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Abstract

European climate variability is shaped by atmospheric dynamics over the

North Atlantic and local processes. Better understanding their future seasonal-

ity is essential to anticipate changes in weather conditions for human and nat-

ural systems. We explore atmospheric seasonality over 1979–2017 and 1979–
2100 with seasonal circulation regimes (SCRs), by clustering year-round daily

fields of Z500 from the ERA-Interim reanalysis and 12 Coupled Model

Intercomparison Project phase 5 (CMIP5) climate models (historical and

RCP8.5 runs). The spatial and temporal variability of SCR structures and asso-

ciated patterns of surface air temperature are investigated. Climate models

have biases but reproduce structures and evolutions of SCRs similar to the

reanalysis over 1979–2017: decreasing frequency of winter conditions (starting

later and ending earlier in the year) and the opposite for summer conditions.

These changes are stronger over 1979–2100 than over 1979–2017, associated
with a large increase of North Atlantic seasonal mean Z500 and temperature.

When using more SCRs (more freedom in definition of seasonality), the

changes over 1979–2100 correspond to a long-term swap between SCRs,

resulting in similar structures (annual cycle and spatial patterns) relative to

the evolution of seasonal mean Z500 and temperature. To understand whether

the evolution of SCRs is linked to uniform warming, or to changes in circula-

tion patterns, we remove the calendar trend in the Z500 regional average to

define SCRs based on detrended data (d-SCRs). The temporal properties of d-

SCRs appear almost constant whereas their spatial patterns change, indicating

that the calendar Z500 regional trend drives the evolutions of SCRs, and that

changing spatial patterns in d-SCRs account for the heterogeneity of this trend.

Our study suggests that historical winter conditions will continue to decrease

in the future while historical summer conditions continue to increase. How-

ever, it also suggests that the spatial and temporal patterns of SCRs would

remain similar, relatively to the year-round Z500 increase.
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1 | INTRODUCTION

Are seasons changing? If so, are those changes due to cli-
mate change or to natural variability? It appears that the
answers might strongly depend on the definition of sea-
son. Indeed, many investigations of seasonality have been
carried out based on different definitions of the seasons
(see literature reviews in IPCC, 2013; Hoegh-Guldberg
et al., 2018; Jia et al., 2019). These investigations found
changes both regarding variables in climatological sea-
sons (e.g., decreasing winter and spring frost, decreasing
summer Arctic sea ice) and regarding the seasonality of
variables themselves (e.g., longer growing season, longer
fire weather season). The meteorological seasons are a
prominent feature of climate variability, experienced by
human systems (e.g., health, transportation, energy) and
natural systems (e.g., phenology) through the seasonality
of surface weather conditions. In Europe, these condi-
tions mostly result from the combined effects of large-
scale circulation dynamics over the North Atlantic and
local-scale processes that reduce or amplify dynamic
effects (Cattiaux, 2010). In this paper, we will define and
investigate seasonality based on synoptic atmospheric
circulation.

North Atlantic atmospheric patterns are the results of
physical phenomena operating at different scales: “low-
frequency” quasi-static structures such as the Icelandic
Low and the Azores High (Angell and Korshover, 1974;
Marshall et al., 2001; Wang, 2002; Hurrell and
Deser, 2010) and “high-frequency” eddies or propagating
synoptic waves such as cyclones and anticyclones (Price
and Magaard, 1986; Barnston and Livezey, 1987) associ-
ated to the eddy-driven jet stream (Blackmon et al., 1984;
Woollings et al., 2010; Franzke et al., 2011; Stendel
et al., 2021). Due to these low-frequency and high-
frequency components, the atmospheric dynamic vari-
ability of the North Atlantic is organized into preferential
configurations (i.e., modes of variability) despite having a
stochastic nature. One way to study these modes of vari-
ability or weather patterns is through weather regimes
(WRs), defined as recurring atmospheric patterns (Vrac
and Yiou, 2010; Hertig and Jacobeit, 2014). Since their
first use in the middle of the XXth century in meteorol-
ogy (Lamb, 1950; Rex, 1950), WRs have been
reintroduced in the beginning of 1980s (e.g., Reinhold
and Pierrehumbert, 1982) and largely used to better
understand the variability of atmospheric dynamics

(e.g., Vautard, 1990) and weather extremes (Hannachi
et al., 2017), but also to evaluate climate models
(Sanchez-Gomez et al., 2009; Díaz-Esteban et al., 2020;
Fabiano et al., 2020).

Extratropical climate variability is largely seasonally
dependent (Wallace et al., 1993), and both climate
dynamics (Woollings et al., 2010; Iqbal et al., 2018) and
weather extremes (Cattiaux et al., 2012; Lhotka and
Kyselý, 2015; Brunner et al., 2018) have strong seasonal
features. For instance, atmospheric blocking conditions
facilitate cold spells in winter (Sillmann et al., 2011) and
heatwaves in summer (Schaller et al., 2018). Further-
more, the seasonality of atmospheric dynamics has chan-
ged in the last decades with a lengthening of the period
with summer conditions, starting earlier and ending
later, and a shortening of the period with winter condi-
tions (Vrac et al., 2014). When defining seasons based on
the relationship between sea level pressure and surface
air temperature, Cassou & Cattiaux (2016) found that the
earliness of summer conditions should continue to
increase in the future while no trend is found for winter
conditions. One limitation is that these results strongly
depend on the definition of the seasons and on the good
representation of these seasons in the climate models.
More generally, we have limited confidence in the repre-
sentation of atmospheric circulation in models, and the
confidence in the understanding of dynamic aspects of
climate change is lower than for thermodynamic aspects
(Shepherd, 2014). Therefore, it is essential to evaluate
how models reproduce seasonality over a historical time
period. This is a necessary step prior to investigating
future seasonality changes based on a nonstationary defi-
nition of seasons.

In the present paper, we investigate synoptic climato-
logical seasonality in the North Atlantic region through
the use of “seasonal circulation regimes” (SCRs, as in
Vrac et al., 2014) that are defined by the probabilistic
clustering of daily conditions of atmospheric circulation
over a given time period without a priori separation of
seasons. The evolution of circulation seasonality is then
investigated through the variability of SCRs (structures,
trends). SCRs were developed to investigate non-
stationary circulation seasonality through their ability to
represent the evolution of atmospheric circulation modes
(Vrac et al., 2007) with season-like behaviour (Vrac
et al., 2014). The planetary increase in geopotential
height at 500 hPa (Z500) due to human influence is
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expected to drive SCR evolutions (Christidis and
Stott, 2015). To test if SCR evolutions are driven by this
increase, or by changes in spatial patterns of circulation,
we also look at SCRs obtained from detrended geo-
potential height data. This investigation allows us to
remove the effects of the North Atlantic increase in Z500
and therefore to disentangle the potential causes of the
temporal and spatial SCR evolutions. The scientific objec-
tives of the present study are to answer the following
questions:

• How are climate models able to represent the past vari-
ability of seasonality over 1979–2017 with respect to
reanalyses?

• What is the temporal and spatial evolution of seasonal
structures over 1979–2100?

• What are the causes of seasonal evolutions?

The paper is organized as follows: section 2 describes
the reanalysis and climate model data used in this study,
as well as the clustering method to define seasonal circu-
lation regimes; section 3 displays the results; and in sec-
tion 4, we discuss the findings and conclude.

2 | METHODS

2.1 | Data and preprocessing

We use daily average fields of geopotential height at
500 hPa (Z500) as a proxy of atmospheric circulation

from the ERA-Interim (hereafter ERAI) reanalysis
dataset (0.75� × 0.75� spatial resolution; Dee et al., 2011)
and simulations from 12 climate models of the Coupled
Model Intercomparison Project phase 5 (CMIP5; Taylor
et al., 2012) over the North Atlantic region (22.5�–70.5�N,
77.25�W–37.5�E) from 1979 to 2017, and then from 1979
to 2100 (the datasets are briefly described in Table 1).
The methodological choice of Z500 is motivated by its
intermediate representation of atmospheric circulation
between low- (weather systems) and high-level (jet-
stream) dynamics, and its smoothness relative to other
proxies of atmospheric circulation for facilitating the
identification of the emergence (signal) of long-term
changes in the climate system (e.g., sea level pressure is
noisy). Daily average fields of surface air temperatures
(TAS) from the same datasets are also extracted to study
the temperature features of SCRs.

Raw year-round data are used rather than seasonal
(e.g., summer or winter) data or deseasonalized anoma-
lies to capture both the year-round seasonal cycle and
any long-term trend. In order to make the analyses and
comparisons easier, all datasets are first given the same
format. Calendars are standardized to 365 days per year
ignoring bissextile years except for the Hadley Center
simulations (year of 360 days). Historical experiment
runs from climate models over 1979–2005 are
concatenated to RCP8.5 experiment runs over 2006–2100
(respectively 1981–2005 and 2006–2099 for the Hadley
Center model). The choice of the RCP8.5 scenario is
motivated by its approximate representation of the cur-
rent climate trajectory and its plausibility for future

TABLE 1 Characteristics of data used

Dataset Period
Spatial resolution
(lon × lat) Institute Reference

ERA-Interim 1979–2017 0.75� × 0.75� ECMWF (Europe) Dee et al. (2011)

HadGEM2-ES 1981–2005 (historical)
and 2006–2099 (RCP8.5)

1.87� × 1.25� MOHC (UK) Jones et al. (2011)

ACCESS1-3 1979–2005 (historical)
and 2006–2100 (RCP8.5)

CAWCR (Australia) Collier and Uhe (2012)

BCC-CSM1-1M 1.12� × 1.12� BCC (China) Wu et al. (2014)

CanESM2 2.81� × 2.79� CCCma (Canada) Chylek et al. (2011)

CNRM-CM5 1.40� × 1.40� CNRM (France) Voldoire et al. (2013)

GFDL-CM3 2.5� × 2� GFDL (USA) Griffies et al. (2011)

IPSL-CM5A-MR 2.5� × 1.26� IPSL (France) Dufresne et al. (2013)

IPSL-CM5B-LR 3.75� × 1.89�

MIROC5 1.40� × 1.40� CCSR, NIES, JAMSTEC (Japan) Watanabe et al. (2010)

MPI-ESM-MR 1.87� × 1.86� MPI (Germany) Giorgetta et al. (2013)

MRI-ESM1 1.12� × 1.12� MRI (Japan) Adachi et al. (2013)

NorESM1-M 2.5� × 1.89� BCCR, NMI (Norway) Bentsen et al. (2013)
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climate trajectory (Schwalm et al., 2020a; 2020b), as well
as its large magnitude of scenario forcing for facilitating
the emergence of long-term changes in the climate sys-
tem. The spatial grids of data from climate model simula-
tions are bilinearly interpolated to the ERAI grid.

