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Practical consensus tracking of homogeneous
sampled-data multi-agent systems

Florence Josse, Emmanuel Bernuau, Emmanuel Moulay, Patrick Coirault, Qing Hui and Josh Allen

Abstract— The aim of this article is to study the robustness
of homogeneous sampled-data multi-agent systems including a
leader whose dynamic evolution is independent of its followers.
We explore the effects caused simultaneously by the sampling
and the acceleration of the leader on the system, and show
that practical consensus is achieved in this case. The results
are illustrated in simulations.

I. INTRODUCTION

The multi-agent consensus control has been a wide field of
study in these two last decades [1], [2], [3]. A lot of articles
focus on sampled-data multi-agents systems (MAS) which
involve wireless communications, see for instance [4], [5],
[6] and the references therein. Various frameworks have been
considered in order to study consensus of MAS: considering
centralized [7] or decentralized [8], [9] approach, fixed or
switching topology [10], [11], [12], including communica-
tion time-delays [13], using synchronous [1], [14] or asyn-
chronous sampling [15], [11], [16], dealing with finite-time
consensus [17], [18]. With linear control laws, consensus of
sampled-data MAS with synchronous sampling is ensured
within a limited framework [10]: indeed, consensus is lost
when a sampling time limit, called the Schur threshold, is
reached. For more details on the stability of systems with
aperiodic sampling and the Schur property, readers may refer
to [6]. In order to overcome this difficulty, it is possible to
use nonlinear homogeneous systems [19]. Homogeneity [20]
is a powerful tool which allows to maintain the Lyapunov
stability of systems with sampled-data inputs even with a
high sampling period [21], [22]. The main drawback of such
a technique is that we lose asymptotic stability and we arrive
at practical stability instead. A previous study in [23] showed
that practical consensus is achieved for a homogeneous
sampled-data MAS with a negative homogeneity degree in a
synchronous sampling framework. This study is formulated
as an application of the theoretical and more general case
originated from [21], which encompasses the broader field
of control networks. According to [21], it turns out that,
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for positive degree, we can obtain local asymptotic stability;
however, in practice, the convergence zone is too small to
be useful and consequently are not of practical interest.
In order to pursue the work made in [21], the results in
[24] deal with the robustness of homogeneous sampled-
data systems on which an external disturbance is applied.
This study reveals that the external disturbance and the
perturbation due to sampling affect the system separately,
and their combined influence does not change the intrinsic
behavior of the system, in contrast to the results obtained
in [21]. Indeed, practical convergence is maintained, while
the difference lies in the size of the practical convergence
zone. This size depends on both the sampling rate and the
maximum intensity of the external disturbance. The aim of
this article is to apply the theoretical results obtained in [24]
to the case of MAS. We consider a homogeneous sampled-
data MAS with synchronous sampling constituted by agents
following a leader whose dynamics is independent of them.
This configuration fits exactly with the case studied in [24],
since the acceleration of the leader can be considered as an
external disturbance applied on the systems. We expect to
have a larger attractive set than in [23], since we take into
account the influence of both endogenous (due to sampling)
and exogenous perturbations (due to the leader).

This paper is organized as follows. After preliminaries
given in Section II, the main result is stated in Section III,
which consists of applying the main theorem of [24] to MAS.
Then some simulations illustrate the consensus tracking by
varying the sampling rate and the acceleration of the leader
in Section IV. Finally, a conclusion is reached in Section V.

II. PRELIMINARIES

Below let us introduce several notations used in the paper.

• R+ = {x ∈ R : x ≥ 0}, where R is the set of real
numbers.

• | · | denotes the absolute value in R, ||.||2 the Euclidean
norm on Rn, for all p ∈ N∗, ||.||p the p-norm on Rn
and ‖·‖∞ the infinity norm on Rn.

• For any closed set Z ⊂ Rn and any x ∈ Rn, we denote
dZ(x) = infz∈Z ‖x− z‖ the distance between x and
the closet set Z.

• If t 7→ x(t) is a curve in Rn, we will say that x(t)→ Z
as t→ +∞ when dZ(x(t))→ 0 as t→ +∞.

• We denote 1n = (1, 1, . . . , 1)T ∈ Rn and ∆n =
Span(1n) ⊂ Rn.

• r = (r1, r2, . . . , rn) is called a generalized weight if its
components are positive numbers.



