
HAL Id: hal-03775628
https://hal.science/hal-03775628

Submitted on 12 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of a vibration energy harvester with two close
resonant frequencies

David Gibus, Adrien Morel, Ludovic Charleux, Aya Benhemou, Adrien Badel,
Pierre Gasnier

To cite this version:
David Gibus, Adrien Morel, Ludovic Charleux, Aya Benhemou, Adrien Badel, et al.. Design of a
vibration energy harvester with two close resonant frequencies. WPW 2022 - IEEE Wireless Power
Week, Jul 2022, Bordeaux, France. pp.132-135, �10.1109/WPW54272.2022.9853894�. �hal-03775628�

https://hal.science/hal-03775628
https://hal.archives-ouvertes.fr


XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Design of a vibration energy harvester with two 

close resonant frequencies 

Abstract—We present the design of a piezoelectric cantilever 

with a L-shaped proof mass and multiples electrodes allowing 

vibration energy harvesting at two close frequencies. Indeed, the 

resonant frequencies of the proposed harvester are 35.3 Hz and 

53.2 Hz for the first and second bending modes, respectively. 

Based on a study of the strain distribution with an analytical 

model, we provide design guidelines for the electrodes’ 

configuration to maximize the electromechanical coupling 

coefficients k² of a PZT-based harvester. When the electrodes 

are judiciously connected, the coefficient k² reaches 9.3 % for 

the first mode and 8.1 % for the second mode, allowing 3 Hz (8.4 

%) and 3.5 Hz (6.5 %) frequency bandwidths with resistive 

frequency tuning respectively. 

Keywords— Vibration energy harvesting, piezoelectric 

cantilever, broadband, analytical model, proof mass. 

I. INTRODUCTION 

Piezoelectric vibration energy harvesters are a promising 
technology that has been widely investigated during the last 
two decades to power wireless sensor nodes. The commonly 
designed linear piezoelectric resonators can harvest energy 
only on a limited frequency range around their resonant 
frequencies. Such narrow frequency bandwidth constitutes a 
major issue of vibration energy harvesters.  

As a response, Moon et al. proposed in 2018 to design a 
tunable proof mass on a piezoelectric cantilever in order to 
minimize the frequency difference between the two first 
bending modes of their harvester [1]. Such a system represents 
a promising solution to harvest energy from vibration source 
that have two close frequencies with high energy density. 
Indeed, the second resonant frequency is at least 6.27 times 
greater than the first resonant frequency for cantilever with 
conventional proof mass [2]. In order to minimize this 
frequency gap, Erturk et al. already proposed in 2009 to add a 
secondary beam orthogonally to the primary cantilever [2]. 
The proposed prototype exhibits a frequency ratio of almost 2. 
While this harvester is suitable for drone applications, it was 
not suitable for energy harvesting in a confined space because 
the height of the system is significant. Meanwhile, a L-shape 
proof mass has been shown relevant on a piezoelectric 
cantilever in order to maximize the power density at the first 
resonant frequency by Li et al. in 2010 [3]. However, the 
authors did not provide any insights concerning the second 
bending mode. It is a similar configuration (L-shape proof 
mass) that Moon et al. considered in order to bring the two 
first resonant frequencies closer [1]. Although their results 
were promising since the two resonant frequencies were 
experimentally nearly equal, charge cancellation on the 
piezoelectric electrodes was not considered in their work. 
Indeed, Erturk et al. showed that the second bending mode 
induces a charge cancellation in cantilever with conventional 
proof mass due to sign changes in the strain distribution in the 
beam [4]. Such charge cancellation can induce a drastic 
decrease of the global electromechanical coupling coefficient 
𝑘²  of the harvester if the electrodes are injudiciously 
configured. As 𝑘² is of a prior importance to maximize the 
harvested power and the frequency bandwidth in case of 
electrical resonant frequency tuning [5], the strain distribution 
and the electrode configuration should not be neglected in the 

design of vibration energy harvesters. While the use of L-
shape proof mass affects the strain distribution as well as the 
resonant frequencies, no analysis of the strain distribution on 
the two first bending mode was performed in the literature.  

