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Abstract 

Pressure ulcers are a severe disease affecting patients that are bedridden or in a wheelchair bound for 
long periods of time. These wounds can develop in the deep layers of the skin of specific parts of the 
body, mostly on heels or sacrum, making them hard to detect in their early stages.  
Strain levels have been identified as a direct danger indicator for triggering pressure ulcers. Prevention 
could be possible with the implementation of subject-specific Finite Element (FE) models. However, 
generation and validation of such FE models is a complex task, and the current implemented 
techniques offer only a partial solution of the entire problem considering only external displacements 
and pressures, or cadaveric samples.  
In this paper, we propose an in vivo solution based on the 3D non-rigid registration between two 
Magnetic Resonance (MR) images, one in an unloaded configuration and the other deformed by means 
of a plate or an indenter. From the results of the image registration, the displacement field and 
subsequent strain maps for the soft tissues were computed. An extensive study, considering different 
cases (on heel pad and sacrum regions) was performed to evaluate the reproducibility and accuracy of 
the results obtained with this methodology. 
The implemented technique can give insight for several applications. It adds a useful tool for better 
understanding the propagation of deformations in the heel soft tissues that could generate pressure 
ulcers. This methodology can be used to obtain data on the material properties of the soft tissues to 
define constitutive laws for FE simulations and finally it offers a promising technique for validating FE 
models. 
 
1. Introduction 

Pressure ulcers are serious injuries generated by prolonged mechanical loadings applied on soft 
tissues. Most of the pressure ulcers occur on the heel and on the sacrum as these locations are loaded 
when patients are bedridden or wheelchair bound for long periods of time [1][2][3]. Ulceration 
requires high amounts of resources from the nursing cares and time to be healed and therefore 
represents a serious problem to the individual and the health care system[4]. In the worst cases, these 
complications lead to amputations and death. Depending on the type of external mechanical load, 
anatomy and tissue integrity, pressure ulcers can start superficially or deep within the soft tissues. 
Superficial wounds are formed on the skin surface and progress downwards, making them easy to 
identify in the early stages with solutions that can be promptly adopted to stop their progression. On 
the other hand, deep tissue injuries arise in muscle or fat layers around bony prominences and are 
often caused by high strains of the biological tissues. A value of 0.65 for the Green Lagrange (GL) 
maximal shear strain was provided by Ceelen et al. as a threshold that should not be exceeded to avoid 
any pressure ulcer [5]. This last case represents a major threat due to the impossibility to quickly 
identify the ulcer formation and promptly take action [6]. For this purpose, techniques to monitor the 
level of strain in the deep layers of the skin and underlying soft tissues are currently extensively 
investigated in the literature [7]. 
A common methodology to estimate internal tissue strains relies on FE modeling, with simulations that 
reproduce the body part morphology, tissue biomechanical parameters and the type of loading 
[8][9][10]. However, validation of FE simulations of the mechanical response of in vivo biological tissues 
to external mechanical loads has always been problematic. Keenan et al. report that none of the 
current heel models have been properly validated against independent experimental measurements 
and that further work is needed to develop models that are well validated to draw reliable clinical 
conclusions [8]. Regarding the buttock region, Savonnet et al. reached a similar conclusion stating that 
only few models were validated with experimental observations [9]. Because direct validation of 
internal mechanical strains is a challenging problem, many research works proposed to evaluate FE 
models of the foot in terms of their capacity to predict interface plantar pressure by comparing the 
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contact pressure predicted by the FE model with the measurements from pressure mattresses [11]. 
Yet, as observed in Macron et al. [12] on data from 13 healthy volunteers, interface pressure 
distributions do not correlate with internal strains and one cannot be used to predict the other. This 
issue was partially addressed by Linder-Granz et al. [13] for a buttock FE model in a study where the 
authors compared contours of the computational domain in the deformed configuration predicted by 
the simulations to the ground truth segmented contours obtained from MR images. This comparison, 
however, considers only the external shape and not the quantity of interest, which is the local internal 
tissue displacement and associated tissue strains.  
In an original contribution, Stekelenburg et al. [14] proposed to use MR tagging and phase contrast 
sequences on a rat leg model under indentation to assess local tissue displacements and compute the 
associated tissue strains. The main restriction of this approach is that the indenter (used inside the MR 
machine to deform the tissue) has to be applied rapidly and repetitively as the tagging grid fades within 
1 s because of MR relaxation. This requirement can be complex to overcome with an MR compatible 
device. Moreover, this constraint does not allow for conventional control systems for the application 
of loads such as gravity, hydrostatic pressure or compression springs [15][16][17]. Additionally, with 
dynamic loads applied, the viscoelastic properties of the biological tissues could have an impact on the 
mechanical response, thus increasing the complexity to estimate the tissues passive mechanical 
properties from the experimental measurements.  
Digital Volume Correlation (DVC) is an emerging non-invasive technique that allows to characterize 
experimentally material mechanical response to external loadings by tracking the displacement of 
natural patterns. From the displacement field, local strains can be computed. Combined with 3D MR 
images, DVC can, for example, be used to estimate human tissue internal strains [18]. From two MR 
datasets, one collected in an arbitrary undeformed configuration and another in a deformed 
configuration, the non-linear transformations that will align the MR volume at rest to the deformed 
one can be computed using a procedure call Image Registration. To illustrate the process, a graphical 
summary of the procedure is proposed based on data collected by the authors on the foot (Figure 1). 
DVC has previously been used in for in vivo strain estimation in human intervertebral discs, brain and 
leg muscles under external mechanical loading [19][20][21].  
Our group has recently developed an MR-compatible device for applying controlled shearing and 
normal loads to the human heel pad [16]. With such a device, 3D MR volumes of the heel pad soft 
tissue can be imaged under various loads applied on the foot sole. This paper aims at describing the 
methodology proposed by our group to implement DVC on human soft tissues and at estimating the 
internal strains from the DVC-derived 3D displacement field. The long-term objective is to validate a 
FE model, in terms of its capacity to predict the localization and the intensity of the strain field in the 
soft tissues.  
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Figure 1 : Scheme of quantitative measurement of soft tissue internal strains obtained from image 
registration. Image 1: unloaded configuration. Image 2: Loaded configuration. The image registration 
estimates the displacement field (Image 3) that transforms the unloaded image into the loaded 
configuration. The strain field can then be derived from the displacement field (Image 4).  

