
HAL Id: hal-03777858
https://hal.science/hal-03777858

Submitted on 15 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resilience in Discrete Event Systems
Eric Fabre

To cite this version:
Eric Fabre. Resilience in Discrete Event Systems. WODES 2022 - 16th IFAC Workshop on Discrete
Event Systems, Sep 2022, Prague, Czech Republic. pp.1-6. �hal-03777858�

https://hal.science/hal-03777858
https://hal.archives-ouvertes.fr

Resilience in Discrete Event Systems

E. Fabre ∗

∗Univ Rennes, INRIA Rennes Bretagne Atlantique, France

Abstract. This paper explores the notion of resilience of a fault in a DES, as the ability to spontaneously
return to a normal behavior, without leaking information about this fault occurrence to an external ob-
server. Resilience expresses some form of insensitivity or robustness, related but different from classical
notions like diagnosability or opacity. Different definitions of resilience are examined, expressed in terms
of recovery points or of language relations. It is shown that verifying resilience is PSPACE-complete.
However, the complexity reduces to PTIME for the recently introduced history deterministic automata,
a sub-class of NFA. We examine in detail the instructive pathway to this complexity reduction, which
could be instrumental for the complexity reduction of other DES problems.

1. MOTIVATION

Modern software production proceeds by adapting and assem-
bling ready-made components, inevitably leading to unforeseen
side effects. But not all deviations from an expected behavior
are damageable to the global functioning. The chaos engineer-
ing approach specifically aims at designing components that
would recover from failures of critical resources. Consider a
software component with a hidden internal failsafe : in case
some distant server address holding a database is unspecified
or the server is not responding (the “fault”), an address book
of backup servers can be used or an old partial copy of the
database can be queried (recovery actions). Clearly, the fault
will change temporarily the behavior of the system, and after
some transient it will be back to normal. This may even go
unnoticed by a user.

This suggests that a long standing perspective which focused
on the detectability of faults could be complemented by a
resilience analysis, that would separate harmful faults from
more benign ones. We are interested in characterizing this
resilience property, which could be defined as follows : after
a bounded number of steps following the fault, an external
observer can no longer distinguish the consequences of the
faulty run from those of a non-faulty run that would have
produced the same observations. So one could consider that the
system has returned to a normal behavior, or recovered from
the fault. Which does not mean that all memory of the fault is
erased, nor that it cannot be detected in the future.

Resilience has connections to but is different from well estab-
lished notions like diagnosability or opacity (Lafortune 2018).
Diagnosability of a fault event examines whether it can be de-
tected in bounded time after its occurrence. At a recovery time
following this fault, the faulty run is by definition ambiguous
as it cannot be distinguished from at least one safe run, which
furthermore has the same visible future. However, according
to the definition one adopts for resilience, it is possible that
all the equivalent safe runs will either be discarded by future
observations, or will themselves suffer a fault event, entailing a
fault detection. Resilience of a faulty run is therefore different
from its diagnosability, but we will show that if all faulty
runs are resilient, that is if the system itself is resilient, then
faults cannot be detected. Similarly, the dual notion of opacity
checks if a faulty (or “secret”) run of the system will always

be confused with a normal (“non-secret”) one. Opacity is more
generally defined for non-permanent secrets, so applying it here
to the notion of fault assumes a restriction to permanent secrets.
With the same argument as above, resilience of a faulty run is
different from its opacity in the sense that a diagnosable fault
(thus non opaque) can or not be resilient.

The paper is organized as follows. Section 2 proposes different
definitions of resilience, through the generic notion of recovery
point. It proves that deciding resilience is PSPACE-complete,
then examines connections with diagnosability and opacity.
Section 3 explores an original path to bring back the notion
of resilience to PTIME, by constraining the plant to be weakly
non-deterministic. The newly introduced class of history de-
terministic systems (Henzinger 2006), and its extension to the
hierarchy of k-width systems (Kuperberg 2019) covering the
class of NFA, offers remarkable tools to do so, that we examine
in detail as they could be adapted to other DES problems.

2. RESILIENCE THROUGH RECOVERY POINTS

Consider a non-deterministic finite state automaton (NFA) A =
(S,Σ,T,s0,SM) over alphabet Σ, with S as state set, s0 ∈ S as
initial state, SM ⊆ S as marked states, and T ⊆ S× Σ× S as
transition set. For t = (s,α,s′) ∈ T we denote t− = s, t+ = s′
and σ(t) =α . A path in A is a sequence of transitions π = t1...tn
such that t+i = t−i+1 for 1≤ i < n. By extension, π− = t−1 , π+ =

t+n , σ(π) = σ(t1)...σ(tn), and |π|= n. We denote π = π1π2 the
concatenation of paths, whenever π

+
1 = π

−
2 , and denote π1 ≤ π

the prefix relation.A run of A is a path π rooted at the initial
state, π− = s0, and this run is accepted by A if it terminates in
a marked state, π+ ∈ SM . The set of runs in A (resp. accepted
runs) is denoted by R(A) (resp. Ra(A)). The language L(A)⊆Σ∗

of A is formed by the signatures of accepted runs L(A) =
σ(Ra(A)). For s ∈ S, we also denote as Ls(A) the language of
A rooted at s instead of s0. Two automata are equivalent if they
have the same language. For L ⊆ Σ∗, L = {u : ∃v, uv ∈ L} is
the prefix closure of L, and u−1L = {v : uv ∈ L} is the set of
suffixes of u in L. Without loss of generality, A is assumed live.
A′ = (S′,Σ,T ′,s0,S′M) is a sub-automaton of A (or is nested in
A, denoted A′ ⊆ A) if S′ ⊆ S, T ′ ⊆ T , and S′M ⊆ SM .

