
HAL Id: hal-03777885
https://hal.science/hal-03777885

Preprint submitted on 15 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A constant-time sampler for close-to-uniform bitsliced
ternary vectors

Pierre Karpman

To cite this version:
Pierre Karpman. A constant-time sampler for close-to-uniform bitsliced ternary vectors. 2022. �hal-
03777885�

https://hal.science/hal-03777885
https://hal.archives-ouvertes.fr

A constant-time sampler for close-to-uniform bitsliced

ternary vectors

Pierre Karpman

pierre.karpman@univ-grenoble-alpes.fr

Université Grenoble Alpes, Grenoble, France

September 15, 2022

Abstract

In this note we describe an algorithm for sampling close-to-uniform random vectors
of F64

3 stored in “bitsliced” representation. This algorithm can be implemented in
a “constant-time” fashion at some cost and benefits heavily from bit manipulation
instructions. We propose three main instantiations that respectively use 256, 384 and
512 uniform random bits to sample vectors whose statistical distance to uniform is
upper-bounded by 2−31.4, 2−71.9 and 2−141.6.

It appears that the algorithm described in this note has a
performance inferior to a well-implemented constant-time
change-of-basis algorithm followed by conversion to a bit-
sliced format. Since the latter also use the minimum amount
of randomness for a given distance to uniform, there seems
to be no setting where the results from this note have any
particular interest.

1 Preliminaries

Our algorithm was designed from the beginning to be efficiently bitslicable and to ben-
efit from bit manipulation instructions “BMI” extensions. We define here the bitsliced
representation and the BMI instructions we use.

1.1 Bitsliced representation of F64
3

We use a specific bitsliced representation introduced by Boothby and Bradshaw [BB09],
although it would be straightforward to adapt the algorithm to an alternative. In this
representation, a vector a ∈ F64

3 is stored as two 64-bit words a0, a1 s.t. the ith bits of a0
and a1 encode the ith coordinate ai ∈ {0, 1, 2} of a as 0 ↪→ (0, 0), 1 ↪→ (1, 0), 2 ↪→ (1, 1).

1.2 BMI instructions

We use the following x86 BMI instructions,∗ for which we give both the mnemonic and
the typical intrinsic name through which it is accessible in C:

∗Technically, those instructions come from the POPCNT, BMI and BMI2 extension sets.

1

pierre.karpman@univ-grenoble-alpes.fr

— popcnt/_popcnt64: computes the population count (or weight) of its unique operand,
i.e. the number of bits set to one.

— andn/_andn_u64(): computes the bitwise and of the second operand with the
negated first operand, i.e. _andn_u64(a, b) gives the same result as (~a) & b.
This instruction is particularly useful in our context since the ‘1’ bits of the expres-
sion _andn_u64(a0, a1) are by definition at the indices i s.t. the ith bits (a0i, a1i)
of a0 and a1 are equal to (0, 1), i.e. do not form a valid encoding of an element of
F3.

— pext/_pext_u64: extracts the bits of the first operand for which the corresponding
bit of the second “mask” operand is one. The extracted bits are returned contigu-
ously in the low bits of the result, preserving their relative order; the unused upper
bits of the result (if any) are set to zero.

— pdep/_pdep_u64: “deposits” the contiguous low bits of the first operand into the
positions where the second “mask” operand is one, preserving their relative order;
all the other bits of the result (if any) are set to zero.

One may remark that pext and pdep are “pseudo-inverses” of each other, in that for
all a, m, and —letting w be the weight of m— c the mask with its w low bits set to one,
one has:

— _pext_u64(_pdep_u64(a, m), m) = a & c

— _pdep_u64(_pext_u64(a, m), m) = a & m

2 The algorithm

2.1 Parallel rejection sampling

The starting point for our algorithm is a simple bit-parallel rejection sampler: initialise
two 64-bit words a0, a1 to zero and a mask to the all-one word; draw two uniform 64-bit
words; XOR one each to a0 and a1 at the bit positions were the mask is one; recompute
the mask so that it indicates the bit positions where (a0, a1) is not a valid encoding of
an element of F3; repeat from the second step until the mask is all-zero. A possible C
implementation of this algorithm is given in Figure 1.

1 a0 = 0ULL;

2 a1 = 0ULL;

3 rt = ~0ULL;

4 do

5 {

6 a0 ^= (rand64() & rt);

7 a1 ^= (rand64() & rt);

8 rt = _andn_u64(a0, a1);

9 } while (rt != 0);

Figure 1: A bit-parallel rejection sampler.