A principal component analysis (PCA) is applied to
the regridded Z500 fields in order to reduce the dimen-
sion of the data while keeping most of the variability and
seasonality. The raw Z500 data are scaled by the square
root of the cosine of the latitude to give equivalent weight
to all grid cells when performing the PCA (as in,
e.g., Cassou, 2008). Only the first principal component
(PC1) is kept and used for clustering because it captures
between about 49 and 60% of the variance and between
about 95 and 99% of the annual cycle (spectral power at a
frequency of 1/365 days; 1/360 days for the Hadley Cen-
ter model) over 1979–2017 for ERAI (similar to Vrac
et al., 2014 on another reanalysis) and all climate models
(not shown). A large part of the long-term variability is
also contained in PC1 (Figure S1, Supporting Informa-
tion), while the spatial pattern (eigenvectors) and statisti-
cal distribution (pdf) of PC1 are generally similar
between ERAI and models over 1979–2017 (Figures S2
and S3). Including more PCs in the analysis provided
similar results (not shown) but brought more noise (more
variance but only little more seasonality).

2.2 | Definition of seasonal circulation
regimes

The definition of the SCRs is based on the classification of
the PC1 time series into several groups (Gaussian-like distri-
butions). We use the expectation–maximization (EM) algo-
rithm (Dempster et al., 1977) based on a Gaussian mixture
model (GMM; Peel and McLachlan, 2000) to classify proba-
bilistically the 14,235 days (13,320 for the Hadley Center
model) of the 1979–2017 period into SCRs. The EM algo-
rithm estimates a multivariate probability density function
(pdf) f of the data (here, daily PC1 values) as a weighted
sum of K Gaussian pdfs f k (k=1,…,K) (Pearson, 1894),

f xð Þ=
XK

k=1
πkf k x;αkð Þ,

where αk contains the parameters (means μk and covari-
ance matrix Σk) of f k and πk is the mixture ratio
corresponding to the prior probability that x (i.e., PC1
value) belongs to f k. The parameters αk and πk
(k=1,…,K) of the GMM are unknown and must be esti-
mated (cf. Appendix). Finally, each cluster Ck of days is
defined based on the Gaussian pdfs, according to the
principle of posterior maximum:

Ck= x;πkf k x;αkð Þ≥πjf j xð ;αj Þ,8j=1,…,K
n o

:

In other words, each day is assigned to the cluster for
which the probability of belonging is maximum, and the
obtained clusters are SCRs which correspond to a classifi-
cation of the daily data. The freedom of EM in the defini-
tion of the SCRs strongly depends on the number K of
clusters and on the constraints applied to the covariance
matrices (constraining the geometry of the clusters;
cf. Appendix). We tried different values for K (from K=1
to K=15) and evaluated them through the Bayesian
information criterion (BIC; Schwarz et al., 1978). Opti-
mizing the BIC achieves a compromise between over-
fitting the observations with the model and the
complexity of the model (cf. Appendix). Four SCRs (here-
after SCR4) correspond both to a plateau of BIC
(Figure A1) and to the traditional (astronomical) number
of seasons, although SCR4 emphasizes winter and sum-
mer but downplays spring and autumn.

The GMM with the best BIC is selected. Different
clustering methods can lead to different results
(e.g., Philipp et al., 2010) so we tested the sensitivity of
the SCR results to using the k-means clustering algorithm
(more popular but less flexible; Estivill-Castro and
Yang, 2000; Rokach and Maimon, 2005; Han et al., 2011)
instead of EM, which brought very similar results (not
shown). EM can be seen as a generalization of k-means
with less constraint on the shape of clusters and better
ability to account for structures of arbitrary shape
(Rokach and Maimon, 2005; Han et al., 2011). We also
tested the sensitivity of the clustering results (spatial pat-
terns, annual cycle) to the number of PCs included (PC1–
PC5), there was a small influence of additional PCs on
the results (reanalysis, models) over 1979–2017 and very
small influence over 1979–2100 (increasing with the
number of PCs; not shown). This reinforced our choice of
using only PC1, considering that additional PCs represent
little additional seasonality and difference in the long-
term response of atmospheric circulation to climate
change.

2.3 | Seasonal circulation regimes based
on detrended data

The goal is now to remove the North Atlantic increase in
Z500 to further investigate changes in Z500 patterns. This
requires preserving both the spatial structures and the
seasonality while removing the regional (North Atlantic)
effect. Calculating and removing the trend by gridpoint
would result in losing the spatial structures while doing
so without a year of reference would result in losing the
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seasons. Therefore, the trend is calculated on the spatial
mean of the whole area for each calendar day, with refer-
ence to 2017 (last year contained in both reanalyses and
models). This means that for each specific day of the cal-
endar year (1 Jan, 2 Jan, …, 31 Dec), the trend is calcu-
lated with the 122 values (from 1979 to 2100) of the
spatial mean for this specific day. The trend was esti-
mated best by using a cubic smoothing spline (as in,
e.g., Jézéquel et al., 2020; Xu et al., 2021). Therefore, for
each gridpoint and calendar day, we remove the spatial
trend estimated by the spline from the raw Z500 (or TAS)
values, and add the seasonal value of 2017 (also estimated
by the spline) to obtain the detrended data. The
detrended SCRs (d-SCRs) are then obtained by applying
the same method as before, of principal component anal-
ysis followed by clustering, to the detrended data. We
heuristically chose to also detrend TAS (similarly to
Z500) for the analysis of detrended data. We emphasize
that the detrending removes the regional (North Atlantic)
trend per calendar day so that the resulting local trend of
the detrended data is the residual of the regional trend. A
negative residual trend at a given gridpoint means that
its Z500 values are increasing less than the regional aver-
age, or even are decreasing, whereas a positive residual
trend means that the local trend is higher than that of
the regional average.

3 | RESULTS

The first part of the results focuses on the SCRs in ERAI
and in the climate models over 1979–2017 to assess how
the models perform with respect to the reanalyses. The
second part examines SCRs in climate models over 1979–
2100 to detect evolutions in the temporal and spatial
structures. The third part explores the possible causes for
the evolution of SCRs over 1979–2100, such as uniform
(North Atlantic) Z500 increase, or changes in Z500 spa-
tial patterns.

3.1 | Evaluation of past seasonal
circulation regimes in climate models
(1979–2017)

We start by looking at the spatial patterns of the regimes
as shown by the composites maps in Figure 1. Each com-
posite map is calculated by averaging the values of the
Z500 fields corresponding to the days that belong to the
regime, with colour shading representing the seasonal
anomalies and contour lines representing the raw values.
The contours and fields are shown both in order to high-
light the regime patterns in raw Z500 and the deviation

of the regime patterns from the mean seasonal cycle of
Z500. Seasonal anomalies correspond to the raw values
minus the average seasonal cycle over 1979–2017. The
average seasonal cycle is calculated by averaging the
Z500 values per calendar day (1 Jan, …, 31 Dec) over
the 39 years. For climate models, each regime composite
map is determined individually (i.e., average map) and
the multimodel composite is calculated as the mean of
the distribution of the 12 composites. The spatial patterns
of the four average regimes found in the models are very
similar to those from ERAI, and to those from Vrac
et al. (2014) based on NCEP (National Center for Envi-
ronmental Prediction) reanalyses. These patterns also
share similarities and differences (detailed below) with
the usual North-Atlantic weather regimes from the litera-
ture (e.g., Yiou and Nogaj, 2004; Cassou, 2008; Cattiaux
et al., 2013; Hertig and Jacobeit, 2014; Hannachi
et al., 2017).

The first regime (R1) corresponds to strong cyclonic
conditions northward of 35�N and weakly anticyclonic
southward (i.e., anomalously strong westerly flow), and
the second regime (R2) to the opposite (weaker westerly
flow). R1 resembles the positive phase of the North
Atlantic Oscillation (NAO+) and R2 its negative phase
(NAO−; Hurrell et al., 2003), but Z500 anomalies are
weaker, more zonal and further South than in the usual
Iceland-Azores dipole (north/south and east/west, as in,
e.g., Yiou and Nogaj, 2004; Cassou, 2008). Therefore, our
R1 and R2 represent dynamics that are different from the
NAO and more akin to an annular mode. In addition,
Scandinavia appears colder under R1 and warmer under
R2 (Figure 3), whereas it would be warmer under NAO+
and colder under NAO− (Cattiaux et al., 2013).

The third regime (R3) yields weak anticyclonic condi-
tions over the northwestern Atlantic and cyclonic from
the southwest towards the northeast (biased in climate
models), corresponding to a wavy jet stream, similarly to
the Atlantic Ridge (AR) pattern but lacking the cyclonic
conditions over Europe present in AR (Yiou and
Nogaj, 2004; Cassou, 2008). The fourth regime (R4) yields
strong anticyclonic conditions over northwestern Europe,
resembling the Scandinavian Blocking (SB) pattern
except that SB is also associated to cyclonic conditions
between Greenland and northeastern America (Yiou and
Nogaj, 2004; Cassou, 2008; Cattiaux et al., 2013).