Diagnosis studies, just like opacity studies, traditionally par-
tition transition signatures into observable and unobservable
ones, Σ = Σo]Σu, and consider a distinguished unobservable

label of interest f ∈ Σu called a fault.This starting point then
requires extra processings, like the removal of silent transitions
through ε-reduction. Equivalently, one can directly assume that
all transitions are observable (i.e. Σ = Σo) and that they are par-
titioned into normal (or safe) ones and faulty (or secret) ones :
T = TN]TF . This partition extends to runs : R(A) = RN(A)]
RF(A), with RN(A) = R(A)∩T ∗N . Run π = t1...tn is a minimal
faulty (or just faulty) run iff π ∈ RF(A) and t1...tn−1 ∈ RN(A).
Rmin

F (A) denotes the set of such minimal faulty runs. The parti-
tion of T also induces the normal language LN(A) = σ(RN(A))
and the faulty language LF(A) = σ(RF(A)). As A is non-
deterministic, L(A) = LN(A)∪LF(A) is not a partition, other-
wise diagnosis and opacity problems lose any interest. Specif-
ically, a word (or observation) w ∈ LN(A) ∩ LF(A) is called
ambiguous. Diagnosis examines whether this ambiguity will
eventually vanish in continuations of w, revealing the firing of
a faulty transition, while conversely opacity examines whether
ambiguity will last forever, and thus will never betray the firing
of a secret transition. Runs π and π ′ are (observationally) equiv-
alent iff σ(π) = σ(π ′) ; this equivalence relation is denoted
π ∼ π ′. By extension, a faulty (resp. normal) run is said to be
ambiguous if it is equivalent to a normal (resp. faulty) one. The
fault detection function Diag : L(A)→{>,⊥,A} is defined as

• Diag(w) = > if w ∈ LF(A) \ LN(A) or equivalently if
σ−1(w)⊆ RF(A) : all runs matching w contain at least one
faulty transition,

• Diag(w) = ⊥ if w ∈ LN(A) \ LF(A) or equivalently if
σ−1(w)⊆ RN(A) : all runs matching w are safe, and

• Diag(w) = A otherwise (for “ambiguity”).

Diagnosibility issues are more easily discussed on an extension
of A that keeps track of the occurrence of a fault. This aug-
mented version of A writes A′=(S×{N,F},Σ,T ′,(s0,N),SM×
{N,F}). Transitions T ′ replicate all transitions of A as fol-
lows : (s,α,s′) ∈ TN induce transitions ((s,N),α,(s′,N)) and
((s,F),α,(s′,F)) in T ′, and (s,α,s′) ∈ TF induce transitions
((s,N),α,(s′,F)) and ((s,F),α,(s′,F)) in T ′. Observe that
runs of A and A′ are in one to one correspondence through a
natural morphism φ : R(A)→ R(A′). Let π ∈ R(A) and π+ = s,
if π ∈ RN(A) then φ(π)+ = (s,N), and if π ∈ RF(A) then
φ(π)+ = (s,F).

To avoid the burden of this heavier notation, one can directly
take as starting point a non-deterministic automaton A where
the state space S = SN]SF is partitioned into safe/normal states
and faulty ones, instead of partitioning transitions, and then
assume that SF is absorbing (no outgoing transitions to SN) to
account for the permanence of faults. All notions of safe, faulty,
just faulty runs/words extend naturally to this setting : faulty
transitions being those transiting from SN to SF . We use this
simplified setting in this paper, but will at places refer to the
“traditional” setting.

2.1 Recovery point

Let us consider for a while the traditional setting : a non-
deterministic A with transitions partitioned as T = TN]TF and
before the state augmentation. Let w = t1...tn ∈ RF(A) be a
faulty run of A, and assume there exists an equivalent safe run
u∈RN(A) such that u+ =w+ = s. The future of run w will be no
different from the future of the normal run u, so one can assume
the system has “recovered” from the fault in w, which also
went unnoticed since w ∼ u. This of course does not preserve
A from firing another faulty transition after state s. State s is

thus a strong recovery point after w. Assume now that there
exists an equivalent safe run u ∼ w with u+ = s′ and such that
Ls(A) = Ls′(A). Then an external observer can not distinguish
the future behaviour of w from the future behavior of the safe
run u. The pair of states (s,s′) is thus a (weak) recovery point.
We shall elaborate on these ideas to define various notions of
recovery points. Notice right away that crossing a recovery
point does not mean that the fault in w can never be detected : it
is possible that all equivalent safe runs u fire a faulty transition
in their future, leading to detection.