This simple algorithm samples uniform bitsliced representations of vectors of F64
3 (the

proof is standard and omitted) and has an unbounded running time. One drawback
of this algorithm is that it is not parcimonious in its use of randomness, since only an

2

exponentially-decreasing minority of the sampled bits will ever be used after the first iter-
ation. This might not be a huge penalty in a non-cryptographic context where statistically-
good “uniform” random bits are rather cheap to generate and constant-time implementa-
tions irrelevant, but a cryptographic constant-time implementation may mandate a (fixed
number of a) few dozen iterations† and thus the sampling of several thousand uniform
random bits of cryptographic quality.

2.2 Parallel rejection sampling with recycling

An obvious improvement to the algorithm of Figure 1 in terms of randomness usage is to
“recycle” the unused random bits. We propose to do this in the following way: the first
two iterations are identical to the ones of Figure 1, except that at the end of the second
iteration one stores all the random bits that were not used (if any) for future use; from the
third iteration on, if there are more pairs of stored bits than the number of unset pairs in
(a0, a1) no new random bits are sampled and the stored bits are used instead, otherwise
new bits are sampled and the unused ones are stored for future use; one proceeds thusly
until all pairs in (a0, a1) have been set.

This algorithm again samples uniform bitsliced representations of vectors of F64
3 and

again has an unbounded running time. While it is much more economical than the one
of Figure 1 in terms of randomness usage, its recycling is not “total” since some unused
random bits may still be discarded. However, this will not be the case any more for the
constant-time variants that we will describe next. From an implementation perspective,
the main feature of this algorithm is that the storage (resp. the usage) of unused bits can be
efficiently implemented using pext (resp. pdep) instructions. A possible C implementation
is given in Figure 2.

The algorithm of Figure 2 can be made constant-time in a straightforward way: one
simply needs to fix a priori how many (pairs of) random words to use in total and then
perform a fixed number of iterations between every fresh sampling. However, it seems
easier (cf. Section 3) to upper-bound the statistical distance of the resulting distribution
to uniform when the number of iterations between two fresh samplings is the maximum
possible —i.e. 64— and there is thus some incentive to keep the (fixed) number of sam-
plings as small as possible. We give in Figure 3 a C implementation of a constant-time
variant of the algorithm of Figure 2 that only uses two fresh samples.

This algorithm has a constant running time and uses exactly 256 random bits, but
its output is not uniformly distributed since there is a non-zero probability that some
coordinates of the returned vector will be forced to 0 in the last two lines. Using the
techniques developped in Section 3, one may upper-bound the distance to uniform of its
output distribution by 2−31.4. Using more samplings by repeating lines 4–22 allows to
(significantly) decrease the distance to uniform, but as pointed above and as is obvious
from the code, this implies a large number of iterations of lines 14–21. An alternative
which converges slower to the uniform distribution but that improves instruction-level
parallelism is to “double” the samplings and use four bits instead of two to try sampling
a uniform element of F3, so that this now only fails with probability 2−4 instead of 2−2.
Doubling both samplings in the above gives an algorithm requiring 512 bits whose distance
to uniform is upper-bounded by 2−141.6, while doubling only one (either the first or the
second) gives an algorithm requiring 384 bits whose distance to uniform is upper-bounded
by 2−71.9.

†Informally, we need the number of iterations to be s.t. the probability p that at least one pair of bits
of a0 and a1 is (0, 1) is small. For one pair the probability after N iterations is 2−2N , and so from the
union bound it is at most 2−2N+6 for the full vector. A sufficient (and in fact mostly necessary) number
of iterations for, say, p ≤ 2−64 is then N = 35.

3

1 a0 = 0ULL; a1 = 0ULL;

2 rs0 = 0ULL; rs1 = 0ULL; rt = ~0ULL;

3 wrtt = 64; wrt = 64; wrs = 64; nw = 1;

4 do

5 {

6 if (nw) // need fresh 64-bit random words

7 {

8 rs0 = rand64();

9 rs1 = rand64();

10 wrs = 64; // #fresh pairs

11 }

12 a0 ^= (rs0 & rt);

13 a1 ^= (rs1 & rt);

14 wrs -= wrt; // #pairs available for recycling @ next round

15 rtt = _andn_u64(a[0], a[1]);

16 wrtt = _popcnt64(rtt);

17 if (rtt && (wrtt <= wrs)) // recycling possible

18 {

19 if (nw) // random bits to recycle are scattered thru rs's

20 {

21 rrs0 = _pext_u64(rs0, ~rt);

22 rrs1 = _pext_u64(rs1, ~rt);

23 nw = 0;

24 }

25 else // random bits ready to be recycled have been gathered in

rrs's already, just drop used ones↪→

26 {

27 rrs0 >>= wrt;

28 rrs1 >>= wrt;

29 }

30 rs0 = _pdep_u64(rrs0, rtt); // deposits recycled bits

31 rs1 = _pdep_u64(rrs1, rtt); // where they're needed

32 }

33 else

34 {

35 nw = 1;

36 }

37 rt = rtt;

38 wrt = wrtt;

39 } while (rt != 0);

Figure 2: A bit-parallel rejection sampler with recycling.

