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Abstract 

In order to scavenge the energy of ambient vibrations, bistable vibration energy harvesters constitute a promising solution due 
to their large frequency bandwidth. Because of their complex dynamics, simple models that easily explain and predict the 
behavior of such harvesters are missing from the literature. To tackle this issue, this paper derives simple analytical closed-
form models of the characteristics of bistable energy harvesters (e.g., power-frequency response, displacement response, cut-
off frequency of the interwell motion) by mean of truncated harmonic balance methods. Measurements on a bistable 
piezoelectric energy harvester illustrate that the proposed analytical models allow the prediction of the mechanical 
displacement and harvested power, with a relative error below 10%.  From these models, the influences of various parameters 
such as the inertial mass, the acceleration amplitude, the electromechanical coupling, and the resistive load, are derived, 
analyzed and discussed. The proposed models and analysis give an intuitive understanding of the dynamics of bistable vibration 
energy harvesters, and can be exploited for their design and optimization. 

Keywords: Energy harvesting, Nonlinear dynamics, Harmonic balance, Analytical model, Bi-stability, Vibrations.

1. Introduction 

Energy harvesting has been widely investigated in order to 
design autonomous communicating electronic systems that 
can be powered by the energy present in their surroundings. 
This energy can be available under many different forms: solar 
radiations [1], thermal gradients [2], mechanical vibrations 
[3], electromagnetic waves [4], … The present study focuses 
on vibration energy harvesters (VEH).  

During the last decades, several types of VEH have been 
investigated by the research community [5]. Linear VEH 
made of a linear oscillator and an electromechanical 
transducer (e.g., a piezoelectric material or a moving magnet 
in a coil) show interesting performances when the vibration 
frequency matches the resonant frequency of the linear 
oscillator. However, a slight mismatch of the vibration 
frequency with the resonant frequency of the oscillator 
drastically decreases the harvested power [6]. This constitutes 
a major issue in many environments, where the vibration 
spectrum might vary with time. Furthermore, other factors 
such as aging and temperature variations can also induce such 

mismatch, which considerably hinders the long-term 
performances of linear VEH [7]. In order to increase the 
frequency bandwidth of VEH, part of the research community 
focused on the study and design of nonlinear oscillators, and 
more particularly on bistable VEH [8]. While bistable VEH 
might exhibit relatively large frequency bandwidths [9], the 
understanding of their complex dynamics is still thoroughly 
studied as a topical issue [10-12]. Indeed, unlike linear VEH 
whose model allows to analytically explore their dynamics 
and develop physical intuition, nonlinear VEH remain, in 
most cases, studied with numerical simulations which might 
hinder physical insights. Therefore, simple analytical models 
providing meaningful explanations of the behavior of bistable 
VEH are lacking in the literature. The aim of this paper is to 
derive simplified closed-form expressions that accurately 
model the behavior of bistable VEH, and to exploit these 
expressions to study the impacts and influence of the 
parameters of bistable VEH on their dynamics.  

As illustrated in Fig.1, the study of bistable VEH started 
around 2008 with the works of Shahruz [13] and McInnes et 
al. [14]. In their seminal article, Gammaitonni’s group studied 
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numerically and experimentally a bistable energy harvester 
under random vibrations [15, 16]. In the next years, many 
numerical and experimental studies of bistable VEH 
flourished in the literature [17-19]. For instance, Erturk et al. 
studied (numerically and experimentally) the broadband 
behavior of a piezomagnetoelectric bistable VEH under 
harmonic excitations [17]. Two years later, Erturk and Inman 
numerically and experimentally studied the high-energy orbits 
of bistable VEH, proving that the bistable VEH can generate 
an order of magnitude larger harvested power compared to 
linear VEH, at several vibration frequencies [18].  

While the vast majority of bistable VEH analysis (including 
the aforementioned ones [13-19]) were purely numerical and 
experimental, Stanton et al. proposed to apply analytical 
methods to predict the behavior of bistable VEH [20], as 
depicted in Fig.1. By mean of the harmonic balance, they 
predicted key features of bistable VEH, and proved the 
existence of an optimal impedance load and electromechanical 
coupling in order to maximize the harvested power. 
Thereafter, other analytical approaches such as the multiple 
scales method have been applied to study the influence of the 
electromechanical coupling, load, and potential function on 
the VEH characteristics [21]. Recently, Liu et al. [22] 
followed by Huguet et al. [23] semi-analytically studied (with 
the harmonic balance) the influences of the stiffness, mass, 
coupling, load resistance, and buckling level on the power-
frequency response of bistable VEH. Yet, all the 
aforementioned analyses [20-23], while analytical, do not 
allow to derive the closed-form expressions of the 
characteristics of the bistable VEH (e.g., its power-frequency 
response, or its cut-off frequency) as a function of its 
parameters.  

