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Abstract

Developing concurrent programs requires the use of thread-safe abstractions
to avoid race conditions. Nevertheless, many libraries are not thread-safe
either because it was not a concern for the developer or the developer pur-
posely traded thread-safety for performance. All calls to such a library
require to be synchronised in the client program.

While different synchronisation mechanisms exist, only lock-based solu-
tions and transaction solutions allow one to add synchronisation without
anticipation. But they are both about reasoning in terms of execution. It
forces developers to explore the whole execution to identify when synchroni-
sation is required. A developer accidentally missing a synchronisation point
circumvents the mechanism. Instead by ensuring exclusive access to an ob-
ject for a thread prevents other thread to access it and thus allows developers
to miss synchronisation points without circumventing the mechanism.

In this paper, we propose the Atomic Samurai, a synchronisation model
that is object-based, unanticipated, and while the object is synchronised
the rest of the program normally runs concurrently. It relies on 3 mecha-
nisms: pointer swapping to ensure reference unicity, proxies to control ob-
ject accesses and late binding to intercept and redirect messages sent. We
validate our approach by showing how Atomic Samurai helps both solving
examples extracted from the literature and a real-world scenario from the
Pharo community on font rendering. We also measure the impact in perfor-
mance of our solution by comparing it with a semaphore-based solution. In
term of performance, our solution is 5 orders of magnitude slower than the
semaphore-based solution, but scales better with the number of processes.
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0.1 Introduction

Developing concurrent programs requires to use thread-safe libraries to avoid
data races. Nevertheless, many libraries are not thread-safe either because
it was not a concern for the developer or this latter purposely traded thread-
safety for performance. A client developer using such libraries has limited
solutions when writing a safe concurrent program.

Developing a new library, or adding thread-safety to the current one
nullifies the benefit of using a library in the first place There is also no
guarantee to find an equivalent thread-safe library. All calls to this library
latter requires to be synchronised in the client program to avoid other types
of race conditions such as bad message interleaving (See Section 0.2).

Programming languages offer several synchronisation mechanisms to write
thread-safe code such as semaphores, message passing and transactions [23,
21, 4, 11]. We identified 4 properties that are desired: safety, performance,
scalability, and applicability. Each mechanism has its own advantages and
weaknesses regarding those properties but only two allows unanticipated
synchronisation: locks and transactions. The two force the developer to
reason in term of execution while an oop developer is used to think in terms
of objects.

In this paper, we propose the Atomic Samurai model that allows pro-
grammers to use non-thread-safe libraries in concurrent programs. It allows
unanticipated synchronisation with an object granularity. The programmer
synchronises the object accesses with message sends. Once the object is
synchronised the developer uses the object as in a sequential program (See
Section 0.3). It relies on 3 underlying mechanisms, pointer swapping, prox-
ies, and late binding. Pointer swapping ensure the unicity of a reference to
the object. Proxies act as read and write barriers to the object and thus
control process accesses to the object. Late binding intercepts and redirects
any message sends at runtime.

In Section 0.5, we demonstrate that Atomic Samurai solves examples
from the literature. It also solves a real world concurrency bug encountered
in Pharo [6], an open source industrially used system, with a wrapper to
C library that is not thread-safe. We also show the performance overhead
incurred by Atomic Samurai.

0.2 The Need for an Unanticipated Synchronisa-
tion Mechanism

In this Section, we present the need for an unanticipated synchronisation
mechanism. We first present the categories of concurrency bugs that are
solved thanks to synchronisation mechanisms. Then, we show an exam-
ple of wrapping a non-thread-safe library and extracted the challenges of
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Table 1: Categories and descriptions of concurrency bugs.

Category of Concurrency Bugs Bug Definition

Data race Two threads access the same data and at least one
of them modifies the data.

Bad message interleaving Program exposes an inconsistent intermediate state
due to the overlapping execution of two threads.

Message order violation Expected order of execution of at least two memory
access is not respected.

unanticipated synchronisation.

0.2.1 Categories of Concurrency Bugs

Concurrent programs are prone to different type of bugs as categorized
in [15]. A safe program is a program without race condition bugs. There are
three categories of race condition bugs: data races, bad message interleaving
and message order violations. We summarized them in Figure 1.