• Diag(r1, . . . , rn) denotes the diagonal matrix of dimen-
sion n× n with kth diagonal entry rk.

• For x = (x1, . . . , xn)T and α > 0, we denote bxeα =
(|x1|αsign(x1), . . . , |xn|αsign(xn)).

• If A is a m × n matrix and B is a p × q matrix, then
the Kronecker product A⊗B is the mp× nq matrix

A⊗B =

 a11B · · · a1nB
...

. . .
...

an1B · · · annB

 .

• In denotes the unit matrix of size n.
• A continuous function α : R+ → R+ belongs to

the class K if α(0) = 0 and the function is strictly
increasing. A function α : R+ → R+ belongs to the
class K∞ if α ∈ K and it is unbounded.

• A continuous function β : R+ × R+ → R+ belongs to
the class KL if β(·, t) ∈ K∞ for each fixed t ∈ R+

and if for each fixed s ∈ R+ the function t 7→ β(s, t)
is decreasing to 0.

A. Graph theory

Let us recall some basic definitions in graph theory given
for instance in [1, Appendix B].

A directed graph GN = (VN , EN ) consists of a finite
nonempty set of nodes VN = {1, 2, . . . , N} and a set of
edges EN ⊂ VN × VN which is a set of ordered pairs of
nodes. An edge (i, j) ∈ EN in a directed graph GN denotes
that node i communicates with node j, but not conversely.
An undirected graph GN = (VN , EN ) also consists of a set of
nodes VN = {1, . . . , N} and a set of edges EN ⊂ VN × VN
which is an unordered set of pairs of nodes. An edge (i, j) ∈
EN in an undirected graph GN denotes that nodes i and j
obtain information from each other. An undirected path is a
sequence of edges in an undirected graph of the form (i1, i2),
(i2, i3),· · · . An undirected graph is connected if there is an
undirected path between every pair of distinct nodes.

The adjacency matrix of an undirected graph (VN , EN ) is
defined by AN = [aij ] ∈ RN×N where aij = aji = 1
if (i, j) ∈ EN and aij = 0 otherwise. The Laplacian
matrix associated with adjacency matrix AN is given as

LN = [`ij ] ∈ RN×N where `ii =
N∑

j=1,j 6=i
aij and `ij = −aij

if i 6= j.

B. Lyapunov stability

Consider the following system with continuous f

ẋ = f(x), x ∈ Rn. (1)

Let us recall the definitions of Lyapunov set stability given
for instance in [3] for compact sets.

Definition 1: A compact set C ⊂ Rn is:
• stable w.r.t. the system (1) if for any ε > 0 there exists
η > 0 such that for any maximal solution x(t) of (1),
if there exists t0 such that dC(x(t0)) < η, then x(t) is
defined for all t ≥ t0 and dC(x(t)) < ε for all t ≥ t0;

• locally attractive w.r.t. the system (1) if there exists ε >
0 such that for any maximal solution x(t) of (1), if there

exists t0 such that dC(x(t0)) < ε, then x(t) is defined
for all t ≥ t0 and dC(x(t))→ 0 when t→ +∞;

• globally attractive w.r.t. the system (1) if it is locally
attractive and if the previous point holds for any ε > 0;

• locally (resp. globally) asymptotically stable w.r.t. the
system (1) if it is stable and locally (resp. globally)
attractive w.r.t. the system (1);

• unstable if it is not stable.

C. Homogeneity

The most common notion of homogeneity is the weighted
homogeneity introduced in [25], based on a particular choice
of the coordinates, while the most generic one is the geomet-
ric homogeneity, which is coordinate free [19]. Here we place
ourselves within the framework of weighted homogeneity.

Definition 2: Let A : Rn → Rn an endomorphism such
that A is anti-Hurwitz. We say that a function V : Rn → R
is A-homogeneous of degree d if V (exp(As)x) = edsV (x),
for all s ∈ R and x ∈ Rn. A vector field f defined
on Rn is A-homogeneous of degree d if f(exp(As)x) =
eds exp(As)f(x), for all s ∈ R and x ∈ Rn.

Let us now give the definition of a homogeneous norm
detailed for instance in [21].

Definition 3: A A-homogeneous norm is a positive def-
inite and continuous mapping N : Rn → R that is A-
homogeneous of degree 1.

Lemma 1: [22] Let A be an anti-Hurwitz matrix and N
any A-homogeneous norm. Then there exist K∞ functions
α1 and α2 such that for all x ∈ Rn, we have α1(N (x)) 6
||x||2 6 α2(N (x)).