In order to understand the influences of the bistable VEH 
parameters on its characteristics, the present paper derives 
new closed-form models of the two types of forced response 
than can be obtained with bistable VEH: interwell and 
intrawell motions. From these models, closed-form 
expressions of the displacement and power in interwell and 
intrawell motions, as well as the cut-off frequency of the 
interwell motion are obtained. As illustrated in Fig.1 and 
Table 1, the proposed expressions constitute the first step 
toward a simple closed-form description of bistable VEH 
dynamics. These expressions allow to develop an intuitive 
understanding of the influences of the bistable VEH 
parameters, just as it has already been done for linear VEH 
[24] and monostable nonlinear VEH [25].  

The proposed study is decomposed as follows: the second 
section establishes the analytical model of the bistable energy 
harvester, based on the study of its intrawell and interwell 
motions. The equations governing the displacement 
amplitude, the harvested power, the interwell cut-off 

frequency, and the relations between electrically induced 
damping and resistive load are derived. The third section 
introduces the numerical and experimental validation of the 
analytical models, by mean of a piezoelectric VEH prototype. 
The fourth section exploits the proposed analytical models to 
study how each parameter of the harvester (e.g., the inertial 
mass, the electromechanical coupling, or the quality factor of 
the resonator) impacts its displacement amplitude, cut-off 
frequency, and power-frequency response. 

 
Figure 1. Brief history of the development of models for bistable 

VEH: from numerical analysis to closed-form models. 

Table 1. Contribution of this article compared to previous literature 
on analysis and modeling of bistable VEH.  

 
References 

[26] [22] [23] [27] This 

Paper 

Year ‘14 ‘17 ‘19 ‘22 ‘22 

 
 

Type  
of 

behaviors 

Harmonic ✓ ✓ ✓ ✓ ✓ 

Sub-
harmonic 

✗ ✗ ✓ ✓ ✗ 

Chaos ✗ ✗ ✗ ✓ ✗ 

 

 

Method of 
study 

 

Exp. ✗ ✓ ✓ ✗ ✓ 

Num. ✓ ✓ ✓ ✓ ✓ 

Analytical ✗ ✓ ✓ ✗ ✓ 

Analytical + 
closed-form 
expressions 

✗ ✗ ✗ ✗ ✓ 

Closed-form model of the 
displacement 

✗ ✗ ✗ ✗ ✓ 

Closed-form model of the 
harvested power 

✗ ✗ ✗ ✗ ✓ 

2008 2022

Numerical analysis
Analytical model
Closed-form analytical model

Experimental results

2012 2016 2020

[13][14][15] [16][17][18]

First investigations and 
analyses of bistable VEH

[19] [20][21][22] [23]

This paper: 
closed-form
models for 
bistable VEH

Analytical
models for 

bistable VEH

[24]
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2. Electromechanical model of bistable VEH 

This section reminds the electromechanical model of bistable 
VEH, and summarizes the assumptions made in the present 
paper. Thereafter, analytical expressions of the displacement 
and power in intrawell and interwell motions are derived. 
Finally, the relation between electrically-induced damping 
and resistive load is discussed. 

2.1 Electromechanical harvester dynamics 

A bistable VEH is made of a nonlinear bistable mechanical 
resonator. Part of the mechanical energy of the resonator is 
converted in electrical energy by mean of an 
electromechanical transducer. While the structure of the 
mechanical resonator, the origin of the bistable behavior (e.g, 
with magnets or with buckled beams), and the choice of the 
electromechanical transducer (e.g., piezoelectric or 
electromagnetic transducer) have been widely investigated in 
the literature, the equation modeling the motion of the 
nonlinear resonator remains, in most cases, identical. Using 
the normalization proposed in [22], the equation expressing 
the motion of the mass of any symmetrical bistable resonator 
is given by (1), 

 𝛾(𝑡) = 𝑥̈ +
𝜔!"

2 +
𝑥"

𝑥!"
− 1. 	𝑥	 +

𝜔!
𝑄 𝑥̇ + 𝑓(𝑥, 𝑥̇, 𝑣, 𝑖)	  (1) 

with 𝑥 being the displacement of the mass 𝑀. 𝜔! and 𝑄 
correspond to the natural angular frequency and mechanical 
quality factor of the equivalent linear harvester1, respectively. 
+𝑥! and −𝑥! correspond to the two stable positions of the 
mass.	𝑓	is a function that models the influence of the electrical 
interface on the mass motion, due to the electromechanical 
transduction. 𝛾 is the acceleration of the ambient vibration.  