3 Statistical analysis

3.1 Distance to uniform for one sample

We now wish to upper-bound the statistical distance to uniform of the output distributions
of the algorithm of Figure 3 and its variants. That is, we wish to compute an upper-bound

4

1 a0 = rand64();

2 a1 = rand64();

3 rt = _andn_u64(a0, a1);

4 rs0 = rand64();

5 rs1 = rand64();

6 a0 ^= (rs0 & rt);

7 a1 ^= (rs1 & rt);

8 rrs0 = _pext_u64(rs0, ~rt);

9 rrs1 = _pext_u64(rs1, ~rt);

10 rt = _andn_u64(a0, a1);

11 wrt = _popcnt64(rt);

12 for (int i = 0; i < 63; i++)

13 {

14 rs0 = _pdep_u64(rrs0, rt);

15 rs1 = _pdep_u64(rrs1, rt);

16 a0 ^= rs0;

17 a1 ^= rs1;

18 rrs0 >>= wrt;

19 rrs1 >>= wrt;

20 rt = _andn_u64(a0, a1);

21 wrt = _popcnt64(rt);

22 }

23 a0 &= ~rt;

24 a1 &= ~rt;

Figure 3: A bit-parallel rejection sampler with recycling, constant-time.

for:

∆(U ,R) :=
1

2

∑
a∈F64

3

|U(a)−R(a)| (1)

Where R(a) (resp. U(a) = 3−64) stands for the probability that a is sampled from the
algorithm under study (resp. the uniform distribution). We will do this in a standard
way by computing “good” and “bad” terms pG ≤ 3−64 and pB∗ ≥ 0 s.t. ∀a ∈ F64

3 ,
R(a) = pG + pBa . Letting β =

∑
a∈F64

3
pBa and applying the triangular inequality then

allows to rewrite (1) and bound it as:

1

2

∑
a∈F64

3

∣∣3−64 − pG − pBa ∣∣ ≤ 1

2

∑
a∈F64

3

∣∣3−64 − pG∣∣+
1

2

∑
a∈F64

3

∣∣pBa ∣∣ =
1− 364pG + β

2
(2)

In the following, let S denote the algorithm under study, C the set of possible values
for the random bits (or “coins”) used in one of its run, and S (C), C ∈ C the output of S
when its coins take the value C. It follows that R(a) = Pr[S (C) = a : C � C], where the
probability is computed over the uniform sample C � C of C from C.

In order to compute pG and pB∗ , we partition C into two non-overlapping good and bad
sets CG and CB s.t. for all a ∈ F64

3 , Pr[S (C) = a : C � CG] = 3−64, i.e. the distribution
of S conditioned on the coins coming from the good set CG is uniform. It will then be

possible to take pG = #CG

#C 3−64 and β = #CB

#C .

Applying this strategy to the algorithm of Figure 3, we have C = {0, 1}256 and a
natural choice for CG is the set of coins s.t. no coordinate of the output is arbitrarily set
to zero in the last two lines. It is easy to see that such a set satisfies the defining property

5

of a good set by noticing that the output of the algorithm for coins belonging to this set
is the same as the uniform rejection sampler of Figure 2. Alternatively, the statement
may be shown directly by noting that for each C ∈ CG one can identify 64 pairs of bits
that determine each the value of one coordinate of the output vector; each of these pairs
may independently take three different values while still resulting in coins belonging to
the good set, and this defines an equivalence relation for the elements of CG; finally, each
equivalence class has size 364 and is in bijection with F64

3 through S .

We will now address the computation of pG (or rather pG364) from which β can be
readily recovered. From the above this can mostly be done by counting the number of
equivalence classes of CG, with the nuance that each class also needs to be weighted by its
probability of occurrence. A class is fully characterised by which coins (abstracting the
“pair of bits” from above so that all variants of the algorithm of Figure 3 can be treated
similarly) determine which coordinates of the output. We can think of the coins as being
used in sequence, with a minimum of 64 being necessary‡ and a maximum allowed of 128.
We thus need to compute for each additionnal “budget” b ∈ J1, 64K: 1) the number of
classes; 2) the probability of occurrence of such a class.

We start with 2), which is easier. To accommodate for the variant of the algorithm of
Figure 3 that uses a different number of bits for the two samplings (and hence coins of
different “currencies”), we additionally count the number h of “bad” coins (that do not
determine a coordinate from the output) specifically coming from the first 64 ones. Then
letting q (resp. r) denote the probability that a coin from the first (resp. last) 64 ones is
good, the probability of occurrence of a given class is (by symmetry) fully characterised
by b and h and equal to q64−h(1− q)hrh(1− r)b−h.