Let us now come back to the simplified setting : a non-
deterministic A with states partitioned as S = SN] SF , SF ab-
sorbing, and an induced partition T = TN]TF .
Definition 1. The pair (s,s′) ∈ SF × SN forms a recovery point
(RP) of

• type E (Equality) iff Ls(A) = Ls′(A)
• type I (Inclusion) iff Ls(A)⊆ Ls′(A)
• type EN (Equality Normal) iff Ls(A) = LN,s′(A)
• type IN (Inclusion Normal) iff Ls(A)⊆ LN,s′(A)

with the obvious inclusions of types E⇒ I and EN⇒ IN⇒ I.
One can imagine numerous other variants, and for example
require that after s, conditionally to the absence of a new fault
event, the language is equal to (included in) the normal lan-
guage after s′, etc. We denote by R ⊆ SF × SN a given set of
recovery points. Notice that checking whether (s,s′) forms a
recovery point is PSPACE-complete (language inclusion prob-
lem for NFA). Here, we assume R is given beforehand to-
gether with A and needs not be computed. For example, refer-
ring to the traditional setting, one may naturally consider pairs
((s,F),(s,N)) as recovery points of type E.

2.2 Resilience

Definition 2. Given n ∈ N, the minimal faulty run w ∈ Rmin
F (A)

is n-resilient w.r.t. recovery points R iff

∀v′ : wv′ ∈ RF(A) ∧ |v′| ≥ n,

∃v≤ v′, ∃u ∈ RN(A) : wv∼ u ∧ (wv+,u+) ∈R (1)

w is resilient when it is n-resilient for some horizon n ∈ N.

In words, along all extensions v′ of length n following the min-
imal faulty run w, one will cross a recovery point (wv+,u+).
One shall say that resilience “takes place” at wv on path wv′. See
Fig. 1 for examples of resilient and non-resilient faults. Notice
that (1) concerns both the past and the future. The past because
the recovery point must be jointly reached by the extension wv
and by a safe run u through the same observed sequence, so that
an external observer may not distinguish them. This entails the
ambiguity of the faulty run w at least up to each recovery point.
And the future, as by definition the language after the “recovery
time” wv can not be distinguished from the one produced by a
continuation of the normal run u.
Definition 3. A is resilient w.r.t. set R of recovery points iff all
miminally faulty runs w ∈ Rmin

F (A) are resilient w.r.t. R.

This definition may attach a different resilience bound n to
each w, possibly resulting in an unbounded resilience horizon as
Rmin

F (A) can be infinite. A finite uniform bound actually holds :
see the decision procedure below, that reduces Rmin

F (A) to a
finite set of interest.

Theorem 4. Given a set R of recovery points in A, verifying
the resilience of A is PSPACE-complete.

Proof. We first build a decision procedure, showing the in-
clusion in PSPACE. Let Det(A) = (Q,Σ,T ′,q0,QM) be the
determinized version of A (classical powerset construction),
with Q = 2S and q0 = {s0}. Consider the product automaton
A×Det(A), which simply performs a state augmentation on
A to keep track of states that are jointly accessible through
the same observation. Specifically, there is a natural one-to-
one morphism φ : R(A) → R(A× Det(A)) between runs of
A and runs of A×Det(A). For π ∈ R(A), π+ = s, one has
φ(π)+ = (s,q) where q = {u+,u∈ R(A),u∼ π} and thus s∈ q.
By extension, let us say that state (s,q)∈ S×Q of A×Det(A) is
a recovery point iff s∈ SF and ∃s′ ∈ q∩SN , (s,s′)∈R. Consider
a minimal faulty run w ∈ Rmin(A) and its extension wv with
wv+ = s. By definition, wv reaches a recovery point that is co-
accessible by a safe run with the same observation σ(wv) iff
φ(wv)+ = (s,q) and (s,q) is a recovery point in A×Det(A).
Verifying (1) on A×Det(A) is now straightforward. Minimal
faulty runs w ∈ Rmin(A) are characterized by a transition from
SN×Q to SF ×Q in A×Det(A). So one only needs to consider
such “just faulty” states in A×Det(A) to capture all just faulty
runs. If along all their continuations of length n they cross a
recovery point, then (1) holds for range n. Conversely, (1) holds
for no n iff after some just faulty state (s,q) there exists a finite
path to a circuit (a “lasso”) both avoiding recovery states.

Resilience can thus be checked in polynomial time on A×
Det(A), which suggests an exponential time in the size of
A. To get the tighter PSPACE bound, consider checking non-
resilience instead. This amounts to proving the existence of a
non-resilient “lasso” in A×Det(A), that is a just faulty run
followed by a path and then a (single run of a) loop, both
free of recovery points. A lasso contains no state repetition
excepted the last one which closes the loop, so one only needs
to examine paths of length at most |S| × 2|S|+ 1. Given such
a path, one needs O(log(|S| × 2|S|)) = O(|S|) bits to store a
position along this path. Two positions are enough to detect
occurrence of the first loop and thus check the lasso property,
and one position is enough to detect fault occurrence followed
by non-resilience along the lasso. Therefore a non-deterministic
machine can check non-resilience of A with polynomial space,
which proves that verifying Def.(3) lies in co-NPSPACE. We
conclude by NPSPACE=PSPACE (Savitch’s theorem) and by
the closure of PSPACE by complementation.

