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Abstract

Functional data analysis has been the subject of increasing interest over the past decades.
Most existing theoretical contributions assume that the curves are fully observed, whereas
in practice the data are observed on a finite grid and may be affected by noise. To account
for the presence of noise and discretization, it is common to smooth the data. The purpose
of this paper is to review some of the recent works studying the influence of the observation
scheme for estimating the mean and principal components. Some of this work questions the
need to smooth the data when the observation grid is fixed.

1 Introduction

In recent decades, the analysis of functional data has received increasing attention. We refer to
Ramsay and Silverman (2005); Ferraty and Vieu (2006); Ferraty and Romain (2011); Hsing and
Eubank (2015) for monographs and reviews on the subject.

In the following, let (Ω,A,P) be a probability space. A functional random variable is a
random variable taking values in a function space F . In this article, we suppose that F =
L2([0, 1]) and equip it with its usual scalar product ⟨f, g⟩ =

∫ 1
0 f(t)g(t)dt and associated norm

∥ · ∥ and Borel σ-field B. A functional random variable is then a measurable map,

X : (Ω,A) → (F ,B).

If we assume that E[∥X∥2] < +∞, one of the most common approach to understand the
variability of a functional random variable X is its Karhunen-Loève decomposition (Grenander,
1950). Let µ(t) = E[X(t)] the mean function of X then we can write

X = µ+
∑
j≥1

√
λjξjηj ,

where (λj)j≥1 is a summable sequence of non-negative real numbers, (ξj)j≥1 a sequence of uncor-
related random variables and (ηj)j≥1 an orthonormal basis of F , the principal components. The
sum converges in norm, and also uniformly if the bi-variate function K(s, t) = Cov(X(s), X(t))
is assumed to be a continuous function.

Finding estimations of the mean µ, and of the sequence (λj)j≥1 and (ηj)j≥1 from a sample
X1, . . . , Xn of functional data is then of particular interest. The estimation of principal compo-
nents are indeed useful to vizualise the data (Principal Components Analysis, see Ramsay and
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Silverman (2005)) or as a dimension reduction tool to perform regression tasks Brunel et al.
2016; Hall and Horowitz 2007; Zhou et al. 2022 or classification tasks Escabias et al. 2014; Preda
et al. 2007; Jacques and Preda 2014, see also Müller 2005 and references therein.

Most theoretical contributions on the subject focus on the case where the curves Xi(t) are
fully observed, i.e. Xi(t) is observed for all t ∈ [0, 1]. However, in practice, the data is observed
on a finite grid. The grid can be either fixed and regular or random and different from one
individual to another. The latter observation scheme is often considered to be in the domain
of Longitudinal Data Analysis. However, these two fields are very close and inference methods
for functional data may in many cases be successfully applied to longitudinal data (see Müller
2005; Hall et al. 2006).

Moreover, the presence of noise in the observations has, therefore, naturally led to the con-
sideration that a preliminary data smoothing step is generally essential to process functional
data. However, despite its importance for practitioners, the impact of the smoothing step has
rarely been studied from a theoretical point of view.

In this article, we first describe the usual smoothing and reconstruction techniques for func-
tional data in Section 2. Then in Section 3 we attempt to summarize the main results on the
convergence rates for the mean estimation. The results concerning the estimation of Principal
Components are devoted to Section 4.

2 Usual approaches for smoothing and reconstruction of func-
tional data

2.1 Fixed and random designs models

Suppose that X1, . . . , Xn ∼i.i.d. X is a sample of functional data, and suppose also that X is
continuous a.s. In most theoretical works (see e.g. Mas and Ruymgaart (2015); Bosq (2000)), it
is assumed that the data is fully observed, without noise, that is to say that we observe Xi(t) for
all t ∈ [0, 1] and for all i = 1, . . . , n. We will call this setting the ideal case. However, in practice,
the Xi’s are only observed on a grid, which can be considered either as fixed, or random.

As in Cai and Yuan (2011), we consider two observation settings.

Setting (FG) We observe {Yi,j), i = 1, . . . , n; j = 1, . . . , p} where {t1, . . . , tp} is a fixed grid of
[0, 1] such that

max
j,k=1,...,p,j ̸=k

|tj − tk| ≤ Cp−1

and

Yi,j = Xi(tj) + εi,j ,

where {εi,j}i=1,...,n;j=1,...,p is a centered noise independent of X1, . . . , Xn.