Figure 2 shows the mass-spring-damper model equivalent to 
(1). Note that the stiffness 𝐾"# of the model shown in Fig.2 is 
nonlinear in order to take into account the cubic nonlinearity 
of (1). 

 

1 The equivalent linear harvester is obtained for small oscillations of the 

 
Figure 2. Lumped element model of a generic bistable energy 

harvester modeled by (1). 

The mechanical energy in the bistable resonator 𝐸#$%& can be 
obtained by integrating (1) times 𝑀 in the case of an unforced 
regime (𝛾 = 0) with no damping (ω!/𝑄 = 0) and no electrical 
influence (𝑓(𝑥, 𝑥̇, 𝑣, 𝑖) = 0). 

 
𝐸#$%& = 𝑀;<𝑥̈ +

𝜔!"

2 +
𝑥"

𝑥!"
− 1. 	𝑥= 𝑑𝑥 

𝐸#$%& =
𝑥̇"

2 𝑀 +
𝑀𝜔!"

4 𝑥" <
𝑥"

2𝑥!"
− 1= 	 

 (2) 

Figure 3.a shows the evolution of this mechanical energy as a 
function of the mass displacement 𝑥 and the mass speed 𝑥̇. The 
double-well potential is characteristic of a bistable resonator, 
with two stable positions (𝑥 = ±𝑥!) and one instable position 
(𝑥 = 0).  Figure 3.b shows the iso-energies lines of the 
bistable VEH in the phase space (𝑥, 𝑥̇).  

One possible limit-cycle of (1) is the oscillation of the mass 
around one of the two stable equilibria of the harvester. Such 
limit-cycle is denoted as intrawell motion in Fig. 3.b. Another 
possible limit-cycle of (1) is the oscillation of the mass around 
the two stable equilibria of the harvester. Such limit-cycle is 
denoted as interwell motion in Fig. 3.b.  

As illustrated in Fig. 3.b, intrawell motion usually results in a 
small-amplitude displacement that leads to poor harvesting 
performances. On the other hand, interwell motion usually 
results in relatively large amplitude displacement and 
harvested power. This limit-cycle is considered favorable, and 
many approaches have been developed in the literature in 
order to jump to this orbit from other, less favorable, orbits.  

 

bistable VEH around one of its stable position, 𝑥!. 

Inertial mass M

!! Electromechanical
transducer""#

!! = $%$
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Figure 3. a. Double-well potential and b. iso-energies in the phase-

space of a bistable resonator. 

2.2 Assumptions and limitations of the models 

In this paper, we will consider the following assumptions: 
i) The acceleration of the ambient vibration 𝛾 is mono-
harmonic and can be written 𝛾(𝑡) = 𝛾$ cos(𝜔𝑡 + 𝜓), with 𝛾$ 
its amplitude, 𝜔 its angular frequency and 𝜓 its phase. This 
assumption can be considered reasonable as long as most of 
the vibrational energy is concentrated around a single 
vibration frequency, which is the case in various applications 
[28, 29].   
ii) The impact of the electrical interface on the mass motion 
can be taken into account as a damper 𝜇% called electrical 
damper. This assumption is always true in the case of 
electromagnetic energy harvesters, and is reasonable for 
piezoelectric energy harvesters (PEH), as long as the 
electromechanical coupling of the harvester remains relatively 
weak (𝑘& < 0.2).  
iii) The mechanical displacement is considered to be 
sinusoidal, either around one of the two stable equilibria 
(intrawell motion) or around the two stable equilibria 
(interwell motion). This assumption is reasonable since the 
harmonics of the mechanical displacement in interwell motion 
remain relatively low [30]. Such assumption will be confirmed 
by the measured waveforms in section 3.2. 

Under the two first assumptions, (1) can be rewritten as (3), 

 𝛾# cos(𝜔𝑡 + 𝜓) = 𝑥̈ +
𝜔!"

2 +
𝑥"

𝑥!"
− 1. 	𝑥	 +

𝜔!(1 + 𝛽)
𝑄 𝑥̇	  (3) 

With 𝛽 = '!
'"

 being the ratio of the electrical damper 𝜇% on the 

mechanical damper 𝜇$. Except when specified otherwise, the 
examples given in this paper are taken with the set of 
parameters shown in Table 2.  
 
Table 2. Model parameters used in the numerical simulations. The 
VEH parameters are the same than the prototype used in the 
experimental validation (section 3). 