Let’s consider the code example shown in Listing 1 extracted from [3].
Listing 1 shows the code of a client method of a library. The library provides
a registry for processes by associating each process with a name. It offers
the whereIs: aName message that answers if a process is already registered
by that name and the register: aProcess withName: aName that registers the
process aProcess under the specified name aName. This client method first
checks if a process is registered under a specific name (line 1). If there are
no processes registered under that name (line 3/4) it spawns a new process
(line 5) and registers it under the specified name (line 6). If the name was
already taken, this method throws an error (line 7/8).

1 registered := registry whereIs: aName.

2
3 registered

4 ifNil: [

5 spawnedProcess := Process spawn.

6 registry register: spawnedProcess

7 withName: aName.

8 ↑ spawnedProcess.]

9 ifNotNil: [

10 self error: 'Already have a process

11 registered with the name ', aName].

Listing 1: Example of non thread-safe object and bad message interleaving

Data races. A data race bug happens when two threads access the same
data and at least one of them modifies the data resulting in an incoherent
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read or modification. In our example, registerName: aName for: aProcess is
a write operation. It requires that no other access operation occurs during
it. Sending any other message concurrently during this operation will end
up in a corrupted data read, in the worst case a data not even representing
an object. For example, in the register at the name specified instead of
a reference to a process object, the register has a reference to a random
location in memory.

Bad message interleavings. A bad message interleaving happens when
a program exposes an inconsistent intermediate state due to the overlapping
of two instructions. In the presence of a thread-safe library, synchronisation
is required to avoid inconsistent reads. With the order of message presented
in Figure 1, a first process, process1, sends whereIs: message with ’MyPro-
cess’ as argument that returns that there is no process registered by this
name. It spawns a new process then get interrupted before the registration
is executed. A second process, process2, sends the whereIs: message with
the same argument ’MyProcess’. Process1 did not register yet, the name
’MyProcess’ is still available. Then process2 gets interrupted and process1
continues its execution. Process1 register a process with the name ’MyPro-
cess’. Process1 gets interrupted and Process2 resumes. Process2 replaces the
registered process instead of throwing an error due to an already registered
process.

Message order violation. A message order violation happens when the
expected order of execution of at least two memory access is not respected.

All those problems come from a lack of a synchronisation mechanism.
A solution to remove the data races is to give exclusive access to the reg-
istry to a process during the write operation. In the same manner, giving
exclusive access to the registry during the method removes the bad message
interleaving for this particular sequence of messages.

0.2.2 Real Example of Wrapping a Non Thread-safe Library

To further illustrate, we present an example of synchronisation for a non-
thread-safe library in Pharo. Pharo uses FreeType, an external C library,
to render glyphs and fonts. however, this library is not thread-safe and ac-
cesses to it in a concurrent environment needs to be synchronised to avoid
race condition bugs presented in Section 0.2.1. The default synchronisation
mechanisms in Pharo are semaphores. Every access to the library must be
synchronised with a semaphore. It requires that the developer knows all the
path of executions leading to an access to the library. Missing one synchro-
nisation point means that the whole program is still subject to race condi-
tions. In our example, the client application has been specifically designed
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Figure 1: Order for bad message interleavings. 1. Process 1 checks first if the
name is registered and spawns a new process. 2. Process 2 does the same.
3. Process 1 registers a process with the name. 4. Process 2 also spawns
and tries to register a process with the same name instead of throwing an
error.

with this matter in mind. The application groups the sensitive operations in
a unique critical section in the method FreetypeCache¿¿atFont: aFreeType-
Font charCode: charCodeInteger type: typeFlag ifAbsentPut: aBlock such as
Listing 2.

1
2 aFreeTypeFont mutex criticalReleasingOnError: [

3 self allMyOperationsOn: aFreeTypeFont.

4 ]

Listing 2: Critical section for freeTypeFont

Despite this effort, the client developer missed some operations that
needs to be included in the critical section. A bug https://github.com/pharo-
project/pharo/issues/8323 where two fonts are rendered glued together per-
sists. Atomic Samurai solves it (See Section 0.5.2). Semaphores are about
reasoning in execution paths for synchronisation. But developers need a
mechanism that allow one to reason in terms of objects. We talk about
unanticipated synchronisation because objects or libraries are not prepared
beforehand for synchronisation.

4



0.2.3 Challenges of Unanticipated Synchronisation

We identified 3 challenges for doing unanticipated object synchronisation.