Setting (RG) We observe {Yi,j , i = 1, . . . , n; j = 1, . . . , pi} where {Ti,j , i = 1, . . . , n; j =
1, . . . , pi} is an i.i.d. sequence following the uniform distribution on [0, 1] and

Yi,j = Xi(Ti,j) + εi,j ,

where {εi,j}i=1,...,n;j=1,...,p is a centered noise independent of the Xi’s and of the Ti,j ’s. The
grid {Ti,j , i = 1, . . . , n; j = 1, . . . , tp} also is independent of the Xi’s.
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Figure 1: Electric consumption of appliances in a low energy house (Candanedo et al., 2017).

An example of functional data measured on a fixed grid, and which we can potentially
reasonably model by the assumptions of the framework (FG) is given in Figure 1. This setting
is typical of time-dependent phenomena (such as temperature, power consumption,...) that are
measured automatically. The example of data that can be reasonably modeled by (RG)-type
assumptions is given in Figure 2. This framework is natural for example for phenomena that
are measured manually. Figure 2 is an example of a growth simulation curve, simulated from
setting (RG). The framework (RG) has some similarities to that of longitudinal data analysis
(LDA) (see Yu et al. 2022; Wong et al. 2022 for a recent contribution on the subject).

To avoid cumbersome notations, we will note hereafter Ti,j = tj and pi = p in the definitions
and properties covering both cases (FG) and (RG).

The objective is to reconstruct, from the discrete observations, the unobserved random func-
tions Xi(t) for all t ∈ [0, 1]. This can be done in different ways with two objectives that can be
distinct.

• If we consider that the impact of noise is negligible or has no importance on the data
processing, it is enough to find, for all i, functions X̃i : [0, 1] → R such that

X̃i(Ti,j) = Yi,j , j = 1, . . . , pi. (1)

The curves X1, . . . , Xn are then simply reconstructed by interpolating them.

• If we want to remove the effect of noise from the data as accurately as possible, we can
smooth the data. In this case, Eq. (1) is no longer true.

The next two subsections detail some reconstruction and smoothing methods.

2.2 Kernel smoothing

One of the usual approaches to simultaneously reconstruct and smooth data is to use kernels.
Let K : R → R be a kernel function, i.e. an integrable function which satisfies

∫
RK(t)dt = 1,
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Figure 2: Simulated growth curves.

and h > 0 a parameter called bandwidth. We note

X̃
(KS,h)
i (t) =

∑pi
j=1 Yi,jK

(
Ti,j−t

h

)
∑pi

j=1K
(
Ti,j−t

h

) .

Figure 3 represents the reconstructed versions of the first curves for the two samples in
figures 1 and 2. We observe that the parameter h plays a crucial role in the smoothing step.
When h is small, there is almost no smoothing, and we simply reconstruct the Yi’s. On the
contrary, when h is too large, the data are too smoothed and do not look like the observations
anymore. In all cases, we introduce a bias that should be taken into account from a theoretical
point of view.

2.3 Reconstruction with an orthonormal system of functions

An alternative to kernel smoothing is to reconstruct the data on a system of D orthonormal
functions {ϕ1, . . . , ϕD}. We can always complete the orthonormal system {ϕ1, . . . , ϕD} to obtain
a Hilbert basis (ϕd)d≥1 of L2([0, 1]). In that case, we have, if D is large,

Xi =
∑
d≥1

⟨Xi, ϕj⟩ϕd ≈
D∑

d=1

⟨Xi, ϕd⟩ϕd,

the convergence of the series is in L2([0, 1]).
Since the Xi’s are unobserved, the scalar products ⟨Xi, ϕd⟩ are not calculable in practice.

We define an approximation of ⟨Xi, ϕd⟩ e.g. by the trapezoidal rule

x̃i,d :=
1

2

pi∑
d=2

(Ti,(d) − Ti,(d−1))(Yi,(d)ϕ(Ti,(d)) + Yi,(d−1)ϕ(Ti,(d−1))
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Figure 3: Kernel reconstruction of the first observation X1 for the electric consumption data
(left) and the growth data (right).

that gives us

X̃
(basis,D)
i (t) =

D∑
d=1

x̃i,dϕd(t).

There are a large number of orthonormal systems that can be used to reconstruct functional
data (B-splines, wavelets, Fourier basis, histogram system,...). We refer to Ramsay and Silver-
man (2005) for a description of the most common orthonormal systems and to Härdle et al.
(1998) for a detailed reference on wavelet systems. We focus here on two classical orthonormal
systems that are widely employed.