Now to compute 1), given again b, h, the number of equivalence classes is equal to the
product of the number of ways of choosing h bad coins from the first 64 ones times the
number of ways of choosing h − 1 good coins from b − 1 ones. The reason for the two
“−1” in the second term comes from the fact that for a fixed b, an equivalence class is
indeed fully determined by the position of the first 63 good coins, which are to be found
amond the first b − 1 ones. Alternatively this term can be thought of and computed as
the number of paths P(b, h) on a two-dimensional discrete grid that start from (h, 0), end
on (0, ∗) and have area b; one then has P(b, h) =

∑h
i=0 P(b − h, i)

(
h
i

)
with the recursion

initialised from P(u, u) = P(u ≥ 1, 1) = 1 and P(u < v, v) = 0. One may indeed check
that P(b, h) =

(
b−1
h−1
)
.

Summing up, pG364 = #CG

#C is equal to the probability that C ∈ CG when picked
uniformly at random, which is equal to the number of good equivalence classes weighted
by the probability that one draws from them:

#CG

#C
= q64 +

64∑
h=1

64∑
b=h

(
64

h

)(
b− 1

h− 1

)
q64−h(1− q)hrh(1− r)b−h (3)

To analyse the algorithm from Figure 3 and its variants, one then only needs to fix
#C, q and r in (3) and then use (2), which is straightforward and leads to the claimed
results.

Tightness of the bound. The bound from (2) is not tight, since it is equivalent (up to
a negligible quantity) to assuming that all bad samples reinforce a single outcome a, which
is not what the algorithm from Figure 3 does.§ It is also certainly possible to improve it
by using the symmetry of the outcomes reinforced by bad samples to derive bounds on pB∗ .

‡Defining one trivial equivalence class.
§One could easily modifiy the algorithm to make it implement this worst case and thus get a tight

bound with no effort, but there is no real point in doing that.

6

In order to check how tight the current bound is, we computed the exact distance from
an exhaustive enumeration of C for small-dimension instantiations of the algorithm from
Figure 3 (without any sample doubled). The results are shown in Table 1 along with the
upper-bounds computed from (the immediate generalisations of) (2, 3). As far as those
small dimensions are concerned, the gap between the bound and the actual distance seems
to be reasonable and does not increase too much with the dimension.

Table 1: Distance to uniform of the algorithm from Figure 3 in reduced dimensions, and
the corresponding upper-bounds from (2, 3).

Dimension ∆(U ,R) Upper-bound

8 2−8.78 2−7.06

9 2−9.25 2−7.52

10 2−9.79 2−7.98

11 2−10.31 2−8.44

3.2 Distance to uniform for many samples

In the case where more than one vector of F64
3 is sampled from R, one will be interested

in the distance to uniform of the product distribution R⊗ · · · ⊗ R. Let RD denote this
distribution for D samples and UD the corresponding uniform distribution. Then from
the distance properties of ∆ one has ∆(UD,RD) ≤ Dδ, where δ := ∆(U ,R). This
bound is sometimes quite loose, and one may hope instead for better bounds of the form
∆(UD,RD) ≤

√
Dδ′ for some δ′. We derived such bounds in two ways: 1) by using

a one-sample upper-bound on the relative entropy divergence to uniform ∇(U ,R) :=∑
a ∈F3

U(a) log(U(a)/R(a)), the fact that ∇(UD,RD) = D∇(U ,R), and its relation

to ∆ through the inequality ∆(U ,R) ≤
√

1/2∇(U ,R); 2) Renner’s upper-bound which

gives ∆(UD,RD) ≤
√
D/(2pG)δ [Ren05], where pG has the same meaning as in the above

section. This fails to improve the upper-bounds for the algorithm with distance to uniform
upper-bounded by 2−31.4 and 2−71.9, but it does moderately for the one upper-bounded
by 2−141.6. In this case, both techniques show that the number of samples needed to make
the bound vacuously equal to 1 is about 2182.8 instead of 2141.6. Yet even this remains of
mostly theoretical interest, since these latter bounds start being better than the former
only for the unrealistically large number of samples D ' 2100.

References

[BB09] Tomas J. Boothby and Robert W. Bradshaw. Bitslicing and the method of four
russians over larger finite fields. CoRR, abs/0901.1413, 2009.

[Ren05] Renato Renner. On the variational distance of independently repeated experi-
ments. CoRR, abs/cs/0509013, 2005.

7

	Preliminaries
	Bitsliced representation of F364
	BMI instructions

	The algorithm
	Parallel rejection sampling
	Parallel rejection sampling with recycling

	Statistical analysis
	Distance to uniform for one sample
	Distance to uniform for many samples