2. Materials and Methods 

2.1. Materials: heel and sacrum MR datasets previously collected on one healthy volunteer 

The MRI datasets used in this study have been collected in a previous study [17]. For the sake of clarity, 
the main details regarding the experimental setup, protocol and participant are summarized in the 
following paragraph. For more details, the reader is referred to the associated publication. 
A healthy volunteer (male, 40 years old) gave his informed consent to participate in the experimental 
part of a pilot study approved by an ethical committee (MammoBio MAP-VS pilot study N°ID RCB 2012-
A00340-43, IRMaGe platform, Univ. Grenoble Alpes).  
For the heel MR image datasets, the volunteer was placed in a supine position with his right foot locked 
in a MR compatible device designed to apply both a normal force (15 N) or a combined normal-and-
shearing force (15 N normal + 45 N shearing) on the heel pad by means of an indenting platform. The 
setup is illustrated in Figure 2A. A proton density MR sequence was used to collect 3D images 
composed of 512 x 428 x 512 voxels with voxel size of 0.3125 mm x 0.375 mm x 0.3125 mm (MRI 
system Achieva 3.0T dStream Philips Healthcare). Two acquisitions of the same unloaded configuration 
allowed to avoid having the same noise pattern between equivalent images in the subsequent image 
registration process in order to test the repeatability of strain calculation. 
For the sacrum images, the subject was placed in the MR bed in a prone position. An indenter actuated 
by gravity applied a normal load (12 N) on the sacrum region. The 3D images were composed by 
800×800×240 voxels with a dimension of 0.5 × 0.5 × 0.5 mm Figure 2B. Likewise, two acquisitions were 
collected in the unloaded configuration to test the repeatability of strain calculation. 
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Figure 2 : (A) Scheme of the heel configurations during the MR acquisitions. The green rectangle 
represents the plate applying the loads. Direction of the loads is represented by the green arrows Fhn 
(Force heel normal) and Fhs (Force heel shear). The red rectangle shows the orientation of the MRI 
slice that will be shown in the rest of the paper. (B) Scheme for the sacrum configuration (Analogous 
to A). The green block represents the indenter with the respective Fsn (Force sacrum normal) applied. 
The indenter has the external shape of an ultrasound probe, 10-2 linear probe transducer developed 
by (Aixplorer, SuperSonic Imagine, France). 