Dynamic intercession. The first challenge is that objects are not pre-
pared for synchronisation. The synchronisation, then, must be added at
runtime. It requires a mechanism that allows one to intercede for an object.
This mechanism must handle the synchronisation in place of the object.
Adding such a mechanism at runtime is a dangerous operation because, if
not done properly, the runtime ends up corrupted. On the register example,
the register is the object that need to be synchronised. If the addition of the
synchronisation mechanism failed, it is not possible to access the registry
anymore and the execution crashes.

Complete intercession. A second challenge is that the intercession mech-
anism must always intercede. If complete intercession is not achieved, the
synchronisation will be bypassed, and the program will still be subject to
race conditions. In dynamically-typed languages, late binding allows one
to easily intercept most message sends but static message sends and poten-
tially instance variable accesses are statically bound (i.e., defined at compile-
time). Super message sends also have a statically bound part. Such elements
need to be identified and rebound dynamically. In the registry example, if
process1 registers a process while process2 does a super message sends, this
latter will not be intercepted and will bypass the synchronisation mechanism
and the program will still be subject to race conditions bugs.

Unicity of Object Reference A third challenge is to ensure that there
is a unique reference to the object and that this latter is owned by the in-
tercession mechanism. Similarly, to the complete intercession, if a process
uses directly the object, it bypasses the intercession mechanism and by ex-
tension the synchronisation mechanism. In the registry example, if process1
has its message intercede but process2 directly manipulates the object, the
program is still subject to race conditions bugs.

An ideal unanticipated synchronisation mechanism for objects needs to
be able to achieve dynamic intercession, complete intercession, and ensures
the unicity of the synchronised object reference.

0.3 Atomic Samurai: an Unanticipated Synchro-
nisation Mechanism

In this Section, we present Atomic Samurai, a model for unanticipated syn-
chronisation of object-access.
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0.3.1 Solution Overview

Atomic Samurai is an object-based synchronisation achieved with two mes-
sage sends: take and release. Between those two messages, a developer is
able to reason about the object in a sequential manner. The object does
not require to be prepared for synchronisation such as in Java with the syn-
chronized keyword. While the object is synchronised the rest of the program
normally runs normally and concurrently. To ensure safe usage of an object,
Atomic Samurai relies on 3 mechanisms, late binding, object proxification,
and pointer swapping.

Dynamic intercession To address the challenge of dynamic intercession
Atomic Samurai uses two mechanisms:

• Late binding is the resolution of the message send by looking up the
method by name at runtime. Such resolution allows message intercep-
tion and message rebinding.

• Proxies are special objects that intercept and handle messages in place
of an object called the target. For example, it allows one to log, for-
ward or even modify message sends. In Atomic Samurai, proxy act as
barriers to determine if a process is allowed to manipulate the targeted
object. The object is synchronised by proxification and unproxifica-
tion.

Complete intercession To address the challenge of complete intercession
Atomic Samurai uses safe synchronisation point. In some dynamically-typed
languages, instance variable accesses are statically bound(i.e., determined at
compile-time). To ensure complete intercession, instance variable accesses
must also be intercepted by the proxy. Once Atomic Samurai synchronises
an object, the proxy will intercept the method accessing an instance variable
and will rebind those accesses. But during the setup of the synchronisation,
another process is free to access an instance variable. One solution is to
verify that the synchronisation is achieved in a safe point. Before synchroni-
sation, Atomic Samurai checks that the synchronised object is used by only
one process. If it is not the case, Atomic Samurai retries the synchronisation
later.

An alternative solution is to enforce that instance variable accesses are
late bound in the language (i.e., instance variable are accessed only through
accessors). Both solutions have a different impact in performance, always go-
ing through accessors slightly impacts each instance variable accesses while
checking all the stack of executions highly impacts the synchronisation. We
measure this trade off in Section 0.5.

The class where super message sends start is also statically bound. We
solved the case of super message sends in a specific way for our language
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that we discussed in Section 0.4.3.

Unicity of Reference To address the challenge of unicity of reference,
Atomic Samurai enforces the invariant that the proxy is always the unique
owner of a reference to the synchronised object. It is achieved thanks to:

• Pointer swapping is mechanism that exchange the reference of two
objects. Newly created object are only referenced by their creator.
Atomic Samurai uses pointer swapping between a newly created proxy
and the synchronised object. After swapping pointer between the
proxy and the object, all references to the object points to the proxy
and the reference previously to the proxy now points to the object.
The proxy, then, stores the unique reference to the object.