For the hardness part, we consider the reduction of the univer-
sality problem for a non-deterministic automaton, known to be
PSPACE-complete. Let C = (SC,Σ,TC, c0,SC

M) be an NFA over
alphabet Σ, and let B= (SB,Σ,T B,b0,SB

M) be a deterministic au-
tomaton accepting Σ∗. Let us build A = (S,Σ]{$,#},s0,T,SM)
by assembling B and C as follows ($ and # are supposed to be
fresh symbols, not present in Σ). S = {s0,s1,s2}]SB]SC, SM =
{s1,s2}. For transitions, let T B] TC ⊆ T , then add (s0,$,b0)
and (s0,$,c0) to T , so A chooses non-deterministically between
B or C on its first move. Then add exiting transitions (bm,#,s1)
to all marked states bm ∈ SB

M in B, and similarly transitions
(cm,#,s2) to marked states cm ∈ SC

M in C. Finally, add self-
loops (s1,$,s1) and (s2,$,s2) to T to make A live. Clearly,
L(A) = $Σ∗#$∗. Assume SF = {s1} so that all words in L(A)
are faulty, and faulty runs all terminate at the absorbing state
s1. Similarly, all words in $L(C)#$∗ are safe, and safe runs
all terminate at the absorbing state s2. Let us now consider as

single recovery point in A the pair (s1,s2). As B is deterministic,
words in $L(B)#= $Σ∗# are in one-to-one correspondence with
minimal faulty runs of A, and such a minimal faulty run w can
be resilient iff for some extension wv there exists an equivalent
safe run u, which necessarily goes through C. Therefore it is not
hard to see that A is resilient iff $L(B)# ⊆ $L(C)#, that is iff B
accepts Σ∗. 2

Notice that the decision procedure isolates in A the non-resilient
(minimal) faulty runs w from the resilient ones, and it also
provides a uniform recovery horizon n for the latter.

One could have suspected the PSPACE-hardness to derive from
the construction of R, as deciding whether (s,s′) forms a
recovery point is already PSPACE-hard. Interestingly, checking
resilience remains PSPACE-hard even for a given set R.

2.3 Relations to diagnosability and opacity

Regarding connections to diagnosability, several immediate
observations can be made. First, if some minimal faulty run
w∈ Rmin

F (A) is resilient for type EN or type IN, this fault cannot
be detected. The reason is that at the moment where resilience
takes place, the faulty run wv ∈ RF(A) is equivalent to a safe
one u ∈ RN(A), so wv is ambiguous. Since further Lwv+(A) ⊆
Lu+,N(A), this ambiguity never vanishes as any extension wvx
of wv is equivalent to a non-faulty extension uy of u.

0start 2

1

3

5

4

6

7

8

a
a
a

b
c

b

c

d
d

d

d

d

Figure 1. Faulty states are in red. The fault appearing at state 1
is 1-resilient. All faults are diagnosable : detection when d
is observed. The fault appearing at state 8 is not resilient.

Secondly, for resilience of type E or type I, a fault can be both
resilient and diagnosable. Consider the example in Fig. 1, where
the minimal faulty run on top is 1-resilient but not 0-resilient :
as soon as b or c is observed after a, a resilience point is reached
for R = {(4,6),(5,7)}. But as soon as an extra d is observed,
the fault is detected. However, this behavior vanishes if the
whole system is E or I resilient.
Proposition 5. If a system is resilient, it cannot be diagnosable.

Proof. This readily holds for EN- and IN-resilience, so we fo-
cus on I-resilience, which covers E-resilience as well. Observe
first that if a system is both n-resilient, n being minimal, and
m-diagnosable, then necessarily n < m. If n is minimal, there
exists a minimal faulty run w ∈ Rmin

F (A), an extension v with
|v| = n of w, and a safe run u ∈ RN(A) such that wv ∼ u, so
ambiguity is still valid n steps after w. Diagnosability of this
fault could only occur with more observations, so n+1≤ m.

Recall A is assumed live. Consider a mininal faulty run w ∈
Rmin

F (A), and an extension v′ with |v′| ≥ m. Assume w is m-
diagnosable, so Diag(σ(wv′)) = > (fault is detected). As w
is n-resilient and n < m there exists v < v′ and u1 ∈ RN(A)
with u1 ∼ wv, so wv is ambiguous. Furthermore, as Lwv+(A)⊆
Lu+1

(A), there exists an extension u1x1 such that u1x1 ∼wv′, and

as Diag(σ(wv′)) = > one has u1x1 ∈ RF(A). The faulty run
u1x1 itself decomposes as u1x1 = w1y1 where w1 is a minimal
faulty prefix. One has wv′ ∼ w1y1 and |w1|> |w|.
One can repeat this construction. Considering an extension
w1v′1 of w1y1, with |v′1| ≥ m, one can derive u2x2 ∼ w1v′1
with u2 ∈ RN(A) and u2x2 ∈ RF(A), which decomposes as
u2x2 = w2y2, w2 ∈ Rmin

F (A), and |u2| > |u1|. Although w1v′1 ∼
w2y2 is longer than wv′, a (strict) prefix of w1v′1 (and thus
of w2y2) remains equivalent to wv. In the series of (ui,wi)
obtained by repeating this procedure, |ui| and |wi| are strictly
increasing, until one gets |ui|− |w| > m, which contradicts the
diagnosability of w : we have evidenced a safe run equivalent
to wv′. 2

We have actually proved a little more : non-diagnosability of
a system means that there exists at least one non-diagnosable
fault in that system. Here, resilience of a system entails that no
fault is actually diagnosable in that system, so one has :
Corollary 6. A resilient system is opaque.