Four 3D MR images of the heel and three 3D MR images of the sacrum region were considered in this 
contribution and were referred to using a unique name as listed in Table 1.  

Name  Description Load 
Heel 01 Unloaded heel – Acquisition 1 0 N  
Heel 02 Unloaded heel – Acquisition 2 0 N 
Heel 1 Heel with normal load 15 N normal 
Heel 2 Heel with normal and shearing load 15 N normal and 45 N shear 
Sacrum 01 Unloaded Sacrum – Acquisition 1 0 N 
Sacrum 02  Unloaded Sacrum – Acquisition 2 0 N 
Sacrum 1 Sacrum with normal load 12 N normal 

Table 1 : List of MR acquisitions. The first name indicates the body location of the image. The unloaded 
configurations are indicated by the initial number 0 (01, 02). The loaded configurations are indicated 
by the integer positive numbers (1,2). 

A 2D snapshot of each MR volume (presented as the red rectangle in Figure 2) is provided in Figure 3. 
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Figure 3 : Slices of the heel and the sacrum unloaded and loaded configurations described in Table 1. 
The respective region is indicated in Figure 2 by the red rectangle. 

2.2. Rigid registration 

The four MR volumes of the heel and the three MR volumes of the sacrum were rigidly registered to 
align the calcaneus bone and the sacrum bone respectively using the publicly available registration 
package Elastix [22]. 

2.3. Digital Volume Correlation between the loaded and the unloaded MR images 

The registration package Elastix [22] was then used to perform DVC. Two images are involved in this 
registration process: the reference image 𝐼𝐼0(𝑥𝑥) (unloaded configuration: Heel/Sacrum 01/02, called 
“fixed image” in the Elastix library) and the deformed image, 𝐼𝐼𝑄𝑄(𝑥𝑥) (loaded configuration: Heel 1 and 
2 and Sacrum 1, called “moving image” in the Elastix library), where 𝑥𝑥 represents the position of a 
point in the images. The registration between these two images defines a non-rigid deformation field 
𝑢𝑢𝑄𝑄(𝑥𝑥), which describes how the reference unloaded image transforms into the deformed image. 
Applying the deformation field to the reference image creates a transformed-deformed image 

𝐼𝐼0 �𝑥𝑥 + 𝑢𝑢𝑄𝑄(𝑥𝑥)� that aims to look identical to the deformed image.  

The optimal deformation field was estimated by minimizing a cost function by means of an iterative 
optimization method (adaptive stochastic gradient descent) embedded in a hierarchical 
(multiresolution) scheme. The cost function relates to the similarity between the two images (i.e. the 
reference image and its transformation) using image features and was based on the Normalized 
Correlation Coefficient (NCC).  
During the optimization step, the value of the cost function was evaluated at non-voxel positions, for 
which intensity interpolation with cubic B-Spline was used.  

2.4. Computing mechanical strains from the DVC-derived displacement fields 

From the displacement fields obtained by the registrations, strain maps were calculated as follows: 
The relation between the position 𝑋𝑋 of a material point in the undeformed configuration and its 
position 𝑥𝑥 in a deformed configuration Q is described by the spatial displacement vector 𝑢𝑢𝑄𝑄(𝑥𝑥) which 
consists of 3 components 𝑢𝑢𝑄𝑄𝑄𝑄 ,𝑢𝑢𝑄𝑄𝑄𝑄 ,𝑢𝑢𝑄𝑄𝑄𝑄 :  

𝑢𝑢𝑄𝑄(𝑥𝑥) =  �𝑢𝑢𝑄𝑄𝑄𝑄 ,𝑢𝑢𝑄𝑄𝑄𝑄 ,𝑢𝑢𝑄𝑄𝑄𝑄�
𝑇𝑇

                                                                                                                (1) 

From these, the deformation gradient 𝐹𝐹 can be computed:  
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𝐹𝐹 = 𝐼𝐼 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                                                                                                                (2) 

And the right Cauchy-Green deformation tensor 𝐶𝐶 deduced: 

𝐶𝐶 =  𝐹𝐹𝑇𝑇𝐹𝐹                                                                                                                                                   (3) 