• Delegation proxies [25] are reentrant proxies where the messages dis-
patched from the delegation proxy will also be catch by itself. Dele-
gation proxies ensure that a message send does not leak a reference of
the synchronised object outside the proxy.

Our Atomic Samurai library offers two messages:

take. The receiver of this message becomes exclusive to the process that
executes it. This process is then called the taker process. To acquire
exclusive access to the object, the taker process wait that no other
process is actively using the object. The take message is reentrant
for the taker process (i.e., the taker process is free to send the take
message multiple times).

release. The taker process removes its exclusive access on the receiver of
this message. Other processes are free to access the object again. By
default, blocked processes are unblocked. Sending this message to an
object that has not be taken beforehand returns an error. It is not
possible to release a taken object from a process other than the taker
process. In case the object has been taken many times it needs as
many release messages to release properly the object.

0.3.2 Atomic Samurai by Example

Figure 2 shows Atomic Samurai on the previous register example. The first
part of the figure shows the initial state. There are two processes: process1
on the left and process2 on the right. Process1 sends the take message to
the register to gain exclusive access on it.

The second part of the figure shows the state after the take message
occurred. The take message checked process2 stack if the register is already
in use which is not the case. It proceeds by creating a proxy (trap + handler)
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Figure 2: Example of Atomic Samurai with two processes.
1. Initial state.
2. State after take message, object is proxified.
3. Taker process, process 1, sends a message, the proxy forwards it.
4. Non taker process sends a message, the proxy blocks it.

and swaps the reference to the proxy with the ones of the register. The proxy
is the only object with a reference to the original object, all other references
point to the proxy. The proxy also keeps that process1 acquired the register.
The third part of the figure shows that the messages are successfully sent
from the taker process while the fourth part of the figure shows that the
proxy acts as a barrier and blocks the message sends from the non-taker
process.

It resolves the potential data race since only one process is able to access
the registry between take and release. It is also possible to add thread-safety
to a library by wrapping every call with a take and release on the receiver.
It also removes the potential bad message interleaving because the second
whereIs message will be blocked until the first process releases the registry.
Take and release act as synchronisation on the registry.

8



0.4 Implementing Atomic Samurai in Pharo

In this Section, we first present the Pharo concurrency model. Then we
present, the implementation of the take message. We follow up with dis-
cussions about corner cases of the implementation such as special objects,
super message sends, over-proxification and deadlocks.

0.4.1 Pharo

The Pharo programming language implements concurrency with so-called
processes: lightweight green-threads scheduled by the virtual machine. The
process scheduler schedules processes depending on a priority. Processes are
cooperative amongst the same priority and preemptive amongst different
priorities. That is, a process can yield to give priority to another process in
the same priority, and a process is suspended as soon as a higher priority
process is ready [7]. Process switches happen on a timely basis but only at
safe execution points: message sends and back jumps.

0.4.2 Take implementation

We present the code of the take message in Listing 3. The code between
lines 3 and 8 is an uninterruptible block (code between square bracket)
thanks to the message BlockClosure¿¿valueUnpreemptively. It allows the take
message to be an atomic operation preventing concurrency bugs. In this
block, the first operation line 4, checks that the object is not the receiver of
another process. Otherwise, the intercession is not complete, and the take
operation is not thread-safe. The check is done by comparing the object to
the receiver of all contexts of all processes. In case the object is in use the
process spinlocks and retries later to take the object, lines 10 and 11. If the
object is not used, we proxify it with a delegation proxy, lines 5 to 8. During
the proxification, all references to an object are swapped with the reference
of a proxy thanks to the Object¿¿become: message. The only object that is
left with a reference to the original object is the proxy. The proxy registers
the taker process and acts as a barrier.

The proxy handles the messages from the taker process and, by default,
spinlocks on the messages of other processes. The proxy also has a count
for the number of times the taker process takes the object and releases the
object only with the same number of release messages.

1 tryTake

2 | safe |

3 [

4 safe := self isNotUsed.

5 safe ifTrue: [

6 ↑ ProxyForAtomic

7 becomeTarget: self

8 withProcess: Processor activeProcess ] ]
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9 valueUnpreemptively.

10
11 Processor yield.

12 self tryTake

Listing 3: Take implementation

Back to the example, we wrap the previous code Listing with registry
take and registry release as in listing 4.