The present work studies the strain distribution and the 
electrode configuration of piezoelectric cantilevers with L-
shape proof mass and with conventional proof mass in the 
purpose of maximizing their electromechanical coupling 
coefficient. Our study relies on modelling, FEM simulations 
and experiments. The model is presented in the next section. 
The third section shows how to use the model on a case study 
and the fourth section is dedicated to the prototype 
presentation and experimental validation. 

II. DEVICE AND MODELLING 

A. Device presentation 

a. 

 
b. 

Fig. 1: a. Cantilever with conventional  proof mass (Dt >
0) b. cantilever with L-shaped proof mass (Dt < 0) 

The studied harvester is a piezoelectric bimorph with a 

proof mass (Fig. 1). The piezoelectric layers and the substrate 

have the same length (𝐿𝑏) and the same width (𝐵) as the 

beam. The piezoelectric layers are partially covered by 

electrodes. The proof mass considered as infinitely rigid is 

modeled by an equivalent point mass described by a mass 𝑀𝑡 

and a rotational inertia 𝐼𝑂  placed at a coordinate 𝐷𝑡  from the 

free end of the beam along the 𝑥-axis. If the proof mass is 

asymmetric according the neutral axis, the projection on the 

neutral axis of the rotary inertia, noted 𝐼𝑡 , is calculated by 

considering the distance 𝑍𝑡 with the Huygens theorem: 

𝐼𝑡 = 𝐼0 +𝑀𝑡𝑍𝑡
2 (1) 

 𝐷𝑡  can be either positive for conventional proof mass (Fig. 

1.a.), either negative for L-shaped proof mass (Fig. 1.b.). The 

electrodes size and position (Fig. 1) have yet to be determined 

and will be discussed in the next sections. 

B. Modelling 

Assuming the Euler-Bernoulli assumption and neglecting 
the beam mass compared to the proof mass, we use the 2 
degree of freedom analytical model from [5]. The longitudinal 
strain 𝑆1 in the beam is therefore expressed by the equation (2) 

where 𝜙𝑖(𝑥) is the 𝑖𝑡ℎ bending mode shape (with 𝑖 ∈ {1; 2}), 
𝑟𝑖(𝑡)  is the generalized coordinate of the 𝑖𝑡ℎ  mode 
corresponding to the relative transverse displacement at the tip 
end (𝑥 = 𝐿𝑏 ). 𝑧 is the position from the neutral axis of the 
beam. 

From equation (2), 𝜙𝑖
′′(𝑥)  represents the longitudinal 

strain distribution in the beam for the 𝑖𝑡ℎ mode. According to 
the model, it is an affine function that depends on two 
coefficients 𝑎𝑖 and 𝑏𝑖, as expressed in (3). 
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𝑆1 =∑−𝑧𝜙𝑖
′′(𝑥)𝑟𝑖(𝑡)

2

𝑖=1

 (2) 

𝜙𝑖
′′(𝑥) = 𝑏𝑖 + 𝑎𝑖 (1 −

𝑥

𝐿𝑏
) (3) 

𝑎1 , 𝑏1 , 𝑎2  and 𝑏2  are expressed in (4), (5), (6) and (7) 
respectively with Γ a coefficient expressed in (8).  The rotary 

inertia to mass ratio 𝐽𝑡  expressed as 𝐽𝑡 =
𝐼𝑡

𝑀𝑡
 depends on the 

proof mass shape. 

𝑎1 =
6 (6 𝐽𝑡 −  2 √Γ +  6 𝐷𝑇

2 + 𝐿𝑏
2 +  6 𝐷𝑇𝐿𝑏)

𝐿𝑏
3(3 𝐽𝑡 − √Γ +  3 𝐷𝑇

2 − 𝐿𝑏
2)

 (4) 

𝑏1 = −
6 (3 𝐽𝑡 − √Γ +  3 𝐷𝑇

2 + 𝐿𝑏
2 +  4 𝐷𝑇𝐿𝑏)

𝐿𝑏
2(3 𝐽𝑡 − √Γ +  3 𝐷𝑇

2 − 𝐿𝑏
2)