Histograms Let I1, . . . , ID be a partition of [0, 1] into D nonempty subintervals, we define

ϕd(t) =
√
|Id|

−1
1Id(t), d = 1, . . . , D.

where |Id| denotes the length of Id.

Fourier basis We suppose here that there exists D′ ∈ N such that D = 2D′ + 1 and set

ϕ1 ≡ 1, ϕ2d(t) =
√
2 cos(2πdt) and ϕ2d+1(t) =

√
2 sin(2πdt), d = 1, . . . , D′.

We can see from figures 4 and 5 that the quality of the reconstruction strongly depends on
the parameter D. Moreover, assuming that the power consumption peaks are of interest in the
data we study, we see that when the window h is chosen too large or the number of functions D
too small, the power consumption peaks disappear. This suggests that these power consumption
data should not be too smoothed or that the two previous approaches are not well suited. We
also observe that the Fourier basis is not a good choice to reconstruct the data, although they
can be considered as periodic because a value of D large enough to make the peaks appear gives
a reconstruction of X that is too oscillatory.

3 Minimax rates for mean estimation

In the ideal case, where we recall that we assume Xi(t) is observed for all i = 1, . . . , n and
t ∈ [0, 1], one would define a natural moment estimator of µ as follows

µ̂(t) =
1

n

n∑
i=1

Xi(t). (2)
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Figure 4: Histogram reconstruction of the first observation X1 for the electric consumption
data (left) and the growth data (right).
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Figure 5: Fourier reconstruction of the first observation X1 for the electric consumption data
(left) and the growth data (right).
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It can be proven easily that, if
∫ 1
0 Var(X(t))dt < +∞, µ̂ converge to µ in L2-norm at a rate

n−1 since

E
[
∥µ̂− µ∥2

]
=

∫ 1

0
E[(µ̂(t)− µ(t))2]dt =

∫ 1

0
Var(µ̂(t))dt =

1

n

∫ 1

0
Var(X(t))dt.

However, this assumption is not necessary. Bosq (2000) proves a law of large numbers in the case
E[∥X∥] < +∞ (Theorem 2.4). Large deviation inequalities as well as Bernstein type inequalities
for the estimator µ̂ are also proven under stronger assumptions.

In the case where the data is observed on a grid, Cai and Yuan (2011) have proven minimax
rates in both fixed design (FD) and random design (RD) settings. In the fixed design (FD)
setting, they obtain the following lower bound for the rate (see Cai and Yuan (2011, Theorem
2.1)): define, for r ∈ N∗ and M0 > 0 P(r;M0) the set of probability measures for a random
function X such that X is a.s. r-times differentiable and verifies

E
[
∥X(r)∥2

]
≤ M0.

They prove that there exists a constant d = d(M0) > 0 such that for any estimator µ̃ of µ

lim supn→∞ sup
L(X)∈P(r;M0)

P(∥µ̃− µ∥2 > d(p−2r + n−1)) > 0.

Comparing this rate with the rate n−1 obtained in the ideal case, we see here explicitly the
influence of the discretization through the addition of the term p−2r, which depends on the
regularity of the curves of the sample. They prove that the smoothing splines estimator defined
by Rice and Silverman (1991)

µ̂λ = argming∈Wr
2

 1

n

n∑
i=1

1

pi

pi∑
j=1

(Yij − g(Tj))
2 + λ∥g(r)∥2


with Wr

2 the space of r-times differentiable absolutely continuous functions g : [0, 1] → R such
that, for all j = 1, . . . , r− 1, g(j) is absolutely continuous and g(r) ∈ L2([0, 1]), attains the lower
bound if λ = O(p−2r + n−1).

The study of these convergence rates give us some precious information, both from a theo-
retical and a practical point of view.

• First the estimator ĝλ attains the minimax rate even in the case λ = 0 corresponding
to splines interpolation (in that case µ̂0(Tij) = Yij , for all i and j). The regularization
is therefore not necessary from a theoretical point of view and can even be detrimental
because we do not know in practice the exact value of the regularity parameter appearing
in the penalty.

• Second, note that, in the case of a fixed design, consistent estimation is not possible when
the number of discretization points p is bounded (it must tend to infinity as n tends to
infinity).

