the
Shapley value vectors that correspond to each authentication



Context Information Type Description
changingIP Boolean (0,1) the IP address is known or unknown from

the user’s history
gatewayOwner Boolean (0,1) the user is or is not behind his or her own line
changingDevice Boolean (0,1) the device is known or unknown from the

user’s history
internISP Boolean (0,1) the Internet Service Provider (ISP) is or is not

the telecommunication company
app Category (#38) the accessed resource (e.g., Mail)
fastLocationChange Boolean (0,1) successive connections from two countries in a

short time or not
authenticationMethod Category (#3) the used authentication method (e.g., password)
country Category (#136) the country that the authentication attempt

originates from
robot Boolean (0,1) regularity of successive connections is or is not

detected
changingSim Boolean (0,1) the SIM card has been changed or not
knownUser Boolean (0,1) the user is known (has been previously seen) or

is connecting for the first time
changingLocation Boolean (0,1) the location is known or unknown from the

user’s history
Table II

DESCRIPTION OF THE USED CONTEXTUAL FEATURES

event, and look for the presence of clustering structures that
group together similar risky authentication events. To this
aim, we employ a K-means clustering algorithm2. We cluster
the Shapley values calculated for the authentication events of
our test sample to find patterns that can lead to appropriate
authentication mechanisms. We are using the elbow method3

to decide how many clusters are a good fit for our data.
Next, we fit the K-Means model to our Shapley values for
the test sample with four as the number of clusters. We then
map for each authentication event (data point) which cluster
was assigned to it based on its training and look for the
presence of clustering structures that group together similar
authentication events. As you can see from Figure 1, our
methodology consists of first, to fit a complex model like
Random Forest to the data consisting of a number of features
to predict whether an authentication event is risky or not, and
then use the TreeSHAP method to get Shapley values for each
authentication event in the test sample, and then cluster them
to find patterns that can lead to better authentication decisions.

C. Results

Figure 2 displays exemplary the distribution of the
“changingIP” feature regarding the risk score. We observe that
the medium risk score is higher if the “changingIP” feature
takes the value 1 (unknown IP) than if the value is 0 (known
IP).

2A method of vector quantization that aims to partition n observations into
k clusters in which each observation belongs to the cluster with the nearest
mean

3Heuristic used in determining the number of clusters in a data set
consisting of plotting the explained variation as a function of the number
of clusters, and picking the elbow of the curve as the number of clusters to
use

Figure 3 shows that all classifiers outperform the SVC
classifier. Indeed the comparison of the Area Under the ROC
curve (AUC) for the four classifiers indicates an increase
from 0.90 (SVC) to 0.94 (Random Forest, Decision Tree).
For further analysis we choose the Random Forest Classifier
because it outperforms the Decision Tree Classifier in terms
of accuracy (92.1 versus 90.8).

For single authentication events, we can visualize the expli-
cations as illustrated in Figure 4 for an imposter authentication
event. Features that push the risk score higher (to the right)
are shown in red, and those pushing the prediction lower
are in blue. The output value is the prediction for that
authentication event (0.92). The base value is the value that
would be predicted if we did not know any features for the
current authentication event. In other words, it is the mean
risk prediction. Our base value is 0.1843. This is because
the mean of the risk scores in our test sample is 0.1843.
In the exemplary authentication event at risk (see Figure 4),
the contextual features that drive the score up the most are
changingDevice, changingIP and gatewayOwner.

Rather than referring to the risk score as a black box
to choose the suitable additional authentication mechanisms
for a high-risk authentication event, the explanations can be
used. These explain the contextual background of the risk,
which is necessary to reason about the suitability of additional
authentication mechanisms. According to the elbow method,
we choose 4 as number of clusters for the k-means clustering
(Figure 5).

In Figure 6, we plot the scatterplot of the first two principal
components of the Shapley values, attributing each authentica-
tion event to one of the four clusters. The obtained clusters are
clearly differentiated and balanced, confirming the advantage
of using our proposed method. Furthermore, we take a closer



Figure 1. Methodology to Identify Similar High-Risk Authentication Events through Clustering
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Figure 3. Receiver Operating Characteristic (ROC) curves for the Logic
Regression, the Random Forest Classifier, the Decision Tree Classifier, and
the SVC Classifier

look at the authentication events of our four clusters. For
most of the authentication events which have been assigned
to cluster 0 the user is not behind his or her own line and
the ISP is not the telecommunication company. For most of
the authentication events which have been assigned to cluster
1, the IP address is unknown and the device is unknown. For
most of the authentication events which have been assigned to
cluster 2, the IP address and the geolocation are unknown. For
most of the authentication events which have been assigned
to cluster 3, the user is connecting for the first time. We
can see, that the different cluster represent different contextual
situations.

V. USING EXPLANATIONS TO DIFFERENTIATE BETWEEN
DIFFERENT RBA ATTACKS TYPES

The contextual explanations of the impersonation risk can
help authentication policymakers to understand the suspi-
ciousness of a high-risk authentication event in terms of the

attack type, which is behind the risk. Hence, they can choose
authentication mechanisms that are suitable for the attack type.

We take three attack types based on known ones in the
RBA context presented in [19]. All attackers possess the
victim’s login credentials, none of the attackers possesses the
complete context of the legitimate user (see Figure 7).

Wiefling et al. [19] describe the attack types. We here ana-
lyze them further regarding six exemplary contextual features.
We can see in Table III that the values that the contextual
features take depend on the attack type. This illustrates that
contextual explanations of the impersonation risk score can
help to choose an authentication mechanism that is suitable
for the attack type. Common risk factors of the attack types
(e.g., fastLocationChange) are evident from the explanations
but not from a risk score itself.