The Green Lagrange principal strains: 

𝐸𝐸𝑝𝑝 = 𝑒𝑒𝑒𝑒𝑒𝑒( 1
2

 (𝐶𝐶 − 𝐼𝐼) )                                                                                                                              (4) 

The maximum GL shear strains are defined as: 

𝐸𝐸𝑠𝑠 =  1
2

 ∗ max(|𝐸𝐸1 − 𝐸𝐸2|, |𝐸𝐸1 − 𝐸𝐸3|, |𝐸𝐸2 − 𝐸𝐸3|)                                                                                 (5) 

2.5. Uncertainty of the Image registration procedure 

To evaluate the uncertainty of the DVC we consider six evaluation Cases A to F. The first three cases 
are related to the repetition of the same strain measurement and to the analysis of the differences 
between the respective results (reproducibility of the registration). The last three cases focus on the 
ability of DVC to estimate a known a priory strain field (accuracy of the registration).  

2.5.1.  Reproducibility 

Reproducibility refers to the closeness of agreement between test results. In this section, we propose 
to evaluate the reproducibility of strain calculation through image registration. Two acquisitions of the 
unloaded configurations of the heel and sacrum (namely Heel 01 and Heel 02 and sacrum 01 and 
sacrum 02 respectively) were registered to the same moving image (Heel 1 and Sacrum 1 respectively). 
The corresponding strain maps are computed from the two estimated deformation fields. The 
reproducibility is then inspected by analyzing the differences between these two strain maps. Three 
cases, summarized in Table 2, are considered: heel under normal load (A), heel under normal+shearing 
load (B) and sacrum under normal load (C).  

Fixed image Moving image Case Displacement field Shear strain field 
Heel 01 Heel 1 A DA011 SA011 

Heel 02 Heel 1 DA021 SA021 
Heel 01 Heel 2 B DB012 SB012 
Heel 02 Heel 2 DB022 SB022 
Sacrum 01 Sacrum 1 C DC011 SC011 
Sacrum 02 Sacrum 1 DC021 SC021 

Table 2 : List of image registrations to evaluate the reproducibility of strain calculation from image 
registration. Each line represents an image registration composed by its fixed and moving image. The 
tests are grouped in three Cases: A) Heel with normal load, B) Heel with normal+shearing load, C) 
Sacrum with normal load. The resulting displacement fields and shearing strain field are respectively 
denoted with the letters D and S. The second letter in the field nomenclature reports the respective 
case of the registration. The numbers report the name of the fixed and moving images.   

2.5.2. Accuracy 

Accuracy reflects how close a data is to a known or accepted value. In this section, we propose to 
evaluate the accuracy of our image registration procedure to identify a known a priori strain field. We 
focus specifically here on the images of the heel. Two different displacement fields are considered:  

1. For the first case, an artificial displacement field DFEM is generated from a Finite Element (FE) 
simulation. A rectangular parallelepiped volume with the same size of the 3D MR images is 
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first generated in ANSYS 19.2 APDL (ANSYS, Inc., Canonsburg, PA). This volume is then meshed 
with 8-nodes hexahedral elements and a linear elastic material model is implemented. The 3D 
mesh is composed of 24389 hexahedral elements. The nodes on the sides of the parallelepiped 
are fixed in order to avoid any displacements outside of the defined volume. A set of 196 
internal central nodes located on the same XZ plane are then submitted to a prescribed 
displacement boundary condition in a normal (Y) and in a tangent (X) direction (Figure 4). The 
displacement field computed by ANSYS is then extracted for all the nodes of the parallelepiped 
and interpolated to fit the resolution of the MR images. The corresponding displacement field 
is applied to the unloaded image (Heel 01) to generate a new artificially loaded image of the 
heel, named Heel FEM (Table 3 and Figure 5). It is worth noting that the objective of the FE 
method is mainly to produce a known a priori displacement filed. This displacement filed will 
be subsequently estimated through the image registration technique. The simulation itself, 
and the artificially generated image Heel FEM, do not have any real physical meaning. The 
main benefit of using such an FE solver is the possibility to get a ground-truth strain field that 
can be compared to values estimated from image registration.   

2. For the second case, the previously computed displacement field DA011 is applied to the 
unloaded image (Heel 01) to generate a new artificially loaded image of the heel, named Heel 
TRA (from the word transformed) (Table 3 and Figure 5). 