Of course, system resilience is strictly stronger than non-
diagnosability (Fig. 2). But it is still unclear whether it is also
strictly stronger than opacity for NFA with permanent secrets.

3. RESILIENCE IN WEAKLY NON-DETERMINISTIC
PLANTS

Resilience can be seen as a reinforcement of opacity, the ver-
ification of which is also PSPACE-complete on generic non-
deterministic plants (Cassez 2012). The only way to reduce this
complexity is to consider smaller classes of non-deterministic
systems. We concentrate here on history determinisitc (HD) au-
tomata (Colcombet 2012), (Kupferman 2021), as a first step to
k-width automata (Kuperberg 2019), for which the language in-
clusion problem is known to be in PTIME instead of PSPACE-
complete. This suggests that verifying resilience could also
benefit from this gap. Due to space limitations, several proofs
of this section are omitted (they will appear in an online and
extended version of this work).

3.1 History deterministic automata

We start by recalling several notions of weak non-determinism.
Definition 7. Let A = (S,Σ,T,s0,SM) be an NFA. An admissi-
ble strategy (or a resolver) to resolve the non-determinism in A
is a mapping ρ : Σ∗→ S such that

• ρ(ε) = s0

• ∀(u,α) ∈ Σ∗× Σ, uα ∈ L(A) ⇒ (ρ(u),α,ρ(uα)) ∈ T ,
and
• ∀u ∈ L(A), ρ(u) ∈ SM ⇔ u ∈ L(A).

Automaton A is history deterministic (HD) iff it admits a
resolver of its non-determinism.

For any prefix u of a word in L(A) and any action α , ρ(uα)
chooses the resulting state in A when firing α from state ρ(u).
This choice only depends on the beginning of the word, uα , and
does not reduce the language of A (last item), so in particular
it preserves all suffixes of uα without any look ahead. Whence
the name history deterministic. This is better illustrated by the
following result (Kuperberg 2019).

Lemma 8. Strategy ρ is admissible for A iff ∀u ∈ L(A),
Lρ(u)(A) = u−1L(A).

0start 2

1 3

4

a

a

c

d

b

b

c

d

Figure 2. A non-diagnosable system which is also non-resilient.
Replacing d by c would grant resilience.

There exist related notions of weak non-determinism, see
(Kupferman 2021). For example, A is said to be determinisable
by pruning (DBP) iff by removing transitions from A one
obtains an equivalent deterministic automaton A′. Clearly, if
A is DBP then it is also HD, as one can define the resolver
ρ from the remaining transitions in A′. Being state-based, this
resolver has a finite memory. A is said to be semantically de-
terministic (SD) iff ∀(s,α) ∈ S×Σ, (s,α,s′) ∈ T ∧ (s,α,s′′) ∈
T ⇒ Ls′(A) = Ls′′(A). In other words, whatever the way non-
determinism is solved at s for action α , this does not change the
future language of A. So SD implies DBP as cutting all branches
but one at a non-deterministic choice preserves the language
(see Lemma 14). Finally, an HD automaton contains an equiv-
alent SD automaton. This last point derives from the following
observation. Consider the sub-automaton A′ of A obtained by
removing transitions which are never chosen by resolver ρ , i.e.
by keeping only transitions (ρ(u),α,ρ(uα)) for uα ∈ L(A).
As A is HD, L(A′) = L(A), but A′ is not deterministic : one
may have ρ(u) = ρ(v) = s, but ρ(uα) = s′ 6= ρ(vα) = s′′, so
the two transitions (s,α,s′) and (s,α,s′′) remain in A′. Never-
theless, one has Ls′(A′) = Ls′′(A′), which makes A′ SD. This
derives from Lemma 8 : Let w ∈ Ls′(A′) = (uα)−1L(A′), so
uαw ∈ L(A′). But as ρ(u) = s = ρ(v), one has that vαw ∈
L(A′), and so w ∈ (vα)−1L(A′) = Ls′′(A′) (see also Prop.14
in (Colcombet 2012)).

So the above notions of non-determinism - DBP, HD/GFG, SD -
almost coincide for automata on finite words, and in the sequel
we use indistinctly HD and DBP.

3.2 Determinization procedure

Theorem 9. Deciding whether an NFA is determinisable by
pruning (i.e. DBP, HD, GFG, or SD) is in PTIME.

This result appears as Theorem 15 in (Colcombet 2012), with-
out proof, as Theorem 4.1 in (Kupferman 2010) which provides
a first proof, and as Theorem 2 in (Löding 2020) in the setting
of transducers. Proofs of Theorem 9 are constructive : Given
some NFA A, they try to build a nested deterministic automaton
A′ equivalent to A by pruning transitions in A. The construction
fails iff A is not DBP, otherwise it provides one (or all) equiv-
alent nested A′. An alternative version of this proof will appear
in the extended version of this work. It relies on the following
central notions and properties.
Definition 10. In NFA A = (S,Σ,T,s0,SM), transition (branch)
(s,α,s′) ∈ T dominates (s,α,s′′) ∈ T iff Ls′′(A) ⊆ Ls′(A).
Branch (s,α,s′) is dominant iff ∀s′′ such that (s,α,s′′) ∈
T, Ls′′(A)⊆ Ls′(A).