D. Technical result

Let us recall Theorem 1 of [24] used in the following for
proving the main result of the article.

We consider the following nonlinear system:

ẋ = f(x, u, d) (2)

where x ∈ Rn is the state, u ∈ Rm is the control, d :
t 7→ d(t) ∈ Rp indicates the perturbation, which is supposed
to be essentially bounded and f : Rn × Rm × Rp 7→ Rn
a continuous function. We consider that a continuous static
feedback law u(x) is known for which the following two
assumptions hold.

Assumption 1: The origin is a globally asymptotically sta-
ble equilibrium of the closed-loop system ẋ = f(x, u(x), 0).

Assumption 2: There exist a matrix A ∈ Rn×n and a
matrix A ∈ Rp×p such that A and A are anti-Hurwitz (that
is, −A and −A are Hurwitz) and a degree κ < 0 such that

f(eAsx, u(eAsz), eAsd) = eκseAsf(x, u(z), d)

for all x, z ∈ Rn, d ∈ Rp and all s ∈ R.
Remark that Assumption 2 is a homogeneity assumption,

meaning that the system must have a specific structure.
In practice, this assumption can be ensured by a careful
selection of the control law, as we will see later.

Since in networked communication, the state information
is only updated at discrete time instants, we consider a



sequence of sampling times (tk)k∈N such that t0 = 0, and a
maximum sampling period h > 0 and

0 < tk+1 − tk 6 h. (3)

Due to the sampling, the control is now uSD(t) = u(x(tk))
for all t ∈ [tk, tk+1) (sample and hold). The system can
therefore be rewritten under the following form

ẋ(t) = f(x(t), u(x(tk)), d(t)), t ∈ [tk, tk+1). (4)

Theorem 1 ([24]): Assume that the sampled system (4) is
such that the sampling times satisfy (3) and Assumptions 1
and 2 hold. Consider N as any A-homogeneous norm and
N as any A-homogeneous norm. Then there exist constants
c1 > 0, c2 > 0 such that the set{

x ∈ Rn : N (x) 6 c1h
− 1
κ + c2dmax

}
is globally asymptotically stable w.r.t. the system (2), where
dmax = ess sup

t∈R+

N (d(t)). Hence, there exists a class KL

function β such that

N (x) ≤ β (N (x0), t) + c1h
− 1
κ + c2dmax.

III. MAIN RESULT

We consider a MAS constituted by a leader and N fol-
lowers whose dynamics are described by a double integrator.
The goal of the followers is to reach the leader, but the
leader follows a trajectory independent of the followers.
We assume that the leader sends its position and velocity
data to at least one follower. We also assume that a special
control law for the followers is already known and proven
to achieve consensus tracking in continuous time. However,
due to networked communication, the control laws for the N
followers must be sampled. Hence, the agents send position
and velocity data to the neighbors at some discrete instants
according to a connected and static graph. Our aim is to show
that the sampled MAS achieves practical consensus tracking
under suitable assumptions. For this purpose, we shall apply
Theorem 1.

We denote the leader’s dynamics by{
q̇0 = p0
ṗ0 = u0

(5)

where q0 ∈ Rn indicates its position, p0 ∈ Rn its velocity,
and u0 ∈ Rn its acceleration, which is supposed to be
essentially bounded, that is ess sup

t∈R+

||u0(t)||2 < +∞. For

i ∈ {1, . . . , N}, we denote the ith agent’s dynamics by:{
q̇i = pi
ṗi = ui

(6)

where qi ∈ Rn indicates the position of agent i, pi ∈ Rn
its velocity, ui its control law, q = (qT1 , . . . , q

T
N )T , and p =

(pT1 , . . . , p
T
N )T .

Definition 4: We say that the MAS defined by (5) and
(6) achieves practical consensus tracking if there exists a
class KL function β and a constant C ≥ 0 such that
‖x‖ ≤ β(‖x0‖, t) + C, where x = ((q1 − q0)T , . . . , (qN −

q0)T , (p1 − p0)T , . . . , (pN − p0)T )T . If C = 0, we say that
stable consensus tracking is achieved.