 

Figure 4 : Generation of an artificial displacement field from a FE simulation generated by Ansys. The 
size of the cube matches with the size of the MR images of the heel. A selection of nodes (red dots) on 
a plane orthogonal to the y axis was displaced as boundary conditions. (A) Section of the simulated 
cube along a plane orthogonal to the z axis. (B) Schematization of the boundary conditions imposed. 
The external nodes were fixed, and the selection of red nodes was displaced.  

Image Applied displacement field Artificial image Shear strain field 
Heel 01 DFEM Heel FEM SFEM 

Heel 01 DA011 Heel TRA SA011 

Table 3 : List of transformations to create the artificial images to test the accuracy of strain calculation 
through image registration. The image column lists the images to be transformed. The displacement 
field column lists the transformation to be applied to generate the artificially deformed image.  
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Figure 5 : Artificial images obtained once the displacement fields DFEM  and DA011 are applied to the 
unloaded image Heel 01.  

Image registration was then computed between Heel 02 and the two artificially deformed images Heel 
FEM and Heel TRA. Note here that having two acquisitions of the same unloaded configuration (Heel 
01 and Heel 02) allowed to implement different noise patterns during the registration process in the 
fixed and moving image (Cases D and F of Table 4). On the other hand, to show the impact of having 
the same noise pattern between the fixed and the moving image the image Heel 01 was also 
considered for Case E (table 4). 

Fixed Moving Case Displacement field Shear strain field 
Heel 02 Heel FEM D DD SD 
Heel 01 Heel FEM E DE SE 
Heel 02 Heel TRA F DF SF 

Table 4 : Following cases A, B and C mentioned in table 2, cases D, E and F relate to the estimation of 
the accuracy of strain calculation through image registration. The shear strain fields SD and SE will be 
compared with SFEM. The shear strain fields SF will be compared with SA011. 

2.5.3. Error quantification  

The error estimation was performed analyzing the obtained strain fields with a Bland–Altman plot. This 
representation is a method of data plotting used in analyzing the agreement between two different 
set of data corresponding to the same measurement. The plotted graph shows the error distribution 
throughout the whole range of measured strain values.  

 

3. Results 
3.1.  Strain measurements for heel under normal load (case A, Table 2) 

The distribution of the DVC-derived displacement field in the heel domain under normal load is given 
in the sagittal slice containing the highest shear strains (Figure 6A). The highest displacements are 
uniform in the area where the plate was in contact with the plantar skin of the heel. Figure 6B shows 
the corresponding maximal GL shear strains computed from the displacement field. Shear strains are 
concentrated around the lower part of the calcaneus bone propagating towards the plantar fascia and 
the flexor digitorium brevis.  
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Figure 6 : Case A. Biological tissues are delimited by white lines. A slice from the MR volume is shown 
from the sagittal plane corresponding to the location of the highest shear strain. (A) Visual 
representation of DA011. Modulus of displacement field [mm] for heel under normal load. (B) Visual 
representation of SA011. Max GL shear strain field for heel under normal load (0.5 corresponds to 50% 
of deformation). 

 

Figure 7 : Bland-Altman plot referring to the strain estimation computed from Case A: heel under 
normal load. The upper and lower red line correspond the 95% confidence interval, meaning that 95% 
of the values have an error lower than 0.02 strain. The most relevant part of the plot is the region with 
the highest values of the strains 0.4-0.5 as these can represent the threat for tissue damage.  
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The agreement between SA011 and SA021 was described graphically with a Bland-Altman plot (Figure 8) 
with mean of differences, reported with corresponding 95% confidence interval (CI), and lower and 
upper limits of agreement, calculated as mean ± 2𝜎𝜎 (where 𝜎𝜎 represents the standard deviation SD). 
Differences were assessed using a Wilcoxon-Signed-Rank Test (paired data) at the default 5 % 
significance level. 

3.2.  Strain measurements for heel under normal+shearing load (case B, Table 2) 

 

Figure 9 : (A) Modulus (in mm) of displacement field for heel under shearing load DB012. (B) Max GL 
shear strain field for heel under shearing load SB012. 