It is worth noting that the rates differs completely in the random design (RD) setting. Cai and
Yuan (2011, Theorem 3.1) prove that, in the case where the Tij ’s are i.i.d. from a density η such
that inft∈[0,1] η(t) > 0, there exists a constant d = d(M0) > 0 such that for any estimator µ̃ of µ

lim supn→∞ sup
L(X)∈P(r;M0),

∑n
i=1 p

−1
i =p−1

P(∥µ̃− µ∥2 > d((np)−2r/(2r+1) + n−1)) > 0.
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Here, the discretization adds a term of the order of (np)−2r/(2r+1). As in the (FD) setting, the
smoothing splines estimate of Rice and Silverman (1991) also attain the rate given by the lower
bound but in that case, the parameter λ is of order (np)−2r/(2r+1). Hence, we can remark that,
contrary to the (FD) setting, it is possible to consistently estimate the mean even in the case
where pi is bounded by a constant. However regularization is needed to achieve the optimal
rate. We also refer to Li and Hsing (2010) for a similar discussion on the local linear kernel
smoother.

4 Minimax rates for the estimation of Principal Components

We first define the covariance operator as follows

Γ : F → F
f 7→ E[⟨X − µ, f⟩(X − µ)].

In our case, where the space F = L2([0, 1]), Γ is an integral operator with kernel

K(s, t) = Cov(X(s), X(t)), s, t ∈ [0, 1]

in the sense that, for all f ∈ F ,

Γf(t) =

∫ 1

0
f(s)K(s, t)ds, t ∈ [0, 1].

Classical results of operator theory allows us to write (see e.g. Eq. (4) p. 6 of Bosq 2000)

Γf =
∑
j≥1

λj⟨f, ηj⟩ηj , f ∈ F

where (ηj)j≥1 is an orthonormal basis of F , the eigenfunctions of Γ, that we call principal
components basis (PC basis) and (λj)j≥1, the associated eigenvalues, is a summable sequence of
non-negative real numbers. Usually, we assume without loss of generality that (λj)j≥1 is a non-
increasing sequence. The estimation of the PC basis and its associated eigenvalues is important
in the functional data analysis field. In particular, since (ηj)j≥1 is an orthonormal basis of X,
we can write

X = µ+
∑
j≥1

⟨X, ηj⟩ηj = µ+
∑
j≥1

√
λjξjηj , (3)

where ξj = ⟨X, ηj⟩/
√
λj if λj ̸= 0 and ξj is any standard random variable otherwise. The

sequence (ξj)j≥1 is a sequence of uncorrelated standard random variable, called principal com-
ponents scores. We retrieve then here the Karhunen-Loève decomposition of X.

4.1 Estimation of principal components in the ideal case

A natural estimator of Γ is the empirical covariance operator defined as follows

Γ̂ : F → F

f 7→ 1

n

n∑
i=1

⟨Xi − µ̂, f⟩(Xi − µ̂),

with µ̂ the natural estimator defined in equation (2).
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The operator Γ̂ is a finite-rank operator, hence it is a compact operator. It is also self-adjoint.
Then, the diagonalisation theorem for compact self-adjoint operators, ensures the existence of
an orthonormal basis (η̂j)j≥1 of F of eigenfunctions of Γ̂. Denoting by (λ̂j)j≥1 the associated

eigenvalues, sorted in decreasing order, it is natural to consider η̂j (resp. λ̂j) as an estimator of
ηj (resp. λj), for j ≥ 1.

The risk of the estimators of the PC basis defined above and eigenfunctions can be related
to the risk of the empirical covariance operator via the Bosq Inequalities (Bosq, 2000), in the
case where the λj ’s are distinct,

∥η̂j − η±,j∥2 ≤ bj∥Γ̂− Γ∥2∞ (4)

sup
j≥1

|λ̂j − λj | ≤ ∥Γ̂− Γ∥2∞, (5)

where bj = 8min{λj − λj+1;λj−1 − λj}−2 for j ≥ 2, b1 = 8(λ1 − λ2)
−2 and ∥ · ∥ is the usual

operator norm defined by ∥T∥∞ = supf∈F ∥Tf∥/∥f∥ for a linear operator T on F and η±,j =
sign(⟨ηj , η̂j⟩ηj . Using a Bernstein type inequality for Banach random variables (Bosq, 2000,
Corollary 4.1) we can prove the following upper-bound

∥Γ̂− Γ∥2∞ = O

(
log2(n)

n

)
a.s.

that implies, up to a log term, a parametric convergence rate of the order n−1 for both the
eigenfunctions and the eigenvectors. Under moment assumptions on the scores (ξj)j≥, that are
verified e.g. if X is a Gaussian or a bounded process, and assuming that there exists c > 0
and α > 0 such that λj = cj−1−α or λj = ce−αj , the order of the quantity bj appearing on the
upper-bound on the eigenfunctions can be improved. Indeed, it can be deduced from the proof
of Mas and Ruymgaart (2015, Corollary 2) that

E[∥η̂j − η±,j∥2] ≤
c2j

2 log2(n)

n
+ e−c1 log

2 n, (6)

where c1 and c2 are positive constants.