For (s,α)∈ S×Σ, the dominance relation defines a partial order
on branches (s,α, .), so there can be several dominant branches
or none at s for label α .

Lemma 11. Assume A is DBP, and let A′ be an equivalent de-
terministic automaton nested in A. Then A′ uses only dominant
branches of A.

If there are several dominant branches in A at state s for label α ,
we show below that they are equivalent to build A′ (Lemma 14).
If there are none while α is firable at s, then s must not be
reachable by any u in any A′. This means both that s is a “bad”
state of A for a candidate A′, and that words uαv ∈ L(A) that
can be accepted through s in A must be realized through other
states in A′.
Definition 12. The sub-automaton of dominant branches of A,
denoted A′′, is obtained by removing all non-dominant transi-
tions of A and trimming 1 the result.

This makes A′′ a semantically deterministic (SD) automaton. So
A′′ could also be called the SD segment of A.
Proposition 13. A is DBP iff its sub-automaton of dominant
branches A′′ ⊆ A satisfies L(A′′) = L(A). In that case, for any
s ∈ S that remains reachable in A′′, one has Ls(A′′) = Ls(A).

So the effort of the DBP test for A all lies in pruning non-
domininant branches to obtain A′′, and checking that L(A) is
preserved. In conjunction with Lemma 11, when A is DBP,
Prop. 13 also shows that all deterministic equivalent automata
A′ nested into A are also nested into A′′.
Lemma 14. Let An be an automaton made of dominant branches
only (i.e. An is SD), and let An+1 be obtained by removing one
branch at a non-deterministic choice in An. Then An+1 is also
made of dominant branches only, and satisfies L(An+1) = L(An)
and further ∀s ∈ S, Ls(An+1) = Ls(An).
Proposition 15. If A is DBP, given its automaton of dominant
branches A′′, any equivalent deterministic A′ nested into A can
be obtained by a greedy determinization at all states of A′′.

This is an immediate consequence of Lemma 14 used in the
proof of Prop. 13, as one can form a decreasing sequence
A′′ = A0 ⊃ A1 ⊃ ... ⊃ AN = A′ preserving L(A), where two
consecutive An only differ by one transition (reducing non
determinism for one letter a ∈ Σ at some state s). This result
allows one to easily enumerate all equivalent A′ for A. See
Fig. 3.

We finish with a useful property for resilience verification.
Proposition 16. Let A be DBP, with A′′ as its nested SD seg-
ment. Let wv ∈ R(A) be a run of A such that wv+ = s and
Ls(A) 6= /0. Consider any run u ∈ R(A′′) such that u ∼ wv, and
let s′ = u+ in A′′. One has Ls(A)⊆ Ls′(A′′) = Ls′(A).

0start

1

2

3

4

5

a

a

b

cb

b
c

d

d

d

d

d,e

7 8 0start

1

2

3

4

5
a

b

b
c

d
d

d

d,e

Figure 3. A DBP automaton A (left) and its SD segment
A′′ (right) obtained by selecting dominant branches and
trimming.

HD automata are thus convenient as they can easily be deter-
minised (by pruning), which brings back problems like lan-
guage inclusion from PSPACE to PTIME and suggests that
1 i.e. removing all states that are non-accessible or non-coaccessible

resilience could also be brought back to PTIME. Notice that
determinizing an HD automaton should go through the iden-
tification of a nested equivalent subautomaton A′ rather than
the subset construction : the latter can still suffer an exponential
blowup (Kuperberg 2019).

3.3 Resilience in HD automata

We consider here the type I notion of resilience, expressed
directly through language inclusion rather than recovery points.
Specifically, at most n steps after the fault occurrence, the future
language of a faulty run must be covered by the future language
of an equivalent safe run.
Definition 17. Let w ∈ Rmin

F (A) be a minimal faulty run of A, w
is (I-)resilient iff

∃n ∈ N, ∀v′ : wv′ ∈ RF(A) ∧ |v′| ≥ n, ∃v≤ v′,

∃u ∈ RN(A) : wv∼ u ∧ Lwv+(A)⊆ Lu+(A) (2)

A is (I-)resilient iff all its minimal faulty runs are.

While HD automata form a convenient sub-class of NFA where
language inclusion can be easily checked, they are not yet
sufficient to easily check resilience. A counter-example appears
in Fig. 4. This resilient system A, for n = 0, is also HD, but its
determinized version only preserves faulty runs, as they domi-
nate safe ones. Therefore in any A′ or even A′′ resilience van-
ishes. The phenomenon remains if an extra transition (2,c,7)
is added, as some nested deterministic segment A′ ⊆ A′′ could
either preserve the faulty branch (through 1) or the safe one
(through 2).

0start 2

1

3

5

4

6

7

a
a
a

b
c

b

c

d

e

d

e

Figure 4. A resilient DBP automaton. Determinization by prun-
ing kills resilience, as only transition (0,a,1) is preserved
for label a : the two safe branches to 2 and 3 are dominated.