 (5) 

𝑎2 =
6 (6 𝐽𝑡 + 2 √Γ +  6 𝐷𝑇

2 + 𝐿𝑏
2 +  6 𝐷𝑇𝐿𝑏)

𝐿𝑏
3(3 𝐽𝑡 + √Γ +  3 𝐷𝑇

2 − 𝐿𝑏
2)

 (6) 

𝑏2 = −
6 (3 𝐽𝑡 + √Γ +  3 𝐷𝑇

2 + 𝐿𝑏
2 +  4 𝐷𝑇𝐿𝑏)

𝐿𝑏
2(3 𝐽𝑡 + √Γ +  3 𝐷𝑇

2 − 𝐿𝑏
2)

 (7) 

Γ = 9 𝐷𝑇
4 +  18 𝐷𝑇

3𝐿𝑏 +  15 𝐷𝑇
2𝐿𝑏

2 +  18 𝐷𝑇
2𝐽𝑡 +  6 𝐷𝑇𝐿𝑏

3

+  18 𝐷𝑇𝐿𝑏𝐽𝑡 + 𝐿𝑏
4 +  3 𝐿𝑏

2 𝐽𝑡 +  9 𝐽𝑡
2 

(8) 

A representation of 𝑎𝑖  and 𝑏𝑖  is provided in Fig. 2 for a 
cantilever beam with a regular proof mass. Equations (2), (3) 
and Fig. 2 show that the longitudinal distribution of strain only 
depends on the coefficients 𝑎𝑖 and 𝑏𝑖.   

 
Fig. 2: Mode shapes and strain distributions  for 

conventional proof mass. 

Although Fig. 2 shows a conventional proof mass, the 
model is valid for any form of proof mass, including L-shaped 
one in Fig. 1.b., since the proof mass is rigid relative to the 
beam and more than twice as heavy as it.  

Considering the model, the alternative electromechanical 

coupling coefficient 𝑘𝑒𝑖
2  (with 𝑘𝑒

2 = 𝑘²/(1 − 𝑘²)) of the two 
first bending modes 𝑖 is expressed by equation (9) when the 
piezoelectric patches are fully covered with electrodes. 𝑘𝑒31

2  is 
called the expedient coupling coefficient of the piezoelectric 
material according to the 31-mode (𝑘𝑒31

2 = 𝑘31
2 /(1 − 𝑘31

2 ). 

𝑘𝑒𝑖
2 = 𝑘𝑒31

2 ℛ𝐿𝑖ℛ𝑇  (9) 

ℛ𝐿𝑖  and ℛ𝑇  are length and thickness factors 
respectively.  ℛ𝑇  is related to the stress distribution in the 
thickness of the beam and is expressed in (10) .  𝑌𝑠  is the 
Young modulus of the substrate, 𝑐11  is the linear elastic 
coefficient of the piezoelectric material according to the plane 
stress assumption. ℛ𝑇 does not depend on the bending mode. 

ℛ𝑇 =  
(
ℎ𝑝
ℎ𝑠
)
3

+ 2(
ℎ𝑝
ℎ𝑠
)
2

+ (
ℎ𝑝
ℎ𝑠
)

1
6
(
Ys
𝑐11

) +
4 + 𝑘𝑒31

2

3
(
ℎ𝑝
ℎ𝑠
)
3

+ 2(
ℎ𝑝
ℎ𝑠
)
2

+ (
ℎ𝑝
ℎ𝑠
)

 (10) 

As expressed in equation (11), ℛ𝐿𝑖  only depends on the 
ratio 𝑏𝑖 and  𝑎𝑖 .  

ℛ𝐿𝑖 =  
(
𝑏𝑖
𝑎𝑖
)
2

+ (
𝑏𝑖
𝑎𝑖
) +

1
4

 (
𝑏𝑖
𝑎𝑖
)
2

+ (
𝑏𝑖
𝑎𝑖
) +

1
3

 (11) 

In order to maximize the global coupling coefficient 𝑘2 of 

a piezoelectric cantilever, the electrodes must be placed on the 

piezoelectric patches in the region where the elastic energy is 

maximized and uniformly distributed [6]. In other words, the 

electrodes should be located along the length where the strain 

distribution 𝜙′′(𝑥) is maximized and with limited variation. 