The application of the shearing load had a relevant impact on the soft tissue displacements. The plate 
moved the posterior and the plantar regions of the heel skin towards the forefoot. This caused the 
shear strains to propagate on a wider region of the fat pad and the muscle (Figure 8). A concentration 
of high levels of strains is found in the fat pad under the flexor digitorium brevis.  
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Figure 10 : Bland-Altman plot referring to the strain estimation computed from Case B: heel under 
normal+shearing load. Error magnitude is around twice higher than the configuration with normal load 
only (Figure 7).  

Figure 9 shows the correlation between the strain measurements of the heel under normal+shearing 
loads (Case B of Table 2). Errors of 0.1 are observed across most of the strain intensities even for the 
highest strains (around 0.5). These errors tend to narrow down for the peak values. The SD shows that 
95% of voxels have a strain error lower than 0.04. In general, this shearing configuration (Case B) shows 
errors with a double intensity and twice the propagation with respect to the normal load configuration 
(Case A). 

3.3. Strain measurements for sacrum under normal load (case C, Table 2) 

For the sacrum loading configuration (Figure 10), the highest levels of displacements are found around 
the edges of the indenter. Shear strains are concentrated on the soft tissues around the contact area 
between the indenter and the skin. Adipose tissue and skin are subject to the highest levels of strains.  
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Figure 11 : (A) Modulus (in mm) of displacement field for sacrum under normal load DC011. (B) Max GL 
shear strain field for sacrum under normal load SC011. 

Figure 11 presents the Bland-Altman plot between the shear strain measurements produced by an 
indenter on the sacrum region (Case C of Table 2). In this case, the errors are considerably higher than 
what was observed for the heel application. Errors of 0.3 are spread throughout the image and the SD 
describes an error distribution where 95% of the voxels have an error that is lower than 0.15.  
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Figure 12 : Bland-Altman plot referring to the strain estimation computed from Case C: sacrum under 
normal load. Errors are considerably higher than the previous configurations of the heel.  

3.4.  Estimation of strain field generated by the FE model (case D, Table 4) 

Figure 12 shows the results of image registration in the estimation of the artificial displacement field 
generated by Ansys (Figure 4). Magnitudes of displacements were selected in order to generate strains 
comparable with Cases A and B.  

 

Figure 13 : (A) Estimation of the displacement field (mm) generated by Ansys DD. (B) Estimation of GL 
max shear strain generated by Ansys SD. 

Figure 12 presents the correlation between the strain field calculated by Ansys and the corresponding 
measurements obtained by image registration (Case D of Table 4). The error distribution is comparable 
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to Case A. For the regions with the highest levels of strains, the measurements slightly underestimate 
the strains since the points distribution shows an inclination that is higher than the red line. This artifact 
could be a result of the transformation step described in Table 3. In this process, some details of the 
original displacement field could have been lost in the image reconstruction after the application of 
the displacement to the respective voxels. 

 

Figure 14 : Bland-Altman plot referring to the strain estimation computed from Case D: Displacement 
field generated by Ansys. The intensity of errors is around 0.02, which is comparable with case A (Figure 
7).  

3.5. Deformation field from Ansys – Same noise pattern (case E, Table 4) 

This case is running the registration between two images with the same noise pattern, undeformed 
(Heel 01), and artificially deformed (Heel FEM). Using the same image helps considerably the 
algorithms of the image registration process since the noise pattern present in the unloaded image 
matches the one of the unloaded image. This allows to easily identify the respective deformation 
matching the voxels with their equivalent copy in the respective deformed image. Results in terms of 
error distribution are as expected very precise showing a relevant strain field estimation (Figure 14). 
This reflects the described facilitations in terms of using an image and its deformed version in the 
registration process.  
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Figure 15 : Bland-Altman plot referring to the strain estimation computed from Case E: Displacement 
field generated by Ansys. Errors are lower than the other considered cases. This is due to the same 
noise pattern between the fixed and moving image in the registration procedure.  

3.6. Deformation field from Elastix (case F, Table 4) 

Case F is analogous to Case D with the main difference that the considered displacement field is not 
generated by Ansys but is taken from the image registration computed in Case A. The error distribution 
in terms of maximal error and SD is comparable to Case A (Figure 15). For the regions with the highest 
levels of strains, as detected also in case D, the measurements slightly underestimate the strains. In 
this case, the deformed image is also the result of an image transformation reported in Table 3.  
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Figure 16 : Bland-Altman plot referring to the strain estimation computed from Case F: Displacement 
field generated by Elastix in Case A. The intensity of errors is around 0.02 comparable with Case A and 
D (resp. Figure 7 and Figure 13). This shows that, in the analyzed cases, similar images (Heel 01, 02, 1) 
generate errors of comparable magnitude (0.02). 