To go around this difficulty, one needs to express that safe paths
are preferable to faulty ones in the determinisation by pruning.
In this way, the pruning both deals with language inclusion
and removes faulty segments when safe ones cover them. This
motivates the restriction to HD automata with fault memory.
Definition 18. NFA A is history deterministic with fault mem-
ory (HD-FM, or DBP-FM) iff it admits a resolver of its non-
determinism that also preserves the normal language, i.e.

• ∀u ∈ LN(A), ρ(u) ∈ SM ∩SN ⇔ u ∈ LN(A)

ρ is then called an admissible FM-resolver (a resolver with fault
memory).

The example in Fig. 4 is not DBP-FM, unless the extra tran-
sition (2,c,7) is added. In that case, the FM-resolver choses
branch (0,a,2) instead of branch (0,a,1), to favor safe runs.

This notion is associated to a stronger version of Lemma 8

Lemma 19. Strategy ρ is an admissible FM-resolver for A
iff ∀u∈L(A), Lρ(u)(A) = u−1L(A) ∧ Lρ(u),N(A) = u−1LN(A).

Observe that if u ∈ LN(A), then u−1LN(A) 6= /0 so ρ(u) must
belong to SN , while this constraint does not hold otherwise.
This translates the fact that safe runs are preferred to faulty ones
in the determinization of A, and leads to a stronger notion of
dominance between transitions.
Definition 20. Transition (s,α,s′) (FM-)dominates (s,α,s′′) in
A iff Ls′′(A)⊆ Ls′(A) and Ls′′,N(A)⊆ Ls′,N(A). Branch (s,α,s′)
is (FM-)dominant iff it (FM-)dominates all other transitions
(s,α,s′′) of A rooted at s for label α .

With this new notion of dominance, Def. 1 applies and results
like Prop. 13 follow, with the preservation of both L(A) and
LN(A) for DBP-FM automata. Similarly, Lem. 14, Prop. 15,
Thm. 9 generalize to DBP-FM automata, and Prop. 16 becomes
Proposition 21. Let A be DBP-FM, with A′′ as its nested SD
segment. Let wv ∈ R(A) be a run of A such that wv+ = s and
Ls(A) 6= /0. Consider any run u ∈ R(A′′) such that u ∼ wv,
and let s′ = u+ in A′′. One has Ls(A) ⊆ Ls′(A′′) = Ls′(A) and
Ls,N(A)⊆ Ls′,N(A′′) = Ls′,N(A).

With this material, one gets the following properties.
Theorem 22. Let A be a DBP-FM automaton. Then A is re-
silient iff its nested SD-segment A′′ is resilient.

Proof. Without loss of generality, one can assume that each
normal state of A leads to at least one normal word : ∀s ∈
SN , Ls,N(A) 6= /0.

(⇒) Assume A is resilient. Let w be a mininal faulty run in
A′′, w ∈ Rmin

F (A′′), and let v′ be a continuation of w in A′′ with
|v′| ≥ n. As A′′ ⊆ A and by the resilience of A, there exists
v ≤ v′ and an equivalent safe run u ∈ RN(A) such that u ∼ wv
and Lwv+(A) ⊆ Lu+(A). One has s = u+ ∈ SN , so Ls,N(A) 6= /0.
Consider any u′ ∈ R(A′′) such that u′ ∼ u (there exists at least
one), and let s′ = u′+. By Prop. 21, Ls(A) ⊆ Ls′(A′′) and /0 6=
Ls,N(A) ⊆ Ls′,N(A′′). This entails that u′ ∼ wv and s′ ∈ SN , i.e.
u′ ∈ RN(A′′), which proves the resilience of w in A′′.

(⇐) Assume A′′ is resilient. Let w ∈ Rmin
F (A), there exists

w̄∈R(A′′) such that w∼ w̄, and Lw+(A)⊆ Lw̄+(A′′). If w̄+ ∈ SN ,
then w is resilient in A. Otherwise, w̄ ∈ RF(A′′) is a faulty run,
not necessarily minimal. Let v′ be a continuation of w in A with
|v′| ≥ n, then there exists a continuation v̄′ of w̄ in A′′ with wv′∼
w̄v̄′, and |v̄′| ≥ n. From the resilience of A′′, there exists v̄ ≤ v̄′
and u ∈ LN(A′′) such that Lw̄v̄+(A′′) ⊆ Lu+(A′′). By Prop. 21,
one even has Lw̄v̄+(A′′) = Lu+(A′′) = Lu+(A). Let v≤ v′ be such
that wv ∼ w̄v̄ ∼ u, then Lwv+(A) ⊆ Lw̄v̄+(A′′) = Lū+(A), which
proves the resilience of w in A. 2

With a similar reasoning, one can actually derive finer proper-
ties. A minimal faulty run w ∈ Rmin

F (A) of A is resilient iff it is
equivalent to a resilient faulty run w′ in A′′. This also entails that
all such equivalent faulty runs w′ in A′′ are either all resilient,
or none is. Consequently, the resilience of A is equivalent to
the resilience of any deterministic A′ ⊆ A′′ equivalent to A′′ and
thus to A, where equivalence here means both the preservation
of the language L(A) and of the safe language LN(A). This leads
to the following result.
Theorem 23. A DBP-FM automaton A is resilient iff its SD-
segment A′′ contains no faulty state. Consequently, verifying
the resilience of a DBP-FM automaton is in PTIME.