1 registry take.

2
3 registered := registry whereIs: aName.

4
5 registered

6 ifNil: [

7 spawnedProcess := Process spawn.

8 registry registerName: aName for: spawnedProcess ]

9 ifNotNil: [

10 self error: 'Already have a process

11 registered with the name ', aName ].

12
13 registry release.

Listing 4: Example of code wrapping using Atomic Samurai

0.4.3 Super Message Sends

Dynamically swapping two references during execution, with primitive be-
come: produces execution bugs with super message sends such as a method
wrongly applied to an object.

To better this show let’s make an example. Let’s take a method in class
B whose superclass is A.

1 setter: anObject

2
3 self proxify.

4 self alternativeSetter: anObject.

5 self unproxify.

Listing 5: Example of method using the proxy and a self message send.

The setter: method from Listing 5 proxifies the object then sends the
alternativeSetter: message and unproxifies the object. The proxification
relies on pointer swapping with primitive become:. The pointer swapping
replaces self with the proxy thus a message send to self is a message send to
the proxy. The method lookup starts in the proxy class and the message is
trapped by the proxy mechanism.

Let’s consider this slightly different setter: method as in Listing 6. In-
stead of sending alternativeSetter: anObject to self, it sends it to super.

1 setter: anObject

2
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3 self proxify.

4 super setter: anObject.

5 self unproxify.

Listing 6: Example of method using the proxy and a super message send.

The receiver is still the proxy, but with a super send the method lookup
starts in the superclass where the method is defined, here class A. Class A
is not in the hierarchy of the proxy. It avoids the proxy mechanism and,
in this case, executes the found method on the proxy and corrupts it by
changing the values inside the proxy. Swapping the proxy and the receiver
object is not enough for super message sends because super message send
lookup does not involve the receiver. A solution that we implemented in
the virtual machine of Pharo is to modify the super message send lookup
to check if the receiver is valid. A valid receiver is a receiver that has in
his class hierarchy the class where the super message send lookup starts. If
the receiver is not valid, the virtual machine creates an exception that the
proxy catches and uses for interception.

0.4.4 Special Object Protection

Our prototype has some limitations. The take message is redefined for in-
stances of Process to rise an exception. It is not possible to synchronise
a process object because Atomic Samurai compares process’s identity and
taking a process disables the possibility to compare it with another process.

It is also not possible to take classes because the current delegation proxy
library that Atomic Samurai uses does not handle these.

0.4.5 Lazy Proxification

Atomic Samurai always proxifies the object. Both the acquiring process and
the other processes pay the cost of the proxy mechanism. With a capability
system, the taker is able to use directly the object while other processes pass
through the proxy.

Another case is when an object cannot be used in other processes.
Atomic Samurai will create a proxy that is then costly in space and per-
formance. If Atomic Samurai knows an object is unable to escape the scope
of a process, it could let the acquiring process uses the object directly.

0.5 Evaluation

In this Section, we show the evaluation of our solution. We show how it
solves problems from the literature and a real-world example from a concur-
rency bug in Pharo. Then, we compare the performance and the scalability
of our solution to an equivalent semaphore solution.
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Table 2: Example of bugs resolved.

N° Bug type Source Description

1 Bad message interleaving Fif 1 in [3]

2 Data races Fig 2 in [3]

3 Data races Fig 2 in [3]

4 Data races Sec 5 of [13]

5 Bad message interleaving Fig 1 in [2]

6 Data races Subsec 8.4.2 of [19]

7 Data races Subsec 8.4.2 of [19]

8 Bad message interleaving Subsec 8.4.1 of [19]

9 Bad message interleaving Sec 1.2 of [1]

10 Bad message interleaving Fig 2 in [12]

0.5.1 Examples from literature

We validate our solution by implementing examples from the literature.
Lopez et Al [15] provides a survey and a classification of all possible con-
currency bugs for the Actor model. It also gives pointers to similar bugs for
the thread model. Table 2 presents 10 of this bugs that we reproduced with
failing tests to highlight them. We then used Atomic Samurai to solve them
and make the tests pass without modifying the internal code to validate that
we were able to solve the problem only at the caller side.

Data races. Data race solutions all consist in wrapping every access to
the shared object with take and release. Inside such a section, only one
thread is able to manipulate the state of the object thus removing all data
races.