For this reason, the coefficients 𝑎𝑖 and 𝑏𝑖 need to be evaluated 

with respect to the proof mass configuration. As the strain 

distribution and the resonant frequencies depend on the 

position of the proof mass (i.e. the value of 𝐷𝑡), the influence 

of 𝐷𝑡  on the resonant frequencies, 𝑎𝑖  and 𝑏𝑖  will be further 

discussed in the next section. 

III. ANALYSIS 

We consider the case of study of a cantilever made of steel 

and PZT NCE51 from Noliac company. The geometric 

parameters are given in Table 1. Fig. 3 represents the short-

circuit (i.e. patches fully covered with electrodes connected 

to the ground) resonant frequencies calculated with 

expressions from [5] for the two first bending modes as a 

function of 𝐷𝑡 . 

Table 1: Geometrical parameters considered for the study 

Beam length 𝐿𝑏 60 mm 

Substrate thickness ℎ𝑠 0.4 mm 

Patches thickness ℎ𝑝 0.3 mm 

Beam and proof mass width 𝐵 5 mm 

Mass of the proof mass 𝑀𝑡 0.06 kg 

Rotary inertia 2.5×10-5 kg.m2 

 
Fig. 3: Short-circuit resonant frequencies from the model 

The two resonant frequencies get closer when 𝐷𝑡  is around 
-0.5𝐿𝑏 (i.e., the center of gravity of the proof mass is around 
the middle of the beam). The exact value of 𝐷𝑡/𝐿𝑏  for which 
the two resonant frequencies are closest actually depends on 
many parameters such as 𝐼𝑡 and 𝑀𝑡, as discussed in [1], but, 
according to calculations made with many parameter sets, this 
value is never very far from the range [-0.6:-0.4].  

According to equations (4) to (8), the longitudinal 
distribution of strain only depends on 𝐷𝑡 , 𝐿𝑏  and 𝐽𝑡 . Fig. 4 
shows the strain distribution 𝜙′′(𝑥) deduced from equations 
(4) to (8) and (3) and normalized by its maximal value 
(𝜙′′(𝑥)/max [𝜙′′(𝑥)] ) for 3 values of 𝐷𝑡  and the two first 
bending modes. 

Fig. 4 reveals that the longitudinal distribution of strain 
depends on the value of 𝐷𝑡 . Considering the design of 
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piezoelectric cantilevers, the piezoelectric patches have to be 
placed at the location where 𝜙′′(𝑥) is maximal.  

a. b. c. 

Fig. 4: Strain distribution for a. 𝐷𝑡 = 0, b. 𝐷𝑡 = −0.35𝐿𝑏 
and c. 𝐷𝑡 = −𝐿𝑏  

As 𝜙′′(𝑥)  is an affine function, the location where the 
strain is maximized correspond to the longest location of the 
beam where 𝜙′′(𝑥)  keeps the same sign (positive or 
negative). While the strain homogenization should be 
analyzed for an accurate electrode placement [6], the location 
of maximum strain should preferred for placing the 
piezoelectric patches. This location can be determined by 
finding the coordinate 𝑥, noted 𝑥0𝑖 , that nullifies 𝜙𝑖

′′(𝑥). If 
𝑥0𝑖/𝐿𝑏 > 0.5 , the piezoelectric patches have to be placed 
close to the clamped end. If 𝑥0𝑖/𝐿𝑏 < 0.5, the piezoelectric 
patches have to be placed close to the tip end of the beam. 

From equation (3), the value of 𝑥0𝑖/𝐿𝑏 is expressed as a 
function of 𝑎𝑖 and 𝑏𝑖 in equation (12). 

𝑥0𝑖
𝐿𝑏

=
𝑏𝑖 + 𝑎𝑖
𝑎𝑖

 (12) 

The next figure represents 𝑥0𝑖/𝐿𝑏 as function of the value 
of 𝐷𝑡/𝐿𝑏 for the geometrical parameters from Table 1.  