Variable Quantity (unit) Value 

𝑀 Inertial mass (g) 6.5 

𝑥! Stable position (mm) 0.8 

𝜔! Linear natural angular frequency (rad.s-1) 333 

𝑅 Resistive load (Ohm) 1000 

𝑄 Mechanical quality factor 80 

Note that the analyses derived in this paper, because of their 
simplicity, have some limitations: 

i) Because of the nature of the truncated harmonic balance 
method used in this paper, the proposed models do not allow 
to predict chaos and sub-harmonic behaviors.   
ii) The proposed models are valid if the bistable VEH is 
modeled by a Duffing equation. This is generally true as long 
as the buckling-level of the VEH remains relatively small. 
iii) The proposed models are valid in case of sinusoidal 
excitations. Therefore, such model can only be used in 
applications where the vibrations are mainly sinusoidal (e.g., 
to harvest energy from rails [28] or from motor engines [29]). 

As long as the aforementioned assumptions and limitations are 
taken into account, the proposed models allow to accurately 
predict the behavior of bistable VEH, as illustrated in section 
3 of the present paper.  

2.3 Intrawell motion 

As shown in Fig.3.b, intrawell motion can be modelled as a 
small-amplitude oscillation around one of the two equilibrium 
positions. In this case, the mass displacement can be expressed 
as (4), 

 𝑥 = ±𝑥! + 𝑥L	  (4) 

with 𝑥= ≪ 𝑥! being the small-amplitude oscillation of the 
mass. Combining (3) with (4) and removing the high-order 
terms yields (5). 

 𝛾# cos(𝜔𝑡 + 𝜓) = 𝑥L̈ + 𝑥L	𝜔!" 	+
𝜔!(1 + 𝛽)

𝑄 𝑥L̇	  (5) 

Displacement !
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For intrawell motion, (5) shows that the harvester behaves as 
a linear VEH whose natural angular frequency is 𝜔! and 
equivalent mechanical quality factor is 𝑄. From (5), the 
expression of the amplitude of the displacement can be given 
by: 

 
𝑥L# =

𝛾#

M(𝜔!" −𝜔")" + +𝜔!𝜔𝑄 (1 + 𝛽).
"
	

 (6) 

The harvested power can then be calculated from the power 
dissipated in the electrical damper 𝜇$: 

 𝑃'()*+ = 𝑥L̇
"
	𝜇$ =

1
2𝑄

𝜔"	𝛾#" 	𝛽	𝑀	𝜔!

(𝜔!" −𝜔")" + +𝜔!𝜔𝑄 (1 + 𝛽).
"	  (7) 

2.4 Displacement amplitude in interwell motion 

In order to approximate the trajectory of the bistable harvester 
in the phase-space (𝑥, 𝑥̇) in case of interwell motion, we study 
the iso-energies drawn in Fig.4.b2. Choosing the initial 
condition (𝑥$, 0), the initial mechanical energy in the mass is 

given by 𝐸$%() =
*+#$

,
𝑥$& @

-"$

&-#$
− 1B. Since the mechanical 

energy is conserved on any iso-energy orbit, the expression of 
the mass speed can be obtained from (2). 

 𝑥̇ =
𝑑𝑥
𝑑𝑡 =

𝜔!	𝑥#
𝑥!

M
1
2<
𝑥#"

2 −
𝑥,

2𝑥#"
+
𝑥"𝑥!"

𝑥#"
− 𝑥!"=	  (8) 

Isolating 𝑑𝑡 in (8) and integrating it on a period of vibration 
yields the duration of the period 𝑇 taken by the system to 
realize a single orbit. 

 
𝑇 = ; 𝑑𝑡

-

!
=

4	𝑥!
𝑥#𝜔!

;
𝑑𝑥

M12 Q
𝑥#"
2 − 𝑥,

2𝑥#"
+ 𝑥

"𝑥!"
𝑥#"

− 𝑥!"R

.!

!
	

 (9) 

Therefore, from (9), it is possible to obtain the expression of 
the relation between the angular frequency of the harvester 𝜔 
and the amplitude of the displacement 𝑥$. 

 𝜔 =
𝑥#𝜔!𝜋
2	𝑥!

⎣
⎢
⎢
⎢
⎢
⎡

;
𝑑𝑥

M12 Q
𝑥#"
2 − 𝑥,

2𝑥#"
+ 𝑥

"𝑥!"
𝑥#"

− 𝑥!"R

.!

!