Bad message interleaving. Bad message interleaving solutions all con-
sists in having a larger section that cover the messages that should not
interleave. The difficult part is identifying which messages produce a bad
interleaving. The fact that those examples come from the literature helps
in knowing which messages produce such interleaving.

0.5.2 Real world example in Pharo

To further validate the correctness of our solution, we deployed Atomic
Samurai to solve one real world example from Pharo. Pharo relies on

12



FreeType, an external C library, to render glyphs and fonts. Each font
has a different face, and the sensitive operations are grouped and executed
inside a critical section. Two fonts that have the same name also share
the same face which was unexpected behavior. The critical section is not
enough anymore since it does not cover face operations. We had, at least,
one failing test reproducing consistently this data race. Pharo is able to
query the methods where an instance variable is used. We collected the ten
methods using the face and wrapped them with AtomicSamurai take and
release messages such as in Listing 7.

1 getLinearWidthOf: aCharacter

2
3 face take.

4 ...

5 self methodBody.

6 ...

7 face release.

Listing 7: Example of method wrapping

We found deadlock issues caused by the critical section and we replaced
this latter with our solution applied on the font object. With our solution
the test reproducing the issue passes and all other tests on the fonts were
still passing.

0.5.3 Performance: Current Pharo Implementation

In this Section, we measure the overhead of our solution compared to semaphores,
Pharo’s default synchronisation mechanism. All measurements are microbench-
mark executed on the same computer with a 2.4 Ghz Intel Core i5 quadcore
processor and 16 Gio 2133 Mhz LPDDR3 ram with all other applications
closed. Each microbenchmark is repeated 100 times. A violin plot shows the
distribution of measurements and the average. We present the two sources
of overhead measured, synchronisation overhead and object-access overhead.

Synchronisation overhead. The synchronisation overhead is the over-
head that is induced by the synchronisation mechanism itself.

Figure 3 shows the overheads of each mechanism. As a baseline, we use
the default synchronisation mechanism offered in Pharo: Semaphores. A
semaphore uses the messages signal and wait to synchronise the execution.
This overhead is represented by the left violin plot. The right violin plot
represents the overhead induced by using Atomic Samurai. Atomic Samurai
uses the messages take and release to synchronise the execution. Atomic
Samurai usage is 105 times slower than a semaphore. Most of the overhead
comes from the fact that the take message must proxify the object at a safe
point in the execution. This is a requirement because the current Pharo
implementation allows direct access of instance variables.
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Figure 3: Overhead induced by synchronisation mechanisms in current
Pharo implementation:
-Semaphore signal/wait.
-Atomic Samurai with safe point creation.
The lower the value the faster the implementation.

Object-access overhead. The object-access overhead is the overhead in-
duced by accessing a synchronised object.

Figure 4 shows the overheads of each mechanism. As a baseline, using
a semaphore allows the execution direct object-access. This is represented
by The left violin plot. In Atomic Samurai case, object-access is intercepted
and executed by the proxy thus producing an overhead. The right violin
plot represents this overhead relative to the baseline. It is 105 times slower
than a direct access. Most of the overhead comes from the delegation proxy
internal mechanisms to ensure that a reference to the synchronised object
is not leaked.

Atomic Samurai is slower in both sources of overhead. however, the cur-
rent Pharo implementation allowing direct accesses disadvantages Atomic
Samurai. In languages such as Python, object-access is always achieved via
accessor methods (setter/ getter). It changes the distribution of overhead,
object-access overhead is accentuated while for Atomic Samurai synchroni-
sation overhead is alleviated.
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Figure 4: Time to access an object:
-Baseline.
-Through proxy
The lower the value the faster the implementation.

0.5.4 Performance: Pharo with Access Encapsulation

In this Section, we measure the overhead of our solution by mimicking a
Pharo implementation that does not allow direct object-access and we com-
pare it to an implementation that allows it. The measurements are done in
the same manner as in Section 0.5.3. We also compare the synchronisation
and object-access overhead.

Synchronisation overhead. Always going through an accessor means
that object accesses are not statically bound anymore. It is therefore un-
necessary to proxify the object at a safe point anymore in the take method.
The right violin plot in Figure 5 represents the overhead induced by the
new take message implementation. First, we compare it to the baseline with
semaphores. This implementation of Atomic Samurai is 103 times slower
than the baseline implementation. however, Figure 6 shows that the new
take implementation is 102 times faster than the current implementation.
We conclude that object proxification is a slow operation. We are working
toward a faster object proxification especially by creating a faster pointer
swapping primitive.