The temporal patterns of our SCRs are based on full
years (like Vrac et al., 2014), unlike the literature consid-
ering weather patterns either in winter (e.g., Yiou and
Nogaj, 2004; Cassou, 2008; Hertig and Jacobeit, 2014;
Fabiano et al., 2021), or in summer (e.g., Folland
et al., 2009; Guemas et al., 2010; Cattiaux et al., 2013).
Thus, if our SCRs share similarities with the usual
weather regimes, they however present large differences
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in their definition and properties. Indeed, our regimes
correspond rather to the variability of the seasonal cycle
of atmospheric conditions, while the usual regimes corre-
spond rather to the intraseasonal variability of these con-
ditions. The annual cycle of our regime monthly
frequencies over 1979–2017 is shown in Figure 2. Climate
models reproduce an annual cycle of SCRs similar to
ERAI, with regime 1 (hereafter R1) representing a
winter-like season, R4 a summer-like season, and R2 and
R3 transitional seasons (R2 around winter and R3 around
summer).

In general, the climate models reproduce atmospheric
patterns (Z500, TAS) that are very similar to ERAI
(Figures 1 and 3), but individual models are less success-
ful (see Table 2 and Figures S4–S11). For example, the
circulation patterns associated with R1 and R3 in
MIROC5 are very different from other climate models
and ERAI (Figures S4 and S6), despite happening at the
same period in the year (Figure 2). All other climate
models show R1 patterns similar to ERAI albeit with
diverse intensities (Figure S4). Several climate models
(e.g., BCC-CSM1-1M and MRI-ESM1) overestimate R1

FIGURE 1 Composite maps of the four regimes (one per row) for ERAI (first column) and climate models (second column; each map

shows the average of 12 composite maps; third column shows standard deviation of Z500 between the 12 composites). The maps are

calculated by averaging the seasonal anomalies (shading) and raw values (contour lines) over the days belonging to the regime. Seasonal

anomalies correspond to the raw values minus the average seasonal cycle. The number of days per regime is shown above each map

(average of 12 values for the climate models) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Average annual cycle of

the frequencies of occurrences for the

four regimes of ERAI and the 12 climate

models, over 1979–2017. Monthly

frequencies correspond to the number of

days of regime occurrence divided by the

number of days in the month [Colour

figure can be viewed at

wileyonlinelibrary.com]

FIGURE 3 As in Figure 1 but for TAS conditionally to each regime [Colour figure can be viewed at wileyonlinelibrary.com]
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seasonal anomalies of Z500 (negative in the north and
positive in the south; cf. Figure S4), corresponding to a
more positive north-to-south gradient (i.e., stronger west-
erly flow) than observed in the reanalysis (also visible in
Figure 1) during December–March (Figure 2). Models
overestimating Westerly flow in R1 also tend to have
larger surface temperature anomalies (Figure S8), more
negative than observed (reanalysis) over North America,
Greenland and Scandinavia, and more positive over parts
of Europe.

In the case of R2 and R4, ERAI and all climate
models agree on the circulation pattern but differ in
intensity (Figures S5 and S7). The spatial patterns of R2
(Z500 and TAS) are almost symmetrical to those of R1
(Figures 1 and 3), with several models overestimating
positive anomalies in the north and negative anomalies
in the south (Figure S5), corresponding to a more nega-
tive north-to-south gradient (i.e., weaker westerly flow)
than observed (also visible on Figure 1) during March–
May and October–December (Figure 2). Models under-
estimating westerly flow in R2 also tend to have larger
surface temperature anomalies than observed
(Figure S9), more positive over North America and
Greenland, and more negative over parts of Europe. The
biases of individual models (e.g., BCC-CSM1-1M and
MRI-ESM1) in the spatial patterns of R2 (Z500 and TAS)
are also symmetrical to R1 biases (Figures S4, S5, S8,
and S9).

The representation of R3 in climate models appears
inaccurate (location and intensity of pressure centres) by
comparison to ERAI (Table 2 and Figure S6) in April–
June and September–November (Figure 2). Models also

tend to have biased R3 TAS patterns (location and inten-
sity; Figure S10), with for instance Greenland that is
warmer in ERAI but colder in GFDL-CM3 and MIROC5.
A few models (e.g., BCC-CSM1-1M and MRI-ESM1) over-
estimate the TAS anomalies over Greenland (positive)
and Europe (negative).

For R4, several models underestimate anticyclonic
conditions in the north or overestimate cyclonic condi-
tions in the south (Figure S7), corresponding to weaker
westerly flow in June–September (Figure 2). The over-
estimation of cyclonic conditions by models in R4 is asso-
ciated to a cold bias (e.g., over Spain for BCC-CSM1-1M
and MRI-ESM1; cf. Figure S11), while the overestimation
of anticyclonic conditions is associated with a warm bias
(e.g., over northern Europe in BCC-CSM1-1M).

The variability between climate models, represented
here by the standard deviation over the 12 values (one
per regime composite of climate model), appears larger
(Figure 1) for winter regimes (R1 and R2 with large
anomalies) than for summer regimes (R3 and R4 with
weak anomalies). The same holds true for TAS spatial
patterns associated to the regimes (Figure 3).

After looking at the seasonal structure of the
regimes, we then investigated if and how the temporal
organization of these regimes changed during 1979–
2017 through (a) the regime monthly frequencies,
(b) the first (start) and last (end) days of regime occur-
rence, and (c) the regime persistence (i.e., average num-
ber of consecutive days). Most changes in ERAI and in
the average of the models were similar (not shown) to
the results from Vrac et al. (2014): R1 (i.e., winter condi-
tions) decreasing in frequency, starting slightly later,
ending slightly earlier, and being less persistent, and the
opposite for R4 (i.e., summer conditions).

3.2 | Future changes in seasonal
circulation regimes (1979–2100)

We now use the same method as before to define SCRs
but based on the full simulation datasets over 1979–
2100 to detect potential future changes. The first
approach is to use four regimes (SCR4). Between the
first three decades (1979–2008) and the last three
decades (2071–2100) of the period, R1 occurs less often
but is more intense for both Z500 and TAS (Figures S12
and S13). We emphasize here that the regimes are
defined over 1979–2100 and that we investigate their
main properties (spatial patterns, annual cycle) over the
subperiods (1979–2008 and 2071–2100) by selecting the
results of the full-period clustering over these subpe-
riods. The seasonal anomalies are calculated with refer-
ence to the average seasonal cycle of the subperiod

TABLE 2 Coefficients of pattern correlation between the

regimes from ERAI and each climate model over 1979–2017

Model R1 R2 R3 R4

Average 0.90 0.86 0.51 0.9

HadGEM2-ES 0.94 0.88 0.27 0.80

ACCESS1-3 0.92 0.84 0.75 0.95

BCC-CSM1-1M 0.93 0.88 0.78 0.93

CanESM2 0.93 0.93 0.58 0.96

CNRM-CM5 0.93 0.86 0.48 0.93

GFDL-CM3 0.92 0.87 0.88 0.91

IPSL-CM5A-MR 0.90 0.87 0.52 0.94

IPSL-CM5B-LR 0.91 0.85 0.65 0.93

MIROC5 0.55 0.67 −0.39 0.82

MPI-ESM-MR 0.96 0.93 0.59 0.83

MRI-ESM1 0.91 0.86 0.75 0.81

NorESM1-M 0.95 0.92 0.31 0.94
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(1979–2008, 2071–2100). In the case of R4, it occurs
more often with less intense patterns, that is, becoming
closer to the seasonal mean. R2 occurs more often but is
less intense, while R3 occurs slightly less often but is
more intense. Note that these patterns are relative to the
seasonal mean, which increases substantially over the
North Atlantic between the first and last three decades
(averaging about +90 m for Z500 and +4�C for TAS; not
shown).

A shift happens in the annual cycle of SCR4 over
1979–2100 with R1 shrinking, R2 and R3 moving towards
the winter period of the year, and R4 growing
(Figure S14). GFDL-CM3 stands out from the other
GCMs (global circulation models) by showing the emer-
gence in the future of a new summer regime that almost
did not exist in the past (1 day of very wavy jet stream
and large temperature anomalies, not shown). This emer-
gence means that in the case of GFDL, the difference

FIGURE 4 Same as Figure 1 but for the climate models (without ERAI) and seven regimes over 1979–2100. The seasonal anomalies are

calculated with reference to the average seasonal cycle of the subperiod (1979–2008, 2071–2100) [Colour figure can be viewed at

wileyonlinelibrary.com]
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between historical and future Z500 conditions in summer
is so large that a new regime was created in the cluster-
ing. As the clustering has little freedom with four clusters
(i.e., large constraints on the definition of the regimes),
this emergence is even more interesting, but it is consis-
tent with a stronger increase of Z500 and TAS in this cli-
mate model by comparison to other models (not shown).
However, since future R4 in GFDL is very similar to
future R4 from other models (annual cycle and spatial
pattern, shown in Figure S14 and not shown), and since
R4 was already well established in the past for other

models, this emergence of R4 in GFDL does not represent
the emergence of a new regime from a general
perspective.

Monthly frequencies show R2 taking the place of R1
in the December, January and February months (hereaf-
ter DJF) starting from the middle of the 21st century, and
R4 taking the place of R3 in June around 2025 (not
shown). Although the average between models shows a
clear direction of SCR evolution, the timing of this evolu-
tion differs up to a few decades between individual
models. In consistence with the seasonal shift of regimes,

FIGURE 5 As in Figure 4 but for TAS anomalies conditionally to the regimes [Colour figure can be viewed at wileyonlinelibrary.com]
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the average of climate models between 1979 and 2100
shows R1 starting about 1 month and a half later while
ending about 2 months earlier, and persisting less,
whereas R4 starts about 1 month earlier while ending
about 1 month and a half later, and persists more
(Figures S15 and S16).