⎦
⎥
⎥
⎥
⎥
⎤
/0

		   (10) 

 

2 By doing so, we assume that the trajectories followed by the bistable                    

harvester remain almost the same as when considering no damping and no 

The integral in (10) does not have any explicit solution, but 
can be solved numerically to obtain the relation between the 
angular frequency 𝜔 and the amplitude of the displacement 
𝑥$. Figure 4 shows that 𝑥$ increases with 𝜔 which agrees 
with the literature on the subject [31], and is in good 
agreement with the exact solution obtained by integrating (1) 
numerically (yellow and grey dashed lines in Fig.4). Note that 
the relation between the normalized amplitude of interwell 
motion and the normalized frequency is valid for any bistable 
energy harvester whose dynamics is described by (1). Indeed, 
both (10) and the numerical solution obtained by integrating 
(1) remain (almost) unchanged for any choice of the harvester 
parameters (e.g., for any acceleration amplitude 𝛾$ or any 
mechanical quality factor 𝑄, provided 𝑄 > 20 and 𝛾$ <
𝑥!𝜔!&). 

Another possibility to obtain a simple expression of the 
displacement amplitude of interwell motion is to assume that 
the displacement is sinusoidal 𝑥(𝑡) = 𝑥$	cos	(𝜔𝑡).  

Replacing this expression in (3) and applying the harmonic 
balance method to the first-order terms leads to (11). 

 

⎩
⎪
⎨

⎪
⎧−𝜔"𝑥# −

𝑥#𝜔!"

2 +
3𝜔"

8𝑥!"
𝑥#1 = 𝛾# cos(𝜓)	

𝜔!(1 + 𝛽)
𝑄

𝜔𝑥# = 𝛾# sin(𝜓)
	   (11) 

 
Figure 4. Normalized displacement amplitude 𝑥#/𝑥! of interwell 

motion of the bistable harvester as a function of the normalized 
frequency 𝜔/𝜔!. The results have been obtained with the iso-
energy method (10) (blue line) and with the harmonic balance 

method (red line). The numerical results have been obtained by 
solving (1), with 𝛾# = 10𝑚/𝑠" and 𝛽 = 0. 

 

excitation. This assumption is reasonable as long as 𝑄 > 20 and 𝛾" < 𝑥!𝜔!#. 
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Squaring and adding the two equations of (11) yields (12). 

 0 = +−1 −
𝜔!"

2𝜔" +
3𝑥#"

8𝑥!"
.
"

+ +
𝜔!(1 + 𝛽)

𝑄𝜔 .
"

− b
𝛾#
𝑥#𝜔"c

"
	 (12) 

The analytical expression of 𝑥$ can be obtained from (12), but 
its expression is cumbersome and does not yield further 
insights. However, a much simpler expression can be obtained 
by making a few assumptions. Considering the relatively large 
quality factor of most harvesters (𝑄𝜔 ≫ 𝜔!(1 + 𝛽)), and, 
because in interwell motion, the mass acceleration amplitude 
(𝑥$𝜔&) is usually much larger than the vibration acceleration 
(𝛾$), the two last terms of (12) are, in most cases, negligible 
compared to the first one.  

This mean that the displacement amplitude 𝑥$ can be 
estimated from a simplified equation given by (13). 

 0 = +−𝜔" −
𝜔!"

2 +
3𝜔"

8𝑥!"
𝑥#" .

"

	 (13) 

Solving (13) leads to an analytical expression of interwell 
motion displacement amplitude: 

 𝑥# =
2
√3

𝑥!M1 +
2𝜔"

ω!"
	 (14) 

As shown in Fig.4, this expression is also in good agreement 
with the semi-analytical results given by (10) and the solutions 
obtained by integrating (1) numerically (relative error < 15% 
for low 𝜔/𝜔! and < 5% for large 𝜔/𝜔!). An interesting 
insight that can be observed from (14) is that 𝑥$ does not 
depend, in first approximation, on the quality factor of the 
harvester nor on the acceleration amplitude. The numerical 
simulations in Fig.4 confirm that the displacement amplitude 
of the harvester in interwell motion does not depend much on 
𝑄 and 𝛾$. This constitutes a fundamental difference with the 
behavior of linear harvesters (or the behavior of the intrawell 
motion) whose displacement amplitude is proportional to the 
acceleration amplitude [24].  

Linear VEH exhibit a single resonant frequency that does not 
vary with the displacement amplitude, but the displacement 
amplitude of linear VEH (at resonance) can take any value 
depending on the acceleration amplitude. On the other hand, 
the interwell motion of bistable VEH corresponds to a 
resonance whose characteristics are slightly different from the 
resonance of linear VEH. The resonant frequency of bistable 
VEH can take multiple value, depending on the displacement 
amplitude. However, the interwell motion displacement 
amplitude of bistable VEH (for a given vibration frequency) 
can only take a single value and does not vary with the 
acceleration amplitude. 