15



Figure 5: Overhead induced by synchronisation mechanism:
-Baseline with semaphore.
-Atomic Samurai with accessor implementation.
The lower the value the faster the implementation.

Object-access overhead. For object-access overhead, going through ac-
cessors produces an additional overhead compared to a direct access. The
left violin plot in Figure 7 represents direct access as baseline. The right
violin plot represents the overhead with access through accessors. Going
through accessors take double the time than a direct access, but it is a mi-
nor source of overhead compared to the one induces by going through the
proxy mechanism. It takes more than 1.7 ∗ 106 accesses through accessors
to take more time than checking that the synchronisation is in a safe point.

To conclude, with a different language implementation our prototype
of Atomic Samurai gains in speed. Forbidding direct object-access impacts
slightly object-access and heavily speeds up object synchronisation. In the
same manner, different pointer swapping and message interception would
speed up our prototype. We are currently working toward optimizing our
pointer swapping implementation. Also, escape analysis allows to use the
object directly when a reference does not escape to another process. In those
cases, the object-access overhead would be the same as with semaphores.
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Figure 6: Overhead induced by synchronisation mechanism:
-Atomic Samurai with accessor implementation.
-Atomic Samurai with current implementation.
The lower the value the faster the implementation.

0.5.5 Scalability

In this Section, we measure the overhead induced by our solution in a concur-
rent environment. We compare our solution to a similar code synchronised
with semaphores. Figure 8 shows the overhead depending on the number of
threads. We measured for two, four, eight, and sixteen threads on the x axis
and reported the value relative to the overhead for one thread. The x axis
is in logarithmic scale and the y axis is on a normal scale. The semaphore
implementation, in orange or on the top, scales linearly. It appears exponen-
tially due to the x axis being logarithmic and y axis being normal. Atomic
Samurai scales more in a logarithmic manner (i.e., it appears linearly in the
logarithmic scale).

0.6 Related Work

In this Section, we first present the four properties desired in unanticipated
object synchronisation then we present a non-exhaustive list of object syn-
chronisation models in other languages.
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Figure 7: Time to access an object:
-Baseline.
-With accessor.
The lower the value the faster the implementation.

0.6.1 Properties

We first define the four properties that are safety, performance, scalability
and applicability.

Safety. is the guarantee that the mechanism offers against race condi-
tions. While all mechanisms aim to avoid race conditions they are subject
to misuses in different ways. For example, synchronising a variable access
with a critical section require that all accesses are actually inside the critical
section, otherwise any access outside it circumvents the synchronisation.

Performance. is the performance of the synchronisation and access oper-
ations on the object for non concurrent execution. Adding synchronisation
brings an overhead compared to a program that don’t require it in two dif-
ferent way. First, the overhead directly coming from the addition of the
synchronisation mechanism, for example acquiring a lock, sending an object
through a channel. Second, some mechanisms ensure invariants at runtime
by adding invariants checking instead of ensuring it by construction.
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Figure 8: Overhead of synchronisation with semaphores depending on the
number of processes. higher = more overhead.

Scalability. is the performance of the synchronisation and operations on
the object when submitted to multiple concurrent executions. In this case,
the overhead source remains the same but face new problem such as execu-
tion having to wait that another one finishes its synchronisation or invariants
check.

Applicability. is the ability of the solution to add unanticipated synchro-
nisation to a non-modifiable library. Some synchronisation solutions, such
as channels, require modification on the library code.

Table 3: Existing solutions and their strong points to make collections con-
current. The more stars, the better

Property Safety Performance Scalability Applicability

Locks ** ** ** ***
Atomic Operations ** *** ** *
Message passing * *** *** *
Transactions ** * *** ***
AtomicSamurai *** * ** ***
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0.6.2 Approaches

Locks. These solutions consist in locking all accesses or modifications to
the data with a lock (mutex, semaphore, etc...). All executions not holding
the lock wait passively or actively for the holder to finish its operation. On
lock release this information is broadcasted and the scheduler is in charge
to wake up or signal waiting executions that the lock is free.

These solutions are known to be often misused[14]. The developer needs
to locate every data access to add the synchronisation mechanism. Missing
one access circumvents the whole mechanism. With multiple locks lack of
progress issues appear such as deadlocks where two executions wait the
release of their respective acquired locks.