4. Discussion  

In this study, a method to estimate 3D internal tissue strains in the heel and sacrum regions based on 
DVC-derived displacement fields was developed in the context of pressure ulcers etiology. The 
methodology to implement DVC between two MR exams of human soft tissues (one at rest and the 
other one deformed) and to estimate the internal strains from the DVC 3D displacement field was first 
described. The implemented methodology requires a MR compatible device to apply loading on the 
skin surface during the acquisition of MR images. The obtained acquisitions were then used as input 
for 3D image registration. Images were first aligned based on the fixed body part (like bones) and then 
the non-rigid transformation was calculated. This transformation consists of a displacement field 
mapping every voxel between its initial position in the unloaded image and its final position in the 
loaded image. The GL shear strains are then computed from this displacement field. This methodology 
was implemented to analyze strain propagation in body regions that are critical in terms of pressure 
ulcer development: heel and sacrum.  
For the results related to the heel pad, the calculated strain maps show as expected shear and 
compressive strain concentrations around the bony prominences of the calcaneus. This is coherent 
with the study of Luboz et al. which highlighted that strains generated around the calcaneus head 
strongly depended on the shape of this calcaneus bone [23]. Strains values in the deep tissues of the 
human heel were considerably higher than those in superficial tissue layers (Figure 6B). This is 
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consistent with previous findings listing the strain concentration in deep tissues as a key aspect in the 
etiology of ulceration [24]. The strains were concentrated in the fat pad region and propagating 
towards the interface with the muscular region. Oomens et al. identified skeletal muscle and fat as the 
two main biological tissues where pressure ulcers could develop [25]. The application of a shearing 
load pushing the first layer of skin towards the forefoot generated significantly higher shearing loads 
in the anterior region of the fat pad compared with the configuration with only normal plantar 
pressure. Shear loadings can therefore impact significantly wider regions with higher levels of shear 
strains compared with normal loads of comparable intensity. This confirms what Ceelen et al. stated, 
namely (1) that shearing loads are more dangerous to treat than normal loadings, in terms of shear 
strain concentrations, and (2) that they must be taken into consideration for an effective pressure ulcer 
prevention [26]. 
For the results related to the sacrum, the calculated displacement and strain maps have values that 
are significantly higher than the results from the heel. The application of a load by means of an 
indentation device with a small contact area is probably more likely to generate higher shear strains 
right on the contact surface between the skin and the indenter [26].  
The second objective of this article was to evaluate in a general way the reproducibility and the 
accuracy of strain calculation through image registration. Respectively, two main methodologies were 
presented: one related to the repetition of the same strain measurement from an equivalent set of 
images, and the other one to the calculation of a known a priory displacement field. 
Concerning reproducibility as how much two equivalent measurement match, Figure 7, 9, 11 are 
considered. Comparing the strain error distribution between image registrations of the heel related to 
Case A and Case B, we found that errors are twice higher and more distributed in the case where the 
shearing load is applied. This suggests that strain measurement from image registration is affected by 
the type of deformation applied on the soft tissues. A possible explanation for this effect can be related 
to the fact that a normal load displaces the skin in a normal direction generating a clear displacement 
of the edge between the portion of image representing the biological tissues and the dark background 
(see Figure 3 Heel 01 and Heel 1). On the other hand, a shear load displaces the skin only in a tangent 
direction to the surface of the skin without generating any clear movement of the edge between the 
skin and the background (see Figure 3 Heel 1 and Heel 2).   
The image registration related to the sacrum has a much wider strain error distribution and values 
compared to the examples of the heel. This implies that strain measurement from image registration 
strongly depends on the image characteristics. To explain the reasons behind this we can try to analyze 
how image registration works. The first steps in the algorithms of image registration are feature 
detection and feature matching [27]. Salient and distinctive objects as edges are considered as 
features. The accuracy of image registration therefore directly depends on the quality of the acquired 
images to define clearly these edges [28]. The main parameters that characterize the quality of digital 
images are related to resolution and noise [29]. Noise is generated by the statistical fluctuation of the 
value from voxel to voxel. A common measurement of noise is the standard deviation, a measure of 
how spread out the values of the pixels are. The lower the standard deviation, the higher the accuracy 