2.5 Limits of existence of interwell motion 

As broadly described in the literature, there exists a cut-off 
angular frequency 𝜔( from where the interwell motion stops 
existing. As reported in [32] and in the appendix A of this 
paper, 𝜔( always occur with a phase lag of 90° between the 
displacement 𝑥(𝑡) and the input vibration 𝛾(𝑡). Replacing 
𝜓 = 90° in (11) leads to (15). 

 

⎩
⎪
⎨

⎪
⎧−𝜔%"𝑥# −

𝑥#𝜔!"

2 +
3𝜔%"

8𝑥!"
𝑥#1 = 0	

𝜔!(1 + 𝛽)
𝑄

𝜔%𝑥# = 𝛾#
	   (15) 

From (15) yields the expressions of the displacement 
amplitude 𝑥#|232", and the expression of 𝜔(. 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑥#|232" =

2
√3

𝑥!M1 +
2𝜔%"

ω!"
	

𝜔% =
𝜔!
2 fg−1 +M1 +

6𝑄"𝛾#"

𝜔!,𝑥!"(𝛽 + 1)"
h

	   (16) 

If 2𝜔(& ≫ 𝜔!&, (16) can be further simplified: 

 

⎩
⎪
⎨

⎪
⎧𝑥#|232" ≈

2√2
√3

𝑥!
𝜔%
𝜔!
	

𝜔% ≈
1
2
M √6𝑄𝛾#
𝑥!(𝛽 + 1)

	   (17) 

(16) and (17) reveal important information on intrawell 
motion of bistable VEH. (17) shows that the cut-off angular 
frequency does not depend much of the value of 𝜔!, meaning 
that there is no direct link between the resonant frequency of 
the intrawell motion and the cut-off frequency of interwell 
motion. The second equation of (16) proves that the quality 
factor of the harvester 𝑄 and the acceleration amplitude 𝛾$ 
share the same influence on the cut-off angular frequency of 
interwell motion. Indeed, a larger 𝑄 and/or 𝛾$ tend to increase 
𝜔(. On the other hand, a larger stable position 𝑥! tends to 
decrease 𝜔( while increasing the displacement amplitude 
𝑥#|232". This can be understood from Fig.3: a greater 𝑥! tends 
to increase the size of interwell orbits. However, the energy 
lost in the mechanical (and electrical) damper(s) tend to 
increase with the size of the orbit. The cut-off frequency of 
interwell motion decreases with a larger damping, which 
explains why a larger 𝑥! tends to decrease 𝜔(. Finally, a 
greater 𝛽 also tends to decrease 𝜔(. Indeed, a greater 𝛽 implies 
a larger electrical damping that can be seen as a reduction of 
the quality factor of the harvester. This last influence means 
that the value of the resistive load (or the choice of the 
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electrical interface) has a non-negligible impact on the 
interwell motion cut-off frequency.  

2.6 Harvested power in interwell motion 

The harvested power 𝑃)./0 is the power dissipated in the 
electrical damper. The expression of the harvested power is 
given by (18) (assuming that the displacement is sinusoidal). 

 𝑃&+*4 =
1
𝑇; 𝜇$	𝑥̇"	𝑑𝑡

-

!
=
𝑀	𝜔!	𝛽	𝜔"𝑥#"

2𝑄 		 (18) 

Combining (18) with (14), the expression of the harvested 
power in interwell motion can be estimated.  

 𝑃&+*4 =
2	𝑀	𝜔!	𝛽	𝜔"𝑥!"

3𝑄 +1 +
2𝜔"

ω!"
.		 (19) 

Figure 5 shows the evolution of the harvested power with three 
different acceleration amplitudes as a function of the vibration 
frequency. Figure 5 proves that the expression of the harvested 
power in interwell motion (19) is in good agreement with 
numerical simulations for the three values of the acceleration 
amplitude (forward frequency sweeps). When the interwell 
motion stops existing (e.g., for 𝜔/𝜔! ∈ [2.2,2.6]), the 
harvester operates in intrawell motion. In this case, the 
simulated harvested power is in good agreement with the 
expression of the harvested power in intrawell motion (7). 
Note that (16) predicts that the cut-off angular frequency of 
intrawell motion 𝜔( is equal to 1.16𝜔!, 1.38𝜔!and 
1.66𝜔!when the acceleration amplitude 𝛾$ is 7m.s-2, 10m.s-2, 
and 15m.s-2, respectively. These predictions are in good 
agreement (relative error below 5%) with the numerical 
simulation shown in Fig.5. 