 
Fig. 5: Location of strain nodes 𝑥0𝑖/𝐿𝑏 (zero of 𝜙′′(𝑥)) as a 

function of the position of the proof mass gravity center   

We notice that if 𝐷𝑡 > −0.5𝐿𝑏, 𝑥01/𝐿𝑏 is greater than 0.5 
for the first mode. The piezoelectric patches should be placed 
close to the clamped end. On the opposite, 𝑥01/𝐿𝑏  is lower 
than 0.5 if 𝐷𝑡 < −0.5𝐿𝑏. In this case, the piezoelectric patches 
have to be placed close to the tip end.  

The second mode follows the reverse rule of the first 
mode: 𝑥02/𝐿𝑏  is lower than 0.5 if 𝐷𝑡 > −0.5𝐿𝑏  and the 
piezoelectric patches must be closed to tip end. the 
piezoelectric patches have to be close to the clamped end if 
𝐷𝑡 < −0.5𝐿𝑏.  

Finally, the strain distribution does not nullify in the beam 
when we have 𝑥0𝑖/𝐿𝑏 > 1 and 𝑥0𝑖/𝐿𝑏 < 0. It is interesting to 
notice that the above guidelines deduced from Fig. 5 are 
verified with the cases represented in Fig. 4. The next section 
concerns the experimental validation with the design of a 
piezoelectric cantilever with two close resonant frequencies.   

IV. EXPERIMENTAL VALIDATION 

A. Validation 

A PZT cantilever has been designed with a L-shaped proof 
mass. As represented in Fig. 6.a, 4 piezoelectric are glued at 
each side of the beam to control the configuration of the 
connected electrodes. The piezoelectric patches are connected 
in pairs, in parallel, creating 4 distinct electrodes whose 
voltage is measured relative to ground and that can be 
connected in parallel. The parameters 𝐿𝑏, 𝐵, ℎ𝑝 and ℎ𝑠 of the 

prototype are the ones of Table 1. The proof mass is made of 
steel and an aluminum piece is used to raise the mass relative 
to the beam. Note that this aluminum piece has been neglected 
in the model. 

a. 

b.  
  

c.  

Fig. 6: a. Representation of the prototype, b. mode shape of 
the first mode from FEM, c. of the second mode 

Fig. 6.b. and c. represents the mode shapes from 2D 
Comsol simulations (FEM). The normalized strain from the 
model is compared to FEM for the two first bending modes 
when the electrodes are short-circuited in Fig. 7. It reveals the 
good match between the proposed model and FEM. 

  
Fig. 7: Normalized strain in the proposed configuration 
deduced from the model and 2D Comsol simulations 

Fig. 8 shows a picture of the prototype. An impedance 

analysis has been performed on the prototype when all the 4 

electrodes connected in parallel to compare the experimental 

resonant frequencies and electromechanical coupling 

coefficients 𝑘²with the model and FEM simulations. Fig. 9 

represents the measured admittance and the fitted model for 

the two first resonant frequencies of the prototype.  

a  b.  
Fig. 9: Measured admittance and fitted model when all the 

electrodes are connected. a. First mode, b. second mode 

Steel

Electrode 2

Electrode 1 Electrode 3
Electrode 4Ground
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Fig. 8: Picture of the prototype 



The value of the experimental short circuit resonant 

frequencies and the associated 𝑘² are compared to the model 

and FEM in Table 2. This table shows that the proposed 

model as well as the FEM allow the accurate prediction of the 

frequency ratio and 𝑘² . The difference in the resonant 

frequencies’ values is explained by the aluminium piece (Fig. 

6) that is not considered in the model, and from the spacings 

between the patches in FEM. Since all the electrodes are 

connected and the strain changes sign along the beam for the 

second mode compared to the first mode (Fig. 7), 𝑘² is lower 

for the second mode than for the first mode in Table 2. 
 