Proof. From Thm. 22 and the following remarks, A is resilient
if it is equivalent to a deterministic A′ ⊆ A′′ ⊆ A which is
also resilient. But resilience in a deterministic A′ means that
there are no faults, thus no faulty state. As the resilience of A′′
transfers into resilience of any equivalent nested A′, this means
that A′′ also has no faulty state.

So intuitively, when building A′′, resilient faulty runs are cov-
ered by safe paths, and thus vanish from the construction. The
burden of verifying resilience of DBP-FM automata then all
lies in the derivation of A′′, which was shown to be in PTIME
(generalization of Thm. 9). 2

4. CONCLUSION

This paper explored the notion of fault resilience for DES, as
the property of not damaging too much the expected behavior
of the system from the perspective of an external observer.
Verifying resilience is PSPACE-complete for general NFA, but
in the restricted sub-class of HD systems, it becomes polyno-
mial (even quadratic), making this notion of practical interest.
These ideas potentially adapt to other problems, like opacity
verification. An extended version of this work will address
the case of k-width automata, that cover all the NFA class as
k varies. Numerous notions of resilience can be envisioned,
beyond recovery points or language inclusions, and quantitative
versions would be useful, for example to measure the speed at
which the “memory” of some fault vanishes.

REFERENCES

[Lafortune 2018] Stéphane Lafortune, Feng Lin, Christoforos N.Hadjicostis.
On the history of diagnosability and opacity in discrete event systems.
Annual Reviews in Control 45:257-266, 2018, https://doi.org/
10.1016/j.arcontrol.2018.04.002

[Cassez 2012] Franck Cassez, Jeremy Dubreil, Hervé Marchand. Synthesis of
Opaque Systems with Static and Dynamic Masks. Formal Methods in
System Design 40(1):88-115, 2012 https://doi.org/10.1007/
s10703-012-0141-9

[Henzinger 2006] Thomas A. Henzinger, Nir Piterman. Solving Games With-
out Determinization. Computer Science Logic 2006. LNCS vol. 4207,
pp. 395-410. https://doi.org/10.1007/11874683_26

[Colcombet 2012] Thomas Colcombet. Forms of Determinism for Au-
tomata. STACS’12 (29th Symposium on Theoretical Aspects of Com-
puter Science), Feb 2012, Paris, France. pp.1-23. https://hal.
archives-ouvertes.fr/hal-00678155/document

[Kuperberg 2015] Denis Kuperberg, Michal Skrzypczak. On Determinisation
of Good-for-Games Automata. ICALP (Automata Languages and Pro-
gramming) 2015. LNCS vol. 9135, pp. 299-310. https://doi.org/
10.1007/978-3-662-47666-6_24

[Kuperberg 2019] Denis Kuperberg, Anirban Majumdar. Computing the
Width of Non-deterministic Automata. Logical Methods in Computer
Science, vol. 15(4), Nov. 2019. https://doi.org/10.23638/
LMCS-15(4:10)2019

[Kupferman 2010] Benjamin Aminof, Orna Kupferman, Robby Lampert. Rea-
soning about online algorithms with weighted automata. ACM Transac-
tions on Algorithms, Vol. 6(2) pp. 1-36, March 2010. https://doi.
org/10.1145/1721837.1721844

[Kupferman 2021] Bader Abu Radi, Orna Kupferman, Ofer Leshkowitz. A
Hierarchy of Nondeterminism. 46th International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2021), pp. 85:1-21.
DOI: 10.4230/LIPIcs.MFCS.2021.85, https://drops.dagstuhl.
de/opus/volltexte/2021/14525/

[Löding 2020] Emmanuel Filiot, Christof Löding, Sarah Winter. Synthesis
from weighted specifications with partial domains over finite words. In
FSTTCS 2020, vol.182 of LIPIcs, pp. 46:1–46:16. Extended version with
proofs at http://arxiv.org/abs/2103.05550v1.

https://doi.org/10.1016/j.arcontrol.2018.04.002
https://doi.org/10.1016/j.arcontrol.2018.04.002
https://doi.org/10.1007/s10703-012-0141-9
https://doi.org/10.1007/s10703-012-0141-9
https://doi.org/10.1007/11874683_26
https://hal.archives-ouvertes.fr/hal-00678155/document
https://hal.archives-ouvertes.fr/hal-00678155/document
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.23638/LMCS-15(4:10)2019
https://doi.org/10.23638/LMCS-15(4:10)2019
https://doi.org/10.1145/1721837.1721844
https://doi.org/10.1145/1721837.1721844
https://drops.dagstuhl.de/opus/volltexte/2021/14525/
https://drops.dagstuhl.de/opus/volltexte/2021/14525/
http://arxiv.org/abs/2103.05550v1

	Motivation
	Resilience through recovery points
	Recovery point
	Resilience
	Relations to diagnosability and opacity

	Resilience in weakly non-deterministic plants
	History deterministic automata
	Determinization procedure
	Resilience in HD automata

	Conclusion