VI. RELATED WORK

The works related to our work fall into two categories:
proposals for using Shapley values for allocating responsi-
bility for risks (1) and works that consider different types
of attacks in the RBA context and evaluate authentication
mechanisms in terms of resilience against the different attack
types (2).

A. Shapley Values for Allocating Responsibility for Risks

The main part of proposals for using Shapley values for
allocating responsibility for risks relate to the finance
domain. Bussman et al. [3] propose an explainable AI model
based on Shapley values that can be used in credit risk
management. They group risky and not risky borrowers ac-
cording to financial characteristics. Nikola Tarashev et al. [14]
use Shapley values to derive measures of banks’ systematic
importance. In [2], the authors propose a method to allocate
risk capital to divisions or lines of business within a firm.
Wang et al. [17] suggest an income allocation scheme for
farmers, insurance institutions, and futures institutions. Also in
other domains than finance, we identify works proposing the
use of Shapley values for allocating responsibility for risks.
Ginger Y. Ke et al. [10] aim to mitigate the risk of possible
incidents caused by the storage and transportation of
hazardous materials with the help of Shapley values. In [9],
the authors investigate the anthropometric characteristics
of patients with chronic diseases (diabetes, hypertension,
cardiovascular disease, heart attacks, and strokes) and find the
factors affecting these diseases with the help of Shapley values.



Figure 4. Local Explication for an Authentication Event at Risk

Contextual Feature Naive Attacker VPN Attacker Targeted Attacker

IP address randomly located located in the victim’s country located in the victim’s city
browser random popular browser random popular browser the victim’s browser
device random popular device random popular device the victim’s device

keystrokes unknown unknown unknown
changingLocation 1 1 0

fastLocationChange 1 0 0
Table III

CONTEXTUAL CHARACTERISATION OF RBA ATTACK MODELS
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Figure 5. Elbow Curve to Choose the Right Number of Clusters (4)
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Figure 6. Scatterplot of the First Two Principal Components of the Shapley
Values

B. RBA Attack Types

With the help of the contextual explanations of the im-
personation risk score, we aim to help authentication poli-
cymakers to get insights about the attack type behind the
risk of impersonation and hence help them to choose the
suitable authentication mechanism. We identify a set of works
differentiating between multiple attack types in the context of
RBA [1], [4], [7], [15], [16]. The authentication mechanisms
are evaluated in terms of resilience against the different

Naive Attacker
Login Credentials

VPN Attacker
Country

City, Browser, Device 
Targeted Attacker

Complete Context
Legitimate User

Figure 7. Overview of the Attack Types that Can be Distinguished based on
Contextual Explanations of the Impersonation Risk Score [19]

attack types.
Table IV shows an overview of attack types against which

the resilience of authentication mechanisms is evaluated in
different works. The set of works is not exhaustive because
we do not aim to identify all the literature on the evaluation
of authentication mechanisms. But the existence of works eval-
uating authentication mechanism according to their resilience
against different attack types shows that contextual explana-
tions can help choosing the right authentication mechanism.
That authentication mechanisms can be evaluated in terms of
their resilience against different attack types, underlines the
importance of contextual explanations of the impersonation
risk score. Only based on them, not on the risk score itself,
can it be deduced what type of attack it is, and hence the
correct resilient authentication mechanism can be chosen.

VII. CONCLUSION

In order to improve the understanding of impersonation
risks, we have proposed a novel methodology that can be
embedded within an authentication service. The methodology,
which is based on a model agnostic interpretability tool (Shap-
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Doerfler et al. (2019) [4] x x x x x x x
Velasquez et al. (2018) [15] x x x

Wang et al. (2016) [16] x x x x x x x x x
Bonneau et al. (2012) [1] x x x x x x x x x
Halunen et al. (2016) [7] x x x x x x x x x x x x x x

Table IV
OVERVIEW OF ATTACK TYPES AGAINST WHICH THE RESILIENCE OF AUTHENTICATION MECHANISMS IS EVALUATED IN DIFFERENT WORKS

ley Values), leads to a powerful segmentation of authentication
events. We show through a case study that our approach brings
several advantages and, in particular, the ability to perform
segmentation that is based on the risk similarity existing
between authentication events. We showed with the help of a
case study on 30,000 real world authentication events that risky
and non-risky events can be grouped according to similar con-
textual features, which can explain the risk of impersonation
differently and specifically for each authentication event. The
research suggests that explainable machine learning models
can effectively improve our understanding of impersonation
risks. We have used TreeSHAP for the implementation of our
model, because of its accuracy and its availability in open-
source packages. With our proposal, we aim to help authenti-
cation policymakers and regulators in attempt to propose the
suitable additional authentication mechanisms in case of high
impersonation risks. While risk score estimation models only
provide information about the probability of impersonation,
our explanations can effectively advance the understanding
of the determinants of the impersonation risk and therefore
to differentiate between attack types. We show within this
work that a reasoning about risk types (authentication attacks)
with the help of contextual information is possible and can
help to choose the right authentication mechanism in case of
a high risk. Our proposed methodology should be extended
to other datasets and other risk score estimation models. We
were only able to carry out our analysis on one dataset, as
we do not have another available. It would be interesting for
future research to work on a public dataset. We also plan to
further investigate the observed clusters to detail their mapping
to attack types.
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