Table 2: Results from the model, FEM and measurements 

when the 4 electrodes are connected in parallel  

 Model FEM Measurement 

First resonant frequency 𝑓1 45.3 Hz 40.5 Hz 35.3 Hz 
Second resonant frequency 𝑓2 64.0 Hz 61.6 Hz 53.2 Hz 

Frequency ratio 𝑓2/𝑓1 1.42 1.52 1.51 

First mode 𝑘²  8.8 % 8.5 % 8.6 % 
Second mode 𝑘²  3.7 % 3.4 % 4.8 % 

B. Discussion on electrode placement 

Impedance analyses were performed on the prototype to 
determine 𝑘² when the electrodes 1 & 2 as well as electrodes 
3 & 4 are connected. The values are provided in Table 3. 

Table 3: Coefficient 𝑘² for electrodes configurations 

 Electrodes 1 & 2 Electrodes 3 & 4 

First mode 𝑘² 9.4 % 0.3 % 

Second mode 𝑘² ≈ 0 % 8.1 % 

Table 3 reveals the importance of the electrode 
configuration. As 𝐷𝑡  is greater to −0.5𝐿𝑏  (𝐷𝑡 ≈ −0.4𝐿𝑏), the 
electrodes close to the clamping end have to be connected for 
the first mode and close to the tip end for the second mode. 
Despite the absence of strain nodes at the first mode, 𝑘² is 
greater with the connection of electrodes 1 & 2 than of all the 
electrodes. This is due to the better homogeneity of the strain 
at the location where the electrodes are connected for the 
electrodes 1 & 2 configuration [6]. For the second mode, 𝑘² is 
multiplied by almost 1.7 when going from the all electrodes 
configuration to the electrodes 3 & 4 configuration. 

The extracted mean power on resistive loads ( 𝑃 =
𝑉𝑟𝑚
2 /𝑅𝑙𝑜𝑎𝑑) was measured under a sinusoidal excitation at 0.1 

m/s² amplitude with 20 resistances and 48 frequencies. Fig. 10 
depicts the maximum extracted powers obtained at optimal 
resistive loads. For this level of vibration amplitude, the 
mechanical quality factor 𝑄𝑚 of the prototype is estimated at 
about 40. As 𝑘𝑒

2𝑄𝑚 is greater than 2 for the two modes when 
all the electrodes are connected, the maximal theoretical 
power from the harvester is reached at the resonance for the 
optimal resistances (Fig. 10) [5]. 

Therefore, increasing the coupling coefficient by mean of 

electrodes configuration does not lead to an increase of 

power. As explained in [7], the power is slightly higher 

around the first mode when all the electrodes are connected 

than when only 1 & 2 are connected. This is due to the 

interaction between the two bending modes, called bimodal 

resonance in [7], when all the electrodes are connected. 

Nevertheless, thanks to the increase of 𝑘2 and the resistive 

electrical tuning, the frequency bandwidth increases when the 

electrodes 1 & 2 are connected, for the first mode (from 2.5 

Hz to 3 Hz) and when the electrodes 3 & 4 are connected, for 

the second mode (from 2.5 Hz to 3.5 Hz). Finally, we 

developed a harvester with two close resonant frequencies 

and having a broadband behaviour on each mode by 

connecting the right electrodes.  

CONCLUSION 

As the electrode configuration is critical for the design of 
piezoelectric cantilever with proof mass, we propose an 
analytical model to analyze their strain distribution, including 
ones with L-shaped proof mass. The latter allows to bring 
closer the resonant frequencies of the two first bending modes. 
The model is validated by FEM an experiment. The fabricated 
prototype exhibits resonant frequencies of 35.3 Hz and 53.2 
Hz (ratio of 1.51) and the coupling coefficient 𝑘2 is up to 9.3 
% for the first mode and to 8.1 % for the second mode. These 
couplings allow to reach frequency bandwidths of 3 Hz (8.4 
%) and 3.5 Hz (6.5 %) respectively. Future works involve the 
modelling of the electrode configuration for accurate 
prediction of their placement and the design of an electrical 
interface able to dynamically select the electrodes.  
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Fig. 10: Extracted power for optimal resistive loads. The 

frequency bandwidths are given at half of maximal power. 
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