Remark 1: Consensus tracking is usually formulated as
saying that, for any i ∈ {1, . . . , N}, qi − q0 → 0 and pi −
p0 → 0 when t → +∞. Definition 4 can be seen as a
strengthened version of this classical formulation where the
followers not only must asymptotically reach the leader but
also have to do it in a stable way. Indeed, it is necessary that
‖qi − q0‖ ≤ ‖x‖ → 0 when t→∞ but not sufficient.

We assume that the control laws ui in (6) are sampled
at times (tk)k∈N such that (3) holds. We aim to show that
consensus tracking is achieved for the MAS if the control
laws ui satisfy the following assumptions:

Assumption 3: For any i ∈ {1, . . . , N}, the control law ui
depends only on qi−qj and on pi−pj for all j ∈ {0, . . . , N}
such that agent i receives data from agent j.

Denoting q̃j = qj − q0 and p̃j = pj − p0, Assumption 3
implies in particular that each control law ui only depends
on q̃1, . . . , q̃N , p̃1, . . . , p̃N . Further on, we will denote q̃ =(
q̃T1 , . . . , q̃

T
N

)
∈ RnN and p̃ =

(
p̃T1 . . . , p̃

T
N

)T ∈ RnN and
we will write ui = ui(q̃, p̃) for the sake of clarity.

Assumption 4: In continuous time, if u0 = 0 then the
control laws ui with i ∈ {1, . . . , N} applied to (5) and (6)
achieve stable consensus tracking.

Assumption 5: There exists 1
2 < r < 1 such that for all

s ∈ R and all i ∈ {1, . . . , N}, we have

ui(e
sq̃, ersp̃) = e(2r−1)sui(q̃, p̃) (7)

Again, Assumption 5 is a homogeneity assumption.Let us
now state the main result of this paper.

Theorem 2: We consider the MAS system given by (5)
and (6). We assume that Assumptions 3–5 hold. We consider
that the control laws ui are sampled at times (tk)k∈N
verifying (3). Let us denote x =

(
q̃T , p̃T

)T
and

A =

(
1 0
0 r

)
⊗ InN , A = (2r − 1)InN .

A and A are both anti-Hurwitz. For all A-homogeneous
norm N and A-homogeneous norm N , there exist constants
c1 > 0 and c2 > 0 such that the compact set

K =
{
x ∈ R2nN : N (x) 6 c1h

− 1
κ + c2dmax

}
is globally asymptotically stable where h denotes the sam-
pling time and dmax = ess sup

t∈R+

N (u0 ⊗ 1N ).

Proof: We denote u(q̃, p̃) =
(u1(q̃, p̃)T , . . . , uN (q̃, p̃)T )T ∈ RnN . By subtracting
system (5) to the N systems (6), we have:{

˙̃q = p̃
˙̃p = u(q̃, p̃)− u0 ⊗ 1N

(8)

Let us denote f the right-hand side of (8):

f(x, u(x), d) =

(
p̃

u(x) + d

)
with d = −u0 ⊗ 1N ∈ RnN . u0 refers to the acceleration
of the leader, its influence on the system will be assimilated



to an external disturbance. In order to apply Theorem 1, we
need to check the two required assumptions.

First, we show that the origin is a globally asymptot-
ically stable equilibrium for the closed-loop system ẋ =
f(x, u(x), 0). This assertion is exactly equivalent to Assump-
tion 4.

Second, we check the homogeneity condition (Assump-
tion 2) for f . Denoting z = (ζT , ξT )T ∈ R2nN , we have:

f(eAsx, u(eAsz), eAsd)

=

(
ersp̃
u(esζ, ersξ)− e(2r−1)su0 ⊗ 1N

)
=

(
ersp̃
e(2r−1)su(ζ, ξ)− e(2r−1)su0 ⊗ 1N

)
by Assumption 5

= e(r−1)s
[(

es 0
0 ers

)
⊗ InN

](
p̃
u(ζ, ξ)− u0 ⊗ 1N

)
= e(r−1)s

[(
es 0
0 ers

)
⊗ InN

]
f(x, u(z), d).

This shows that Assumption 2 holds for f with κ = r−1 <
0.

According to Theorem 1, we can conclude that there exists
a class KL function β and constants c1, c2 > 0 such that

N (x) ≤ β(N (x0, t)) + c1h
− 1
κ + c2dmax.

Consequently, from Lemma 1, there exist class K∞ functions
α1, α2 such that

‖x‖ ≤ α2(β(α−11 (‖x0‖), t) + c1h
− 1
κ + c2dmax).