In term of performance, these solutions add an overhead on all data
accesses or modifications. It is possible to reduce the overhead by locking
only part of the data (partial locking [17]) or by emphazing the overhead
on modification operations that are less frequent and lightening the access
operations that are more frequent.

A lock contention is an attempt to acquire an already acquired lock.
The scalability is proportionnal to lock contentions. Making non-blocking
acquire operations reduces the time to acquire a lock. Depending on the
time it takes to acquire a lock, different acquiring strategies exist (spin lock,
livelock, etc ...).

These solutions are applicable to a non modifiable library by wrapping
all the calls to this library with a lock.

Atomic Operations. These solutions take advantage of uninterruptible
(atomic) operations that are by definition not subject to data race condi-
tions. With those uninterruptible operations such as Compare and Swap,
it is then possible to build non interruptible data access or modification
operations [10, 16, 18].

These solutions are guaranteed to make progress, they are not subject to
livelock or deadlock. They eliminate data races but they cannot solve bad
message interleaving that combine those operations.

These solutions induce a minimal overhead on access and modification
operations.

Guerraoui et Al [9] reports a good scalability for their implementations
of these kind of solutions.

These solutions are not applicable to a non accessible library since it
does not permit to handle bad message interleaving.

Messages Passing. These solutions synchronise by passing data through
a first in first out data structure called channels for Communicating Se-
quential Process [11], pipe for pipeline or mailboxes for actors. When one
process finishes processing a data, it signals it by adding the data to the
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queue. Processes wait their turn to access the data through the queue and
consume it. Programatically, the advantages are that the communication is
easy for developers to reason about as a mean of synchronisation.

These solutions help in orchestrating concurrent processes but do not
solve data races [8].

To transfer a data, it usually requires to copy the whole graph of data to
be referenced thus it induces a linear-time overhead in the number of bytes
copied. Apart from the copy, these solutions did not produce an overhead
on data access or modification.

Transactions. In these solutions an execution freely modifies data and
records every operations in a log [20, 5]. Eventually consistent data struc-
tures [24, 22] also keep an history of the data thanks to copies of the object.
A commit is the operation that verifies the log that other transactions did
not make concurrent changes to the data. A rollback is the operation un-
doing all changes logged. After the verification if a concurrent change has
been made the transaction aborts and starts a roll back else the changes are
adopted.

having an operation that is not wrapped by a transaction will not be
logged and thus will bypass the validation mechanism. Also special care
must be taken on operations that cannot be undone.

There are two sources of overhead. The one coming from maintaining
the log and the one from committing transactions.

This solution scales well when there are no conflicting changes in the
commit operation. Else it depends on the behavior adopted to solve the
conflict. For example, re-executing the transaction from the beginning until
it succeeds create contention point similar to those that happen when pas-
sively waiting for acquiring a lock. Similarly to locks, these solutions are
applicable for a non accessible library by wrapping the calls to the library
inside a transaction.

0.6.3 Summary

Table 2 shows an evaluation of related work by using the properties. Only
Locks and Transactions are suitable to synchronise the calls to a non-modifiable
library in a concurrent program. They both suffer from the fact that one non
wrapped operation makes the system unsafe. Locks are midly performant
and does not scale pretty well while Transactions are poorly performant and
scale better.

0.7 Conclusion

A developer writing a concurrent program faces new categories of bugs that
does not exist in sequential programs: race conditions. Atomic Samurai
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allows to delimitate sections of code where an object is exclusive to a process.
The developer then reason in a sequential manner for this object and avoid
race conditions.

To evaluate Atomic Samurai we implemented this model in Pharo with-
out any Virtual Machine support. We then demonstrate that we solved races
conditions bugs from the literature and solved a race condition bug encoun-
tered in our system. Nevertheless, the developer must manually delimitate
the section. A wrong delimitation is still subjects to race condition bugs.
The other issue is that Atomic Samurai does not prevent lack of progress
issue for now .

For the future, we want to tackle the first issue by providing semi-
automatic or automatic delimitation of the section that needs atomicity.
A lot of tools help finding race condition in the literature. Escape analysis,
for example, give information of which objects are used in other processes.
Such analysis also helps in preventing lack of progress issues by identifying
escaping objects from the same object graph.
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