 
Figure 5. Simulation of the harvested power for 𝛾# = 7𝑚. 𝑠/" 

(blue), 𝛾# = 10𝑚. 𝑠/" (red), 𝛾# = 15𝑚. 𝑠/" (yellow), and 
theoretical predictions for interwell motion (black dashed line) and 

intrawell motion (colored dashed lines). 

From (17) and (18), the expression of the harvested power at 
the cut-off frequency, 𝑃)./0|+1+%, can also be expressed. 

Since both 𝜔 and 𝑥$ reach their maximum value when 𝜔 =
𝜔( (because for higher 𝜔, the interwell motion stops existing), 
𝑃)./0|+1+% corresponds to the maximum harvested power (for 
a given electrical damping) as a function of the vibration 
frequency. 

 𝑃&+*4|232" =
𝑀	𝑄	𝛾#" 	𝛽

2	𝜔!	(𝛽 + 1)"
		 (20) 

𝑃)./0|+1+% is maximized when 𝛽 = 1, meaning that the 
electrical damping is equal to the mechanical damping. In this 
case, the harvested power is equal to the well-known power 
limit of any linear VEH 𝑃#2$ [7] [33]. 

 max(𝑃&+*4|232") =
5	7	8!# 	
9	2$	

= 𝑃:'#	 (21) 

(21) is in agreement with [24] that proves that the power limit 
of nonlinear energy harvester is the same than the power limit 
of the equivalent linear VEH (i.e., a linear VEH sharing the 
same mass 𝑀, the same 𝜔! and the same 𝑄 than the bistable 
VEH). Figure 6 illustrates that the damping ratio maximizing 
the power 𝑃&+*4|232" is 𝛽 = 1, and that, in this case, 
𝑃&+*4|232" = 𝑃:'#. Furthermore, Fig.6 shows that the 
bandwidth of the harvester can be increased by mean of a fine 
tuning of 𝛽 (e.g., with a tunable electrical interface that 
optimizes the electrical damping such as in [34] and [35]). 
Increasing 𝛽 allows to decrease 𝜔( and to maximize the 
harvested power for lower frequencies (because, for a given 
𝛽,  the power is maximized for 𝜔 = 𝜔(). On the other hand, 
decreasing 𝛽 allows to increase 𝜔( and to maximize the 
harvested power for higher frequencies.   

 

Figure 6. Power that can be obtained with a fine tuning of the 
damping ratio 𝛽, and optimal damping ratio 𝛽;<) maximizing the 

harvested power a function of the normalized frequency. The results 
have been obtained for three acceleration amplitudes: 𝛾# = 7𝑚. 𝑠/" 

(blue), 𝛾# = 10𝑚. 𝑠/" (red) and  𝛾# = 15𝑚. 𝑠/" (yellow). 
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2.7 Relationship between 𝛽 and interface resistance 𝑅 

The relation between the damping ratio 𝛽 and the electrical 
interface connected to the bistable energy harvester (e.g., a 
resistive load) largely depends on the type of bistable energy 
harvester and on the definition of 𝑓(𝑥, 𝑥̇, 𝑣, 𝑖) in (1). The 
following subsections derive the relations between 𝛽 and 𝑅 for 
two types of piezoelectric energy harvesters. Note that these 
analyses can easily be extended to electromagnetic VEH 
because of the duality of piezoelectric/electromagnetic energy 
harvesters [36]. 

a) PEH with linear influence of the voltage 

If the influence of the electrical interface on the harvester 
dynamics is linear, the equations modeling the 
electromechanical behavior of the harvester are given by (22). 
As a matter of example, this is the case of bistable PEH whose 
bistability is induced with repulsive magnets (Fig.7). 

 

⎩
⎨

⎧𝛾(𝑡) = 𝑥̈ +
𝜔!"

2 +
𝑥"

𝑥!"
− 1. 	𝑥	 +

𝜔!
𝑄
𝑥̇ +

𝛼𝑣<
𝑀

𝛼𝑥̇ = 𝐶<𝑣<̇ +
𝑣<
𝑅

	   (22) 

Where 𝛼 is the force factor,  𝑣3 is the voltage across the 
piezoelectric material, and 𝐶3 is the clamped capacitance of 
the piezoelectric element.  

 
Figure 7. Example of bistable PEH where the piezoelectric 

voltage acts linearly on the harvester dynamics. The 
piezoelectric material is fixed on a cantilever beam, and 

bistability is induced with two repulsive magnets. 

As shown in (22), the impact of the voltage on the VEH 
dynamics is linear: a force proportional to 𝑣3 is electrically 
induced. From the second equation of (22) in the frequency 
domain yields the expression of 𝑣3 given by (23). 