4.2 Estimation of principal components in the fixed design (FD) model

Consider the following Hölder regularity class for X. Let, α ∈]0, 1], M0 and P(α;M0) the set of
probability measures for a random function X such that

E[(X(t)−X(s))2] ≤ M0|t− s|α.

In the fixed design (FD) model, Belhakem et al. (2021) obtained a minimax lower bound for
the estimation of the first eigenfunction η1

min
η̂

max
L(X)∈P(α;M0)

E[∥η̂ − η±,1∥2] ≥ c(p−2α + n−1),

where c > 0 depending on M0.
This rate is similar to the one obtained for the estimation of the mean function µ by Cai and

Yuan (2011). They prove that the estimator obtained by projecting the data into the histogram
basis with D = p bins achieves the minimax rate. Descary and Panaretos (2016) obtain a similar
decomposition under a more general assumption on the noise and a different assumption on the
covariance operator of X.
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4.3 Estimation of principal components in the random design (RD) model

This case has been investigated by Hall et al. (2006). They first estimate the covariance kernel
C(s, t) = Cov(X(s), X(t)) by taking the minimizer Ĉh(s, t) in a0 of the criterion

n∑
i=1

∑
j ̸=k

(Yi,jYi,k − a0 − b1(s− Ti,j)− b2(t− Ti,k))
2K((Ti,j − s)/h)K((Ti,k − t)/h),

where h > 0 is the bandwidth and K is a kernel function. Once the kernel function is
estimated, one can take the eigenfunctions of the associated covariance operator estimator
Γ̂h : f 7→

∫ 1
0 Ĉh(·, t)f(t)dt as an estimator of the eigenfunction. Under the condition that p

is bounded, they prove that, for an optimal choice of the bandwidth h ∼ n−1/5,

lim
C→∞

lim supn→∞ max
j=1,...,r

sup
(η1,...,ηr)∈Ψ

P(∥η̂j,h − ηj∥ > Cn−1/5),

where Ψ is a class of r-uplet of orthonormal functions which are two times differentiable with uni-
formly bounded first and second derivatives. This rate is proven to be asymptotically minimax
on the class Ψ.

More recently Zhou et al. (2022) have obtained a convergence rate of the order of

∥η̂j,h − ηj∥2 ≤ Cj

(
1

n
+

1

n4/5p4/5

)
under more restrictive assumptions on the eigenvalue sequence, without making the assumption
that p is bounded and with a similar estimator. The minimal risk is obtained for h ∼ n1/5p1/5.
We do not know at this time if these rates are optimal but we can notice that they coincide
with the rates obtained for the estimation of the mean by Cai and Yuan (2011). The constant
Cj appearing in the upper bound depends on the rank of the eigenfunction that is estimated.

Concluding remarks

In view of the recent results of Cai and Yuan (2011); Belhakem et al. (2021), the question of
the necessity of smoothing the functional data seems legitimately debatable, at least in the case
where the observation grid is fixed, and even in the presence of noise. On the contrary, in the
case where the grid is random, a regularization or a smoothing is necessary to obtain the best
convergence rate. Particular attention must then be paid to the choice of the smoothing or
regularization parameter whose optimal value depends on the unknown regularity of the data.

However, the convergence rates of the estimation of the eigenvalues (λj)j≥1 remain, to our
knowledge, an open question. Inequality (5) allows us to obtain an upper bound on this rate
but it is not clear if this upper bound is precise enough or if it can be improved.

Another issue, which is of particular importance when PCA is considered as a dimension
reduction tool, is to obtain the most accurate constants possible in the upper bounds of the
eigenfunctions. In the ideal case where all the curves are observed Mas and Ruymgaart (2015)
have obtained in Eq. (6) a constant equal to c2j

2. In the case where the data are observed on a
grid (fixed or random and with or without noise), Inequality (4) allows us to obtain a constant
of the order of the squared inverse of the spectral gap. Using the tools of perturbation theory,
Zhou et al. (2022) have improved this constant in the case of a random observation grid (RD)
but it remains larger than the constant of the ideal case, raising the question of whether or not
it can be improved.
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