Over 1979–2100, the spatial patterns of SCR trends of
Z500 and TAS are in agreement among GCMs and are
more robust than in the reanalysis over 1979–2017 (Fig-
ures S17 and S18). These maps of linear trends are
obtained by calculating the linear regression of the evolu-
tion of the variable (raw values) by gridcell. Grey areas
correspond to trends that are not significant (p > .05).
The unconditional trend corresponds to the linear fit over
the whole period (all days), whereas the regime-
conditional trends are calculated by multiple linear
regressions (cf. Appendix) to account for the distribution
of days between regimes. Both regression coefficients and
p-values are calculated individually by climate model,
and then averaged over the 12 values. However, these
spatial patterns of SCR trends show different spatial evo-
lutions between Z500 and TAS within regimes, hence
partially decoupled evolutions of atmospheric dynamics
and surface temperature.

Even if using four regimes allows us to explore the
future with a traditional number of seasons, the low
number of clusters limits the freedom of the clustering to
allow the appearance or disappearance of significant
structures. Therefore, we applied a second approach to
overcome this limit. We tested different numbers of

regimes (up to 10) and chose seven regimes as a showcase
because it corresponds to an optimization of the BIC
(Figure S19) and illustrates the clearest transitions
between the disappearance of past structures and appear-
ance of future (new) structures.

With seven regimes (SCR7), the patterns of atmo-
spheric circulation are very similar to those of surface
temperatures (i.e., cyclonic associated to cold, anticy-
clonic to warm) in both past (1979–2008) and future
(2071–2100) (Figures 4 and 5). Regime patterns seem to
follow the seasonal cycle (pale colours) except for R1,
R2 and R7. Past (1979–2008) R7 corresponds to rare
and very intense anticyclonic conditions over the
northern half of the region in association with summer
heatwaves over the continents of the North Atlantic
region (except North Africa and northernmost
Canada).

Future (2071–2100) R1 corresponds to rare and very
intense NAO+ conditions associated with cold spells over
Northeastern America, Greenland and Scandinavia.
Here, we use the terms “cold spell” and “heatwave” to
designate robust anomalies (average of more than
50 days) over large areas (continents) of about 3�C rela-
tive to the average seasonal cycle.

Overall, we observe a shift in the spatial patterns
(Z500 and TAS) of the regimes (Figures 4 and 5) with
past R1 patterns becoming future R2 patterns, past R2
patterns becoming future R3 patterns, and so on until R6.
Especially, the R1 pattern becomes seasonally more
extreme (rarer and more intense pattern) while the R7

FIGURE 6 Average annual cycle of the seven regimes for the 12 climate models in the past (1979–2008) and future (2071–2100) [Colour
figure can be viewed at wileyonlinelibrary.com]
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pattern becomes seasonally more normal (more frequent
and less intense pattern).

We calculated the average monthly frequency of the
seven regimes in a similar way to Figure 2 but over the
first three decades (1979–2008) and the last three decades
(2071–2100), shown in Figure 6. R7 is a new summer
regime almost absent in the past period (1979–2008) that
replaces R6 and “pushes” all the other regimes towards
the winter calendar days while R1 (past or old winter
regime) disappears. This shift in the annual cycle of the
regimes between past and future appears very consistent
with the shift in the regime spatial patterns.

The timing of these changes in regime occurrence
during the year can be investigated through the monthly
frequencies of the regimes over 1979–2100 (winter
months shown in Figure 7 and summer months in
Figure 8). Figure 7 shows the collapse of R1 happening

throughout the 21st century. R2 takes the place of R1 in
the beginning of the 21st century, and becomes replaced
by R3 at the end of the 21st century. Symmetrically, R6 is
replaced by R7 during the second half of the 21st century
(Figure 8). The evolution of the starting and ending dates
as well as persistence of all regimes are consistent with
the evolution of their annual cycle and monthly occur-
rence (Figures S20 and S21). Summertime regimes
(R5–R7 in June–September; Figure 6) start earlier and
end later over 1979–2100, while other regimes start later
and end earlier (Figure S20). The average persistence of
R1 and R6 decreases over 1979–2100, while that of inter-
mediary regimes remains about 5–10 days, and that of R7
increases dramatically (Figure S21).

All regimes except R7 show a similar pattern of Z500
change over the region: increase in the southern part and
decrease in the northern part, whereas R7 shows

FIGURE 7 Frequency of the

regimes per year in December, January

and February for the 12 climate models

[Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 8 As in Figure 7 but for

June, July and august [Colour figure can

be viewed at wileyonlinelibrary.com]
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widespread increase that is stronger in the south and not
robust among climate models in the north of the region
(Figure S22). Interestingly, these changes in circulation
patterns seem to be opposite to the expected effects from
Arctic amplification, such as amplified warming and geo-
potential height increase over circulation dynamics that
are linked to mid-latitude weather (Cohen et al., 2014;
Barnes and Polvani, 2015; Overland et al., 2015). The
strongest warming over the region is observed in R1 and
R7, whereas R3–R6 show (unexpected) cooling over the
continents (Figure S23). The origin of this cooling is
investigated later in the discussion of the paper (sec-
tion 4.3). The appearance and disappearance of regimes
observed in SCR7 over 1979–2100 is absent from the
1979–2017 period where we tested with four up to seven
regimes.

3.3 | Seasonal circulation regimes based
on detrended data (1979–2100)

The increasing trend of Z500 over the North Atlantic
region, mainly due to human influence (Christidis and
Stott, 2015), is expected to drive the evolution of the
SCRs but changes in spatial patterns could also play a
role. To investigate this, we use SCRs based on
detrended data (d-SCRs) and focus on the average d-
SCRs of climate models. This detrending corresponds to
removing the trend of the regional average Z500
(or TAS, see section 2.3) for each calendar day
individually.

By comparison to SCRs, the temporal structures of d-
SCRs over 1979–2100 appear almost stationary and
remain very similar to those of ERAI (Figure 9). How-
ever, spatial structures of d-SCRs present some minor
variability for Z500 (Figure 10) but major changes for

TAS in which case future patterns are almost symmetri-
cally opposite to past patterns (Figure 11). This small evo-
lution of Z500 spatial patterns in d-SCRs can be
explained by trends that are either not significant in indi-
vidual climate models or in disagreement between cli-
mate models, as shown by large greyed areas in
Figure S24. However, most of the TAS trends in d-SCRs
are robust and show warming over continents and
reduced warming over oceans (Figure S25). This
warming contrast can be explained because of the higher
heat capacity and evaporative cooling potential of ocean
surface than land surface, and ocean mixing (Dai, 2016).
These trends also show Arctic amplification
(i.e., warming stronger at the pole than at lower lati-
tudes), especially in winter (R1–R3).

The next analysis aims to determine the causes of the
changes in Z500 and TAS patterns within SCRs and d-
SCRs. The North Atlantic increase in Z500 and TAS
(hereafter NAI) and the seasonal shift of regimes (hereaf-
ter SS) could both play a role in these changes.
Figures S26 and S27 show the effect of NAI (without SS),
through regime composite maps calculated on raw Z500
(or raw TAS) but conditionally to the clusters defined on
detrended Z500 (i.e., clusters with almost constant tem-
poral structures). The contribution of NAI corresponds
only to widespread increasing Z500 and TAS in all
regimes. Figures S28 and S29 show the effect of SS (with-
out NAI), through the regime composite maps calculated
on detrended Z500 (or detrended TAS) but conditionally
to the clusters defined on raw Z500. The shift of SCRs
towards winter corresponds to widespread decreasing
Z500 and TAS in most regimes (except R1, R2, and
unconditionally to regimes). Therefore, the two opposing
effects of NAI and SS can explain the existence of
decreasing trends of Z500 and TAS observed earlier
within SCRs.

FIGURE 9 As in Figure 6 but after

detrending the data from climate models

[Colour figure can be viewed at

wileyonlinelibrary.com]

5860 BRETON ET AL.

http://wileyonlinelibrary.com


4 | CONCLUSIVE DISCUSSIONS

We used seasonal circulation patterns (Vrac et al., 2014)
by clustering Z500 from the ERAI reanalysis and
12 CMIP5 climate models to study past (1979–2017) and
future (1979–2100) seasonal structures of mid-
troposphere atmospheric dynamics (Z500) and air surface
temperature (TAS) over the North Atlantic region and
their evolutions in time.

4.1 | Ability of climate models to
represent past seasonal variability

The comparison of climate models with ERAI over 1979–
2017 showed small biases in the four seasonal circulation
regimes (spatial pattern, time of occurrence). On average,
the circulation regimes from the climate models are very
similar to those from ERAI. However, we identified
larger biases in individual climate models. For instance,

FIGURE 10 As in Figure 4 but after detrending the data from climate models [Colour figure can be viewed at wileyonlinelibrary.com]
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several models (e.g., in BCC-CSM1-1M and MRI-ESM1)
overestimate the meridional gradients in R1,
corresponding to an overestimation of wintertime
(December–March) westerly flow. This wintertime ten-
dency of models to overestimate Westerly flow leads to
the overestimation of surface temperatures (as in
W�ojcik, 2015). Similarly, the underestimation of westerly
flow in R2 by several models (during March–May and
October–December) leads to overestimated temperature
anomalies. These biases in atmospheric flow and surface
temperatures are commonly linked to the overestimation

of the wintertime jetstream (strength and stability) in
GCMs due to their coarse horizontal resolution (Scaife
et al., 2010; Dawson et al., 2012; Iqbal et al., 2018).

R3 is the most biased atmospheric regime in climate
models, with several models simulating inaccurate pat-
terns (location, intensity) of Z500 and TAS in April–June
and September–November. These biases are likely due to
the tendency from models of simulating a jetstream
(or storm track) that is too zonal and underestimating its
frequency of meandering (Scaife et al., 2010; Cattiaux
et al., 2013; Zappa et al., 2013; Iqbal et al., 2018), in

FIGURE 11 As in Figure 5 but after detrending the data from climate models [Colour figure can be viewed at wileyonlinelibrary.com]
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consistence with stronger Z500 meridional gradient and
faster zonal wind in models than observed (Hassanzadeh
et al., 2014; W�ojcik, 2015; Cattiaux et al., 2016). In the
case of R4, the overestimation of cyclonic conditions
(cold bias) and underestimation of anticyclonic condi-
tions (warm bias) by several models can be linked to a
model tendency of underestimating summertime (June–
September) westerly flow and jetstream windspeed (Iqbal
et al., 2018).