of the average voxel value [30]. Spatial resolution is the ability of the imaging system to detect small 
objects that are close to each other [31]. The size of the voxels defines the maximum spatial resolution. 
However, image resolution is also influenced by other parameters such as blur factors. The most 
common blur factor is motion blur: when motion occurs during acquisition, the boundaries of patient 
structures will move from their initial position, making the boundaries blurred in the image. The 
motion can in general be reduced by fixing the body part with heavy MR-compatible pillows or casts 
[16]. These solutions, however, are ineffective when motions are generated by physiological 
movements such as breathing, peristalsis or heart beats. The line spread function (LSF) can be used to 
evaluate and quantify spatial resolution [32][33]. From this parameter, it was calculated that in the 
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more crucial region of the images, the MR image of the heel had a quality parameter related to the 
spatial resolution that was 4.5 time higher than the one calculated for the sacrum images. It is possible 
therefore that this aspect played a crucial role in the strain estimation through image registration, thus 
decreasing significantly its reproducibility.  
Concerning accuracy as how close a measurement is to a known or accepted value, Cases D and F were 
considered. These cases report errors of shearing strains around 0.02. This value can be compared to 
the level of strains that is considered to be sufficient to generate significant tissue damage. According 
to Ceelen et al., this value is around 0.65 for the shearing strain [5].   
An interesting aspect is related to Case E, which uses the same image Heel 01 and its transformed 
version (Heel TRA) for the estimation of the displacement field. In this case, the strain errors are much 
less distributed (with a 95% confidence value below 0.007 error). This is due to the fact that any 
variability due to noise, or other artifacts, present in both images will have an impact on the strain 
estimation. This implies that for images with appropriate quality levels, this methodology can reach 
high accuracy.  
The diversity of results obtained between the heel and sacrum applications implies that crucial further 
research is therefore required in finding the relation between specific image quality parameters and 
the respective error distribution in the strain calculation. This would permit in fact to select the image 
acquisition protocols in order to obtain the type of images to minimize errors in the registration 
process.   
An advantage of the proposed methodology to calculate strains is that no additional tool to perform 
the error estimation is required. Considering Case E, the error estimation can be performed just with 
an additional image transformation (Table 3) and the respective image registration.  
It is clear that the accuracy of the results is strongly related to the image registration process and to 
the selected parameters to perform it. By tuning the respective parameters of the registration process, 
it is possible to identify smaller deformations or to select the amount of volume compression and 
expansion. An optimization for the selection of the ideal parameters of the registration for the related 
application will be considered in the future steps to improve the accuracy of this methodology.  
It must be considered that this work was based on specific mechanical configurations of a single subject 
meaning that results obtained are to be considered specific to this application. Fat and muscle 
biomechanical properties can change significantly as a consequence of diseases (for example, 
diabetes) and chronic immobilizations [34][35]. This inter-subject variability may introduce significant 
variations in the strain calculations making imperative to analyze each subject specifically. 

 

5. Conclusion 

The results obtained from the practical application on the heel and sacrum, in terms of location and 
magnitude of strains, are in line with the literature. This technique of calculating strains offers broad 
new possibilities to analyze the impact of external loads on the internal state of the soft tissues. The 
standard technique of FE is a very complex and time-consuming task involving segmentations, meshing 
and selections of proper constitutive laws. The possibility of strain calculation through image 
registration can provide results in terms of strain propagation in a significantly faster framework and 
offer the possibility for comparison and validation with results obtained from FE simulations.  The 
present study proposed to quantify subdermal tissue strain distributions on the heel and sacrum from 
image registrations based on MR-acquisitions. This data is crucial for understanding the etiology of 
pressure ulcers that occur in the deep tissues of the heel pad.  
The pilot study described here indicates that the crucial steps for computing strains from image 
registration are feasible to be implemented in a wider study. Further research will include analysis on 
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more subjects and with different loading configurations, together with the adaptation of this 
methodology to different parts of the body to gain insight into the relative mechanical soft tissue 
properties. 
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