By usual operations on class K functions, we finally obtain
practical consensus tracking.

Let us stress that this result holds for any value of the
maximum allowable sampling time h > 0.

IV. SIMULATION RESULTS

In this section,we illustrate the performance of the pro-
posed homogeneous control law through numerical simula-
tions. We consider a second-order MAS in the form of (5)
and (6), constituted by 5 followers and a leader, evolving
on the plane, whose communication topology is given by
Figure 1.

0

leader

1 2 3 4

5

Fig. 1: Communication graph

We choose constant sampling periods tk = kh with h > 0,
k ∈ N. We consider the following linear controller:

ui = −

(
5∑
j=1

aij(qi − qj) + dii(qi − q0)

)

−

(
5∑
j=1

aij(pi − pj) + dii(pi − p0)

) (9)

with i ∈ {1, . . . , 5}, where dii = 1 if the follower i has
a direct link with the leader and dii = 0 otherwise. Note
that (9) allows the consensus of the MAS if and only if
the leader acceleration is equal to zero. Otherwise, there
is only practical consensus tracking. The Schur threshold
hschur corresponding to control law (9) is equal to 0.48s.
Let us now consider the homogeneous controllers from [26]
given by

ui = −

⌊(
5∑
j=1

aij(qi − qj) + dii(qi − q0)

)⌉α

−

⌊(
5∑
j=1

aij(pi − pj) + dii(pi − p0)

)⌉ 2α
1+α

(10)
with α = 0.5. We can check that Assumptions 2–5 are
satisfied with a degree of homogeneity equal to −0.5. We
denote qi = (qix, qiy) and pi = (pix, piy) the positions
and the velocities of the agents for all i ∈ {1, . . . , 5}. We
suppose that the initial positions of the agents (qix(0), qiy(0))
are contained in the square [−1, 1] × [−1, 1] and all the
initial velocities of the agents (pix(0), piy(0)) are equal to
zero. Initial conditions for the leader are q0 = (0, 0) and
p0 = (0, 0). Let us denote u0 = (u0x, u0y) the acceleration
of the leader. Figure 2 shows the reference acceleration u0(t)
of the leader. The corresponding velocities never exceed 1.5
in absolute value.
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Fig. 2: Linear accelerations u0 = (u0x , u0y ) of the leader

Case 1: the sampling time h is fixed to 0.01s. Figure 3a
shows trajectories of each agent on the plane when the
linear control law (9) is applied. The trajectories plotted in
Figure 3b are obtained via the homogeneous control law (10).
The coordinate units are given in meters. Figures 4a and 4b
represent the agents’ positions versus time for the reference
acceleration given in Figure 2 for both control laws. For the
sampling time h = 0.01s, the effects of the discretization of
the control are negligible. The practical consensus tracking
is reached for both control laws. Only the perturbations due
to the leader’s accelerations impact the consensus tracking.
Homogeneous control gives better results than linear control,
in the sense that the trajectories of the agents are closer to
the leader one.
Case 2: we consider now a sampling time h = 0.45s closer
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(b) Homogeneous control law (10)

Fig. 3: Trajectories of leader and agents for h = 0.01s
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Fig. 4: Positions of leader and agents for h = 0.01s

to hschur = 0.48s to highlight the effects of the discretiza-
tion the control laws. As expected, the error between the
trajectories of the agents and the leader increases as the
sampling period increases. This error remains bounded in

accordance with Theorem 2 when the homogeneous control
law is applied. For the linear case, the system leans toward
instability as h approaches hschur, see Figures 5a, 5b, 6a,
and 6b.
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Fig. 5: Trajectories of leader and agents for h = 0.45s

Case 3: the sampling period h = 0.6s is chosen greater than
hschur = 0.48s. In Figures 7a and 7b, the homogeneous
control law is applied. It can be noted that the practical
consensus tracking is achieved, although the tracking is less
precise. The differences between the trajectories of the agents
and the leader remain bounded whereas with the linear
control law, the closed-loop system becomes unstable.

V. CONCLUSION

This article dealt with the consensus tracking of homoge-
neous sampled-data multi-agent systems. By using theoreti-
cal results dedicated to homogeneous sampled data systems,
we proved a practical stability theorem for homogeneous
sampled data multi-agent systems. Homogeneity ensures
stability and convergence in the vicinity of the origin even
for large sampling periods. The main result was applied to
a second-order multi-agent system to show its effectiveness.
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