Despite biases in the climate model representation of
Z500 and TAS seasonal variability, the general evolution
of the four seasonal circulation regimes (SCR4) over
1979–2017 was consistent between models and ERAI:
decreasing frequencies of historical winter conditions
and increasing frequencies of historical summer condi-
tions of atmospheric dynamics. Most of the results agree
with the findings of Vrac et al. (2014), except that we
detect a more pronounced winter evolution. This is prob-
ably because their reanalysis dataset covered 1948–2011
while our data cover 1979–2017, which is more recent
and better captures global warming (section 2.4.1.1 and
table 2.4 in IPCC, 2013). The structures (spatial, tempo-
ral) and evolution (timing) of SCRs differ between cli-
mate models over 1979–2017 and even more over
1979–2100.

4.2 | Projected evolutions of seasons

When looking at future (1979–2100) evolutions of SCRs
with both four and seven regimes, the frequency of his-
torical winter conditions decreases while that of histori-
cal summer conditions increases and occurrences of
transitional regimes move towards the winter period.
These changes are attached to large increases in the sea-
sonal mean of Z500 and TAS over the North Atlantic.
The results for summer (lengthening) are consistent with
those of Cassou & Cattiaux (2016) but not the results for
winter (shortening), which could be due to the very dif-
ferent methods used to define seasonality. Moreover, all-
owing for more freedom in the definition of the SCRs by
using seven regimes rather than four, we find a collapse
of the regime associated to past winter conditions,
corresponding to rare cold spells at the end of the 21st
century, and the growth of a new summer regime
corresponding to past heatwaves that becomes dominant
in summer by the end of the 21st century.

These results suggest that past winter conditions are
becoming shorter in time and past summer conditions
are broadening and intensifying, in consistence with
changing thermal seasons (Peña-Ortiz et al., 2015;
Ruosteenoja et al., 2020; Wang et al., 2021). However, in
our case the apparent changes in seasonality seem to

correspond rather to a swap between regimes since
occurrences of past R1 are replaced by R2 in the future,
past R2 are replaced by R3, and so on until R6. Note that
R1 conditions correspond to the past winter pattern that
almost disappears at the end of the 21st century. Hence,
for the future projections, R1 corresponds to extreme
winter (rare intense Westerly flow) with respect to the
“normal” future seasonality. Therefore, this regime swap,
with symmetry between spatial patterns and annual
cycle, suggests that the seasonality of the atmospheric
patterns does not change in a major way relative to the
evolution of the raw seasonal cycle of Z500 and TAS.

Over the last three decades (2071–2100) respectively
to the first three decades (1979–2008), SCR4 had about
75% fewer days (on average between climate models) of
enhanced Westerly flow (R1) and about 10% of wavy
jetstream (R3) but about 54% more days of weakened
westerly flow (R2) and 135% more days of anticyclonic
conditions (R4). Under future warming, this increasing
frequency of weakened westerly flow in winter and anti-
cyclonic conditions over Europe in summer is consistent
with the findings from Cattiaux et al. (2013), associated
to a reduction of snow cover in winter and of cloudiness
in summer. The increase in the frequency of anticyclonic
conditions during May, June, September and October
could have consequences for extreme events, such as
heatwaves and dry spells as Röthlisberger and
Martius (2019) found a strong positive effect of atmo-
spheric blocking conditions on the persistence of simulta-
neously occurring hot and dry spells over Europe
between May and October.

Additionally, the findings from Pfleiderer et al. (2019)
that summer weather becomes more persistent in a
warmer world, although they consider summer in June–
July–August, can be linked to our finding of an increase
in summer regime persistence. SCR4 over 1979–2100 also
revealed a weakening in the patterns of weakened west-
erly flow and anticyclonic conditions (R2 and R4), and a
strengthening in the patterns of enhanced westerly flow
and wavy jetstream (R1 and R3) at the end of the 21st
century by comparison to the end of the 20th century.
This future strengthening of the enhanced westerly flow
(R1) pattern in the winter period is consistent with a
decrease of cold spells over Europe (Peings et al., 2013) as
they are facilitated by anticyclonic conditions in winter
(Buehler et al., 2011). The strengthening of the wavy
jetstream (R3) pattern and weakening of anticyclonic
(R4) pattern can be put in relation with the suggestion
from Christidis and Stott (2015) that the relative Z500
increase between polar and mid-latitude regions in the
Northern Hemisphere could moderate the westerly flow
over the North Atlantic and affect the positioning of the
North Atlantic jet stream, especially with a change in the
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sinuosity of the mid-latitude atmospheric flow (Cattiaux
et al., 2016).

4.3 | Drivers of the evolution(s)

The appearance and disappearance of regimes over 1979–
2100 do not happen in 1979–2017, probably due to the
smaller scale of change in Z500 in this period by contrast
to the future where the full extent of the emission scenar-
ios kick in inside the climate model simulations. We
found that the trends of increasing and decreasing Z500
within regimes, generally associated respectively to TAS
warming and cooling trends, are the result of two oppo-
site processes: the North Atlantic increase in Z500 (due
to human influence) and the seasonal shift of regimes
towards the winter period (where Z500 and TAS are
lower than during the rest of the year). This seasonal shift
explains the decreasing Z500 trends, generally associated
with cooling, which are observed in several regions
within SCRs and would otherwise not be possible. This
explanation also covers the cooling trends reported by
Vrac et al. (2014), understood here as a temporal shift of
the regimes' occurrences towards the winter period (with
cool conditions) rather than a seasonally stationary
cooling.

The d-SCRs results (i.e., SCRs obtained from
detrended Z500) showed almost no temporal evolution
between past and future, which means that the North
Atlantic increase in Z500 is the main cause for the evolu-
tion of SCRs. Christidis and Stott (2015) reported that the
planetary Z500 increase during 1979–2012 was mostly
due to human forcings. So, although climate models
overestimate the surface warming and Z500 increase over
the past period (Jones et al., 2013; Christidis and
Stott, 2015), human forcings appear to cause the shift in
seasonality of the regimes that we detect here, since most
of the evolution of the regimes disappears when we
remove the North Atlantic increase in Z500.

4.4 | Limitations and perspectives

Even though the regimes and their evolutions in climate
models in the past period are similar to those from ERAI,
we note a few limitations and sources of uncertainty. The
representation of the climate in ERAI and models has
uncertainties and errors, especially in atmospheric
dynamics (Shepherd, 2014) and surface temperature in
models (Jones et al., 2013). Bias correction methods could
lead to more realistic seasonal atmospheric regimes but
could imply other issues such as modifications of spatial
and temporal structures (and trends) that could possibly

generate physical inconsistencies (Vrac, 2018; François
et al., 2020).

Overall, although our study highlights the value of a
clustering approach for comparing (and evaluating)
models as well as seasonal structures, the apparent con-
sistency that we find between climate models on the
future evolution of seasonal dynamics seems at odds with
other studies where the projected circulation response
differs strongly between models (e.g., Barnes and
Polvani, 2015). Indeed, clustering approaches might hide
intermodel variability, or seasonal variability (depending
on the number of clusters). Additional sources of
uncertainty include the choice of RCP8.5 for the future
emission scenarios and the choice of Z500 (i.e., mid-
troposphere atmospheric circulation) rather than surface,
lower or higher troposphere.

Three outlooks emerge from this study. First, the
model dependency of the changes in atmospheric circula-
tion could be examined further, by comparing the model
regime biases to the mean model biases in atmospheric
flow climatology. Second, the link between regional
warming and circulation changes could also be investi-
gated further, by comparing regime changes to model
climate sensitivity. In other words, does faster warming
correspond to earlier and stronger changes in circula-
tion seasonality during the century? Third, the local-
scale implications of the large-scale circulation changes
could be clarified further, by downscaling meteorologi-
cal variables (e.g., temperature, precipitation, win-
dspeed) based on the large-scale circulation regimes
(Vrac and Yiou, 2010). Another way to characterize the
local climate shifts would be to use climate analogs, to
identify future impacts, vulnerabilities, and adaptation
options (Rohat et al., 2018; Bastin et al., 2019). Under-
standing the effects of climate change on seasonality is
important to anticipate future changes in weather con-
ditions and the consequences for nature and society.

ACKNOWLEDGEMENTS
The authors thank Soulivanh Thao, Ara Arakelian and
Flavio Pons for technical assistance. We also thank Chris-
tophe Cassou for suggestions of perspectives, and the
reviewers for their recommendations that helped to
improve the article. Florentin Breton and Mathieu Vrac
acknowledge financial support from the CoCliServ pro-
ject. Mathieu Vrac and Pascal Yiou also acknowledge
support from the EUPHEME project. Both CoCliServ and
EUPHEME are part of ERA4CS, an ERA-NET initiated
by JPI Climate and co-funded by the European Union
(grant n�690462).

CONFLICT OF INTEREST
The authors declare no potential conflict of interest.

5864 BRETON ET AL.



AUTHOR CONTRIBUTIONS
Florentin Breton: Conceptualization; data curation; for-
mal analysis; investigation; methodology; resources; soft-
ware; validation; visualization; writing – original draft;
writing – review and editing. Mathieu Vrac: Conceptuali-
zation; investigation; methodology; supervision; validation;
visualization; writing – original draft; writing – review and
editing. Pascal Yiou: Validation; visualization; writing –
original draft; writing – review and editing. Pradeebane
Vaittinada Ayar: Validation; visualization; writing – origi-
nal draft; writing – review and editing. Aglaé Jézéquel:
Validation; visualization; writing – original draft; writing –
review and editing.

DATA AVAILABILITY STATEMENT
The ERAI data are available at https://www.ecmwf.int/
en/forecasts/datasets/reanalysis-datasets/era-interim.
The CMIP5 data are available at https://esgf-node.ipsl.
upmc.fr/search/cmip5-ipsl/. The computations were per-
formed using the free statistical package mclust (Scrucca
and Raftery, 2015) on the R software (www.r-project.org).

ORCID
Florentin Breton https://orcid.org/0000-0002-5982-8182
Mathieu Vrac https://orcid.org/0000-0002-6176-0439
Pascal Yiou https://orcid.org/0000-0001-8534-5355
Pradeebane Vaittinada Ayar https://orcid.org/0000-
0001-8085-9621
Aglaé Jézéquel https://orcid.org/0000-0002-0957-3126

REFERENCES
Adachi, Y., Yukimoto, S., Deushi, M., Obata, A., Nakano, H.,

Tanaka, T., Hosaka, M., Sakami, T., Yoshimura, H.,
Hirabara, M., Shindo, E., Tsujino, H., Mizuta, R., Yabu, S.,
Koshiro, T., Ose, T. and Kitoh, A. (2013) Basic performance of a
new earth system model of the Meteorological Research Insti-
tute (MRI-ESM1). Papers in Meteorology and Geophysics, 64(0),
1–19.

Angell, J.K. and Korshover, T. (1974) Quasi-biennial and long-term
fluctuations in the centers of action. Monthly Weather Review,
102(10), 669–678.

Bastin, J.-F., Clark, E., Elliott, T., Hart, S., van den Hoogen, J., Hor-
dijk, I., Ma, H., Majumder, S., Manoli, G., Maschler, J., Mo, L.,
Routh, D., Yu, K., Zohner, C. M. and Crowther, T. W. (2019)
Understanding climate change from a global analysis of city
analogues. PLOS ONE, 14(7), e0217592.

Barnes, E.A. and Polvani, L.M. (2015) CMIP5 projections of Arctic
amplification, of the North American/North Atlantic circula-
tion, and of their relationship. Journal of Climate, 28(13), 5254–
5271.

Barnston, A.G. and Livezey, R.E. (1987) Classification, seasonality
and persistence of low-frequency atmospheric circulation pat-
terns. Monthly Weather Review, 115(6), 1083–1126.

Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A.,
Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C.,

and Kristj�ansson, J. E. (2013) The Norwegian Earth System
Model, NorESM1-M – Part 1: Description and basic evaluation
of the physical climate. Geoscientific Model Development, 6(3),
687–720. https://doi.org/10.5194/gmd-6-687-2013

Blackmon, M.L., Lee, Y.H. and Wallace, J.M. (1984) Horizontal
structure of 500 mb height fluctuations with long, intermediate
and short time scales. Journal of Atmospheric Sciences, 41(6),
961–980.

Brunner, L., Schaller, N., Anstey, J., Sillmann, J. and Steiner, A.K.
(2018) Dependence of present and future European tempera-
ture extremes on the location of atmospheric blocking. Geo-
physical Research Letters, 45(12), 6311–6320.

Buehler, T., Raible, C.C. and Stocker, T.F. (2011) The relationship
of winter season North Atlantic blocking frequencies to
extreme cold or dry spells in the ERA-40. Tellus A: Dynamic
Meteorology and Oceanography, 63(2), 174–187.

Cassou, C. (2008) Intraseasonal interaction between the Madden–
Julian oscillation and the North Atlantic Oscillation. Nature,
455(7212), 523–527.

Cassou, C. and Cattiaux, J. (2016) Disruption of the European cli-
mate seasonal clock in a warming world. Nature Climate
Change, 6(6), 589–594.

Cattiaux, J. (2010). Extrêmes de température en Europe: mécanismes
et réponses au changement climatique. Doctoral dissertation,
Paris 6.

Cattiaux, J., Douville, H. and Peings, Y. (2013) European tempera-
tures in CMIP5: origins of present-day biases and future uncer-
tainties. Climate Dynamics, 41(11–12), 2889–2907.

Cattiaux, J., Peings, Y., Saint-Martin, D., Trou-Kechout, N. and
Vavrus, S.J. (2016) Sinuosity of midlatitude atmospheric flow in
a warming world. Geophysical Research Letters, 43(15), 8259–
8268.

Cattiaux, J., Yiou, P. and Vautard, R. (2012) Dynamics of future sea-
sonal temperature trends and extremes in Europe: a multi-
model analysis from CMIP3. Climate Dynamics, 38(9–10),
1949–1964.

Christidis, N. and Stott, P.A. (2015) Changes in the geopotential
height at 500 hPa under the influence of external climatic forc-
ings. Geophysical Research Letters, 42(24), 10798–10806.

Chylek, P., Li, J., Dubey, M.K., Wang, M. and Lesins, G.J.A.C.
(2011) Observed and model simulated 20th century Arctic tem-
perature variability: Canadian earth system model CanESM2.
Atmospheric Chemistry and Physics Discussions, 11(8), 22893–
22907.

Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D.,
Coumou, D., Francis, J., Dethloff, K., Entekhabi, D.,
Overland, J., and Jones, J. (2014) Recent Arctic amplification
and extreme mid-latitude weather. Nature Geoscience, 7(9),
627–637.

Collier, M. and Uhe, P. (2012) CMIP5 datasets from the ACCESS1.0
and ACCESS1.3 coupled climate models. Aspendale, Australia:
Centre for Australian Weather and Climate Research.

Dai, A. (2016) Future warming patterns linked to today's climate
variability. Scientific Reports, 6(1), 1–6.

Dawson, A., Palmer, T.N. and Corti, S. (2012) Simulating regime
structures in weather and climate prediction models. Geophysi-
cal Research Letters, 39(21), 1–6.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,

BRETON ET AL. 5865

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://esgf-node.ipsl.upmc.fr/search/cmip5-ipsl/
https://esgf-node.ipsl.upmc.fr/search/cmip5-ipsl/
http://www.r-project.org
https://orcid.org/0000-0002-5982-8182
https://orcid.org/0000-0002-5982-8182
https://orcid.org/0000-0002-6176-0439
https://orcid.org/0000-0002-6176-0439
https://orcid.org/0000-0001-8534-5355
https://orcid.org/0000-0001-8534-5355
https://orcid.org/0000-0001-8085-9621
https://orcid.org/0000-0001-8085-9621
https://orcid.org/0000-0001-8085-9621
https://orcid.org/0000-0002-0957-3126
https://orcid.org/0000-0002-0957-3126
https://doi.org/10.5194/gmd-6-687-2013


Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L.,
Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M.,
Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H.,
H�olm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P.,
Tavolato, C., Thépaut, J.-N., and Vitart, F. (2011) The ERA-
Interim reanalysis: configuration and performance of the data
assimilation system. Quarterly Journal of the Royal Meteorologi-
cal Society, 137(656), 553–597.

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) Maximum like-
lihood from incomplete data via the EM algorithm. Journal of
the Royal Statistical Society: Series B (Methodological), 39(1),
1–22.

Díaz-Esteban, Y., Raga, G.B. and Díaz Rodríguez, O.O. (2020) A
weather-pattern-based evaluation of the performance of CMIP5
models over Mexico. Climate, 8(1), 5.

Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O.,
Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H.,
Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P.,
Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de
Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T.,
Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A.,
Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G.,
Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F.,
Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M.,
Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I.,
Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.
(2013) Climate change projections using the IPSL-CM5 Earth
System Model: from CMIP3 to CMIP5. Climate Dynamics, 40(9-
10), 2123–2165.

Estivill-Castro, V. and Yang, J. (2000) Fast and robust general pur-
pose clustering algorithms. In: Pacific Rim International Confer-
ence on Artificial Intelligence. Berlin-Heidelberg: Springer,
pp. 208–218.

Fabiano, F., Christensen, H.M., Strommen, K., Athanasiadis, P.,
Baker, A., Schiemann, R. and Corti, S. (2020) Euro-Atlantic
weather regimes in the PRIMAVERA coupled climate simula-
tions: impact of resolution and mean state biases on model per-
formance. Climate Dynamics, 54, 5031–5048.

Fabiano, F., Meccia, V.L., Davini, P., Ghinassi, P. and Corti, S.
(2021) A regime view of future atmospheric circulation changes
in northern mid-latitudes. Weather and Climate Dynamics, 2(1),
163–180.

Folland, C.K., Knight, J., Linderholm, H.W., Fereday, D., Ineson, S.
and Hurrell, J.W. (2009) The summer North Atlantic Oscilla-
tion: past, present, and future. Journal of Climate, 22(5), 1082–
1103.

Fraley, C. and Raftery, A.E. (2002) Model-based clustering, discrim-
inant analysis, and density estimation. Journal of the American
Statistical Association, 97(458), 611–631.

François, B., Vrac, M., Cannon, A.J., Robin, Y. and Allard, D.
(2020) Multivariate bias corrections of climate simulations:
Which benefits for which losses? Earth System Dynamics, 11(2),
537–562.

Franzke, C., Woollings, T. and Martius, O. (2011) Persistent circula-
tion regimes and preferred regime transitions in the North

Atlantic. Journal of the Atmospheric Sciences, 68(12), 2809–
2825.

Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S.,
Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M.,
Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D.,
Ilyina, T., Kinne, S., Kornblueh, L., Matei, D.,
Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D.,
Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E.,
Schmidt, H., Schnur, R., Segschneider, J., Six, K. D.,
Stockhause, M., Timmreck, C., Wegner, J., Widmann, H.,
Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.
(2013) Climate and carbon cycle changes from 1850 to 2100
in MPI-ESM simulations for the Coupled Model
Intercomparison Project phase 5. Journal of Advances in
Modeling Earth Systems, 5(3), 572–597.

Griffies, S. M., Winton, M., Donner, L. J., Horowitz, L. W.,
Downes, S. M., Farneti, R., Gnanadesikan, A., Hurlin, W. J.,
Lee, H.-C., Liang, Z., Palter, J. B., Samuels, B. L.,
Wittenberg, A. T., Wyman, B. L., Yin, J., and Zadeh, N. (2011) The
GFDL CM3 coupled climate model: characteristics of the ocean
and sea ice simulations. Journal of Climate, 24(13), 3520–3544.

Guemas, V., Salas-Mélia, D., Kageyama, M., Giordani, H.,
Voldoire, A. and Sanchez-Gomez, E. (2010) Summer interac-
tions between weather regimes and surface ocean in the North-
Atlantic region. Climate Dynamics, 34(4), 527–546.

Han, J., Pei, J. and Kamber, M. (2011) Data Mining: Concepts and
Techniques. Amsterdam, Netherlands: Elsevier.

Hannachi, A., Straus, D.M., Franzke, C.L., Corti, S. and
Woollings, T. (2017) Low-frequency nonlinearity and regime
behavior in the Northern Hemisphere extratropical atmo-
sphere. Reviews of Geophysics, 55(1), 199–234.

Hassanzadeh, P., Kuang, Z. and Farrell, B.F. (2014) Responses of
midlatitude blocks and wave amplitude to changes in the
meridional temperature gradient in an idealized dry GCM. Geo-
physical Research Letters, 41(14), 5223–5232.

Hertig, E. and Jacobeit, J. (2014) Variability of weather regimes in
the North Atlantic-European area: past and future. Atmospheric
Science Letters, 15(4), 314–320.

Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S.,
Camilloni, I., Diedhiou, A., Djalante, R., Ebi, K., Engelbrecht,
F., Guiot, J., Hijioka, Y., Mehrotra, S., Payne, A., Seneviratne,
S.I., Thomas, A., Warren, R. and Zhou, G. (2018) Impacts of
1.5�C global warming on natural and human systems. In:
Global Warming of 1.5�C. An IPCC Special Report.

Hurrell, J.W. and Deser, C. (2010) North Atlantic climate variabil-
ity: the role of the North Atlantic Oscillation. Journal of Marine
Systems, 79(3–4), 231–244.

Hurrell, J.W., Kushnir, Y., Ottersen, G. and Visbeck, M. (2003) An
overview of the North Atlantic Oscillation. Geophysical Mono-
graph: American Geophysical Union, 134, 1–36.

IPCC. (2013) In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and
Midgley, P.M. (Eds.) Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change. Cam-
bridge and New York, NY: Cambridge University Press, 1535 pp.

Iqbal, W., Leung, W.N. and Hannachi, A. (2018) Analysis of the
variability of the North Atlantic eddy-driven jet stream in
CMIP5. Climate Dynamics, 51(1), 235–247.

5866 BRETON ET AL.



Jézéquel, A., Bevacqua, E., d'Andrea, F., Thao, S., Vautard, R.,
Vrac, M. and Yiou, P. (2020) Conditional and residual trends of
singular hot days in Europe. Environmental Research Letters,
15(6), 064018.

Jia, G., Shevliakova, E., Artaxo, P., De Noblet-Ducoudré, N.,
Houghton, R., House, J., Kitajima, K., Lennard, C., Popp, A.,
Sirin, A., Sukumar, R. and Verchot, L. (2019) Land–climate
interactions. In: (Ed.) Climate Change and Land: An IPCC Spe-
cial Report on Climate Change, Desertification, Land Degrada-
tion, Sustainable Land Management, Food Security, and
Greenhouse Gas Fluxes in Terrestrial Ecosystems. IPCC,
pp. 131–247.

Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C.,
Jones, G. S., Knight, J., Liddicoat, S., O'Connor, F. M.,
Andres, R. J., Bell, C., Boo, K.-O., Bozzo, A., Butchart, N.,
Cadule, P., Corbin, K. D., Doutriaux-Boucher, M.,
Friedlingstein, P., Gornall, J., Gray, L., Halloran, P. R.,
Hurtt, G., Ingram, W. J., Lamarque, J.-F., Law, R. M.,
Meinshausen, M., Osprey, S., Palin, E. J., Parsons Chini, L.,
Raddatz, T., Sanderson, M. G., Sellar, A. A., Schurer, A.,
Valdes, P., Wood, N., Woodward, S., Yoshioka, M., and
Zerroukat, M. (2011) The HadGEM2-ES implementation of
CMIP5 centennial simulations. Geoscientific Model Develop-
ment, 4(3), 543–570.

Jones, G.S., Stott, P.A. and Christidis, N. (2013) Attribution of
observed historical near-surface temperature variations to
anthropogenic and natural causes using CMIP5 simulations.
Journal of Geophysical Research: Atmospheres, 118(10), 4001–
4024.

Lamb, H.H. (1950) Types and spells of weather around the year in
the British Isles: annual trends, seasonal structure of the year,
singularities. Quarterly Journal of the Royal Meteorological Soci-
ety, 76(330), 393–429.

Lhotka, O. and Kyselý, J. (2015) Characterizing joint effects of spa-
tial extent, temperature magnitude and duration of heat waves
and cold spells over central Europe. International Journal of
Climatology, 35(7), 1232–1244.

Marshall, J., Kushnir, Y., Battisti, D., Chang, P., Czaja, A.,
Dickson, R., Hurrell, J., McCartney, M., Saravanan, R., and
Visbeck, M. (2001) North Atlantic climate variability: phenom-
ena, impacts and mechanisms. International Journal of Clima-
tology, 21(15), 1863–1898.

Overland, J., Francis, J.A., Hall, R., Hanna, E., Kim, S.J. and
Vihma, T. (2015) The melting Arctic and midlatitude weather
patterns: Are they connected? Journal of Climate, 28(20), 7917–
7932.

Pearson, K. (1894) Contributions to the mathematical theory of evo-
lution. Philosophical Transactions of the Royal Society of London
Series A, 185, 71–110.

Peel, D. and McLachlan, G.J. (2000) Robust mixture modelling
using the t distribution. Statistics and Computing, 10(4),
339–348.

Peings, Y., Cattiaux, J. and Douville, H. (2013) Evaluation and
response of winter cold spells over western Europe in CMIP5
models. Climate Dynamics, 41(11–12), 3025–3037.

Peña-Ortiz, C., Barriopedro, D. and García-Herrera, R. (2015) Mul-
tidecadal variability of the summer length in Europe. Journal of
Climate, 28(13), 5375–5388.

Pfleiderer, P., Schleussner, C.F., Kornhuber, K. and Coumou, D.
(2019) Summer weather becomes more persistent in a 2�C
world. Nature Climate Change, 9(9), 666–671.

Philipp, A., Bartholy, J., Beck, C., Erpicum, M., Esteban, P.,
Fettweis, X., Huth, R., James, P., Jourdain, S., Kreienkamp, F.,
Krennert, T., Lykoudis, S., Michalides, S. C., Pianko-
Kluczynska, K., Post, P., �Alvarez, D. R., Schiemann, R.,
Spekat, A., and Tymvios, F. S. (2010) Cost733cat – A database
of weather and circulation type classifications. Physics and
Chemistry of the Earth, Parts A/B/C, 35(9-12), 360–373.

Price, J.M. and Magaard, L. (1986) Interannual baroclinic Rossby
waves in the midlatitude North Atlantic. Journal of Physical
Oceanography, 16(12), 2061–2070.

Reinhold, B.B. and Pierrehumbert, R.T. (1982) Dynamics of
weather regimes: quasi-stationary waves and blocking. Monthly
Weather Review, 110(9), 1105–1145.

Rex, D.F. (1950) Blocking action in the middle troposphere and its
effect upon regional climate. Tellus, 2(4), 275–301.

Rohat, G., Goyette, S. and Flacke, J. (2018) Characterization of
European cities’ climate shift – an exploratory study based on
climate analogues. International Journal of Climate Change
Strategies and Management, 10(3), 428–452.

Rokach, L. and Maimon, O. (2005) Clustering methods. In: Data
Mining and Knowledge Discovery Handbook. Boston, MA:
Springer, pp. 321–352.

Röthlisberger, M. and Martius, O. (2019) Quantifying the local
effect of Northern Hemisphere atmospheric blocks on the per-
sistence of summer hot and dry spells. Geophysical Research
Letters, 46(16), 10101–10111.

Ruosteenoja, K., Markkanen, T. and Räisänen, J. (2020) Thermal
seasons in northern Europe in projected future climate. Inter-
national Journal of Climatology, 40(10), 4444–4462.

Sanchez-Gomez, E., Somot, S. and Déqué, M. (2009) Ability of an
ensemble of regional climate models to reproduce weather
regimes over Europe-Atlantic during the period 1961–2000. Cli-
mate Dynamics, 33(5), 723–736.

Scaife, A.A., Woollings, T., Knight, J., Martin, G. and Hinton, T.
(2010) Atmospheric blocking and mean biases in climate
models. Journal of Climate, 23(23), 6143–6152.

Schaller, N., Sillmann, J., Anstey, J., Fischer, E.M., Grams, C.M.
and Russo, S. (2018) Influence of blocking on northern
European and Western Russian heatwaves in large climate
model ensembles. Environmental Research Letters, 13(5),
054015.

Schwalm, C.R., Glendon, S. and Duffy, P.B. (2020a) RCP8. 5 tracks
cumulative CO2 emissions. Proceedings of the National Acad-
emy of Sciences of the United States of America, 117(33), 19656–
19657.

Schwalm, C.R., Glendon, S. and Duffy, P.B. (2020b) Reply to
Hausfather and Peters: RCP8.5 is neither problematic nor mis-
leading. Proceedings of the National Academy of Sciences of the
United States of America, 117(45), 27793–27794.

Schwarz, G. (1978) Estimating the dimension of a model. Annals of
Statistics, 6, 461–464.

Scrucca, L. and Raftery, A.E. (2015) Improved initialisation of
model-based clustering using Gaussian hierarchical parti-
tions. Advances in Data Analysis and Classification, 9(4),
447–460.