 𝑣< = 𝑥	
𝛼
𝐶<
+

𝑟"𝛺"

1 + 𝑟"𝛺" + 𝑗
𝑟𝛺

1 + 𝑟"𝛺".		
(23) 

Where 𝑟 = 𝑅	𝐶3	𝜔! is the normalized resistive load, and 𝛺 =
𝜔/𝜔! is the normalized frequency. The imaginary part of 𝑣< 
(in other words, the quadrature part of the piezoelectric 
voltage) is the one contributing to the electrical damping [7]. 
From the first equation of (22) and (23), the expression of 𝛽#2" 
can be found: 

 𝛽:'( =
𝛼"

𝜇#	𝐶<	𝜔
	

𝑟Ω
1 + 𝑟"𝛺" = 𝑘#" 	𝑄	

𝑟
1 + 𝑟"𝛺"	 (24) 

With 𝑘$& = 𝛼&/(𝐾𝐶3) the squared electromechanical 
coupling of the PEH. As shown in (24), a stronger 
electromechanical coupling leads to a larger electrical 
damping. The maximum value that can be taken by 𝛽#2" is 
given by (25). 

 Max(𝛽:'() =
𝑘#" 𝑄
2Ω  (25) 

Note that the normalized resistance maximizing 𝛽#2" is 𝑟 =
1/Ω (𝑅 = 1/(𝐶3𝜔)), which is the exact same result than with 
a linear PEH [24, 37]. 

b) PEH with nonlinear influence of the voltage 

 
Figure 8. Example of bistable PEH where the piezoelectric voltage 

acts nonlinearly on the harvester dynamics. The piezoelectric 
energy harvester is a buckled beam structure. The piezoelectric 

material is fixed between one of the buckled beam and the support. 

If the influence of the electrical interface on the VEH 
dynamics is nonlinear, the equations modeling the 
electromechanical behavior of the VEH are given by (26). As 
a matter of example, this is the case of a bistable PEH whose 
bistability is induced with buckled beams. As detailed in [23] 
and illustrated in Fig.8, the piezoelectric material is located on 
the side of the mechanical resonator. Note that the 
piezoelectric material could also be placed along the moving 
beams, as detailed in [38]. 

 

⎩
⎪
⎨

⎪
⎧𝛾(𝑡) = 𝑥̈ +

𝜔!"

2 +
𝑥"

𝑥!"
− 1. 	𝑥	 +

𝜔!
𝑄 𝑥̇ +

2𝛼	𝑥	𝑣<
𝑀	𝐿

2𝛼𝑥̇𝑥
𝐿 = 𝐶<𝑣<̇ +

𝑣<
𝑅

	   (26) 

In (26), 𝐿 represents the distance between the inertial mass and 
the frame [23]. The second equation of (26) is nonlinear, 
because of the term 2𝛼𝑥̇𝑥/𝐿. Contrarily to (22), the impact of 
the voltage on the bistable dynamics is nonlinear and is also 
proportional to 𝑥. In order to find the value of 𝛽, one can find 
the expression of the piezoelectric voltage by applying the 
harmonic balance to the first order terms of the second 
equation of (26).  
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⎩
⎪
⎨

⎪
⎧
𝑣<(𝑡) = 𝑎= cos(2𝜔𝑡) + 𝑏= sin(2𝜔𝑡)

𝑎= =
2𝛼
𝐿𝐶<

𝑥#"
𝑟"𝛺"

1 + 4𝑟"𝛺"

𝑏4 = −
𝛼
𝐿𝐶<

𝑥#"
𝑟𝛺

1 + 4𝑟"𝛺"

   (27) 

Note that the frequency of the voltage 𝑣3 is two times larger 
than the vibration frequency. Indeed, when the voltage reaches 
an extremum, the piezoelectric material reaches a maximum 
of compression, meaning that the period of the voltage is equal 
to half-period of the mass displacement.  Combining the first 
expression of (26) with (27) and with the first-harmonic 
expression of 𝑥 (𝑥(𝑡) = 𝑥$	cos	(𝜔𝑡)), then removing the 
high-order terms, yields the expression of the electrically-
induced force: 

 𝐹< =
2𝛼	𝑥	𝑣<
𝐿 ≈

2𝛼𝑥#
𝐿 +

𝑎4 cos(𝜔𝑡)
2 +

𝑏4	sin(𝜔𝑡)
2 .	   (28) 

The out-of-phase term of this force 𝐹< with the mechanical 
displacement 𝑥 contributes to the damping of the harvester. 
Therefore, the expression of the electrical damping can be 
obtