Particle-Size Effect in Airborne Standing-Wave Acoustic Levitation: Trapping Particles at Pressure Antinodes - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Review Applied Année : 2022

Particle-Size Effect in Airborne Standing-Wave Acoustic Levitation: Trapping Particles at Pressure Antinodes

Jhon F Pazos Ospina
  • Fonction : Auteur
Victor Contreras
Jordan Estrada-Morales
  • Fonction : Auteur
Diego Baresch
Joao Luis Ealo
  • Fonction : Auteur
Karen Volke-Sepúlveda

Résumé

It is well known that a particle put into an ultrasonic standing wave tends to move towards an equilibrium position, where the acoustic pressure-induced force on its surface compensates the particle weight. We demonstrate, by means of a full three-dimensional numerical analysis and a thorough experimental study, that the acoustic force, and thus the particle's behavior, critically depends on its size. While particles within certain size ranges, including those smaller than half the wavelength, are trapped on axis around the pressure nodes, particles in other size ranges are trapped off axis nearby the pressure antinodes. This behavior, related with sign inversions of the radiation force, implies that the magnitude of the force, and thus the trapping stiffness, can be maximum or null for some specific sizes. As a case of study, we analyze expanded polystyrene particles levitated in air with an ultrasonic frequency of 40 kHz, a relevant system due to recent applications for the development of volumetric displays. Yet, our results illustrate a general behavior of radiation-based traps with structured wave fields.
Fichier principal
Vignette du fichier
PhysRevApplied.18.034026.pdf (6.15 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03782625 , version 1 (21-09-2022)

Identifiants

Citer

Jhon F Pazos Ospina, Victor Contreras, Jordan Estrada-Morales, Diego Baresch, Joao Luis Ealo, et al.. Particle-Size Effect in Airborne Standing-Wave Acoustic Levitation: Trapping Particles at Pressure Antinodes. Physical Review Applied, 2022, 18, ⟨10.1103/physrevapplied.18.034026⟩. ⟨hal-03782625⟩
26 Consultations
48 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More