BRETON ET AL. 5867



Shepherd, T.G. (2014) Atmospheric circulation as a source of uncer-
tainty in climate change projections. Nature Geoscience, 7(10),
703–708.

Sillmann, J., Croci-Maspoli, M., Kallache, M. and Katz, R.W. (2011)
Extreme cold winter temperatures in Europe under the influ-
ence of North Atlantic atmospheric blocking. Journal of Cli-
mate, 24(22), 5899–5913.

Stendel, M., Francis, J., White, R., Williams, P.D. and Woollings, T.
(2021) The jet stream and climate change. In: Climate Change.
Elsevier, pp. 327–357. https://www.sciencedirect.com/science/
article/pii/B9780128215753000153

Taylor, K.E., Stouffer, R.J. and Meehl, G.A. (2012) An overview of
CMIP5 and the experiment design. Bulletin of the American
Meteorological Society, 93(4), 485–498.

Vautard, R. (1990) Multiple weather regimes over the North Atlan-
tic: analysis of precursors and successors. Monthly Weather
Review, 118(10), 2056–2081.

Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme B.,
Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier,
M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E.,
Madec, G., Maisonnave, E., Moine, M.-P., Planton, S., Saint-
Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S.,
Braun, A., Coquart, L and Chauvin, F. (2013) The CNRM-
CM5.1 global climate model: description and basic evaluation.
Climate Dynamics, 40(9-10), 2091–2121.

Vrac, M. (2018) Multivariate bias adjustment of high-dimensional
climate simulations: the rank resampling for distributions and
dependences (R2D2) bias correction. Hydrology and Earth Sys-
tem Sciences, 22(6), 3175–3196.

Vrac, M., Hayhoe, K. and Stein, M. (2007) Identification and inter-
model comparison of seasonal circulation patterns over North
America. International Journal of Climatology, 27(5), 603–620.

Vrac, M., Vaittinada Ayar, P. and Yiou, P. (2014) Trends and vari-
ability of seasonal weather regimes. International Journal of
Climatology, 34(2), 472–480.

Vrac, M. and Yiou, P. (2010) Weather regimes designed for local
precipitation modeling: application to the Mediterranean basin.
Journal of Geophysical Research: Atmospheres, 115(D12),
D12103.

Wallace, J.M., Zhang, Y. and Lau, K.H. (1993) Structure and season-
ality of interannual and interdecadal variability of the geo-
potential height and temperature fields in the Northern
Hemisphere troposphere. Journal of Climate, 6(11), 2063–2082.

Wang, C. (2002) Atlantic climate variability and its associated atmo-
spheric circulation cells. Journal of Climate, 15(13), 1516–1536.

Wang ,J., Guan, Y., Wu, L., Guan, X., Cai, W., Huang, J., Dong, W.
and Zhang, B. (2021) Changing Lengths of the Four Seasons by
Global Warming. Geophysical Research Letters, 48(6),
e2020GL091753.

Watanabe, M., Suzuki, T., O'ishi, R., Komuro, Y., Watanabe, S.,
Emori, S., Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M.,
Takata, K., Yamazaki, D., Yokohata, T., Nozawa, T., Hasumi,
H., Tatebe, H. and Kimoto, M. (2010) Improved Climate Simu-
lation by MIROC5: Mean States, Variability, and Climate Sensi-
tivity. Journal of Climate, 23(23), 6312–6335.

W�ojcik, R. (2015) Reliability of CMIP5 GCM simulations in rep-
roducing atmospheric circulation over Europe and the North
Atlantic: a statistical downscaling perspective. International
Journal of Climatology, 35(5), 714–732.

Woollings, T., Hannachi, A. and Hoskins, B. (2010) Variability of
the North Atlantic eddy-driven jet stream. Quarterly Journal of
the Royal Meteorological Society, 136(649), 856–868.

Wu, T., Song, L., Li, W., Wang, Z., Zhang, H., Xin, X., Zhang, Y.,
Zhang, L., Li, J., Wu, F., Liu, Y., Zhang, F., Shi, X., Chu, M.,
Zhang, J., Fang, Y., Wang, F., Lu, Y., Liu, X., Wei, M., Liu, Q.,
Zhou, W., Dong, M., Zhao, Q., Ji, J., Li, L. and Zhou, M. (2014)
An overview of BCC climate system model development and
application for climate change studies. Acta Meteorologica
Sinica, 28(1), 34–56.

Xu, P., Wang, L., Huang, P. and Chen, W. (2021) Disentangling
dynamical and thermodynamical contributions to the record-
breaking heatwave over central Europe in June 2019. Atmo-
spheric Research, 252, 105446.

Yiou, P. and Nogaj, M. (2004) Extreme climatic events and weather
regimes over the North Atlantic: When and where? Geophysical
Research Letters, 31(7), 1–4. https://doi.org/10.1029/
2003GL019119.

Zappa, G., Shaffrey, L.C. and Hodges, K.I. (2013) The ability of
CMIP5 models to simulate North Atlantic extratropical
cyclones. Journal of Climate, 26(15), 5379–5396.

SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher's website.

How to cite this article: Breton, F., Vrac, M.,
Yiou, P., Vaittinada Ayar, P., & Jézéquel, A. (2022).
Seasonal circulation regimes in the North Atlantic:
Towards a new seasonality. International Journal
of Climatology, 42(11), 5848–5870. https://doi.org/
10.1002/joc.7565

APPENDIX A

A.1 | Density estimation via Gaussian mixture
model
Gaussian distributions are ellipsoids in space determined by
the mean (location) and covariance matrix (geometric fea-
tures: volume, shape, orientation). The parameters of the
Gaussian mixture model (GMM) are the means μk, covari-
ance matrix Σk, and mixture ratio πk, describing the
K k=1…,Kð Þ Gaussian distributions. The estimation of
the GMM parameters is done iteratively in the expectation
maximization (EM) algorithm by maximizing the likeli-
hood that the current statistical model represents the
observed data (Fraley and Raftery (2002)). Before being
optimized, the GMM parameters are initialized by the
result of a hierarchical model-based agglomerative cluster-
ing (multivariate), or by separation in quantiles
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(univariate), rather than random initialization. This
approach avoids poor initial partitioning leading to the
convergence of the likelihood function to a local maxi-
mum rather than a global one (e.g., Scrucca and
Raftery, 2015). The principle of EM is based on the possi-
bility to calculate π when knowing α (μ and Σ) and vice
versa, thus enabling the optimization of both. After the
initialization, the expectation-step (or E-step) estimates
the posterior probability ik (update of ik) that the observa-
tion xi belongs to f k with the current parameter estimates
(at stage t):

ptik=
πtK f k xi,αtk

� �

ΣK
k=1π

t
K f k xi,αtk

� � :

Then, the maximization-step (or M-step) uses the pos-
terior probabilities to improve the estimates of GMM
parameters (stage t+1),

πt+1
k =

1
n

Xn

i=1
ptik,

μt+1
k =

1
n πt+1

k

Xn

i=1
xip

t
ik ,

Σt+1
k =

1
nπt+1

k

ptik xi−μt+1
k

� �0
xi−μt+1

k

� �
,

where n is the number of observations. The algorithm
repeats the E- and M-steps iteratively until termination
when model parameters converge and the maximum
likelihood is reached (convergence of the log-likelihood
function) or after a maximum number of iterations.

A.2 | Model selection with the BIC and covariance
matrix
The Bayesian information criterion (BIC) is a criterion
for model selection that helps to prevent overfitting by
introducing penalty terms for the complexity of the
model (number of parameters). In the calculation of the
BIC, these penalty terms compete with the likelihood
function which determines whether adding parameters
improves the model by better fitting the observed data. In
our case, minimizing the BIC achieves a good compro-
mise between keeping the model simple and a good rep-
resentation of the observed data,

BIC Kð Þ=p log nð Þ−2log Lð Þ,

where K is the number of clusters, L the likelihood of the
parameterized mixture model, p the number of parame-
ters to estimate and n the size of the sample
(e.g., 14,235 days over 1979–2017). An additional con-
straint on the definition of clusters is on the covariance
matrix. Our GMM is univariate (since we only use PC1)
so the variance can be equal (E model) or different
(V model) between clusters (i.e., constraint on volume
but not on shape or orientation of clusters).

A.3 | Regime conditional trends
The maps of linear trends by regime are obtained by
using multiple linear regressions. At each gridpoint, the
model of multiple linear regression estimates the contri-
bution of each regime (k=1,…,K) to the evolution of the
variable (Z500 or TAS),

yt=α0+
XK

k=1
1t,k αk+βk tð Þ

h i
+εt,

FIGURE A1 Bayesian information

criterion (BIC) of the clustering models

in function of the number of clusters

and model type for ERAI and each

climate model over 1979–2017
(exception of HadGEM2-ES: 1981–2017).
The BIC values are normalized between

0 (best EM model) and 1 (worst EM

model). E: equal variance, V: variable

variance [Colour figure can be viewed at

wileyonlinelibrary.com]
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with

α1=0
and

1t,k=0, if regime≠ k at time t,

1t,k=1, if regime=k at time t,

where yt is the value of the daily variable, α0 is the gen-
eral intercept of the multiple regression model, 1t,k is the
conditional attribution of days per regime, αk is the inter-
cept of the regression per regime, βk is the slope of the

regression per regime, t is time and ε is the error. The
intercept of the regression for regime 1 is used as the gen-
eral intercept (α0) of the multiple regression model. The
intercept (αk) of the regression for each regime
(k=1,…,K) is the intercept difference with α0, this differ-
ence being 0 for regime 1 (α1). The multiple linear regres-
sion estimates the parameters (intercepts, slopes) while
taking into account the temporality of the regimes
(noncontinuous), and while minimizing the error (resid-
ual sum of squares). The decadal trends are obtained by
multiplying the regression slope per regime by the num-
ber of days per decade (3600 in the Hadley Center model
and 3650 in the 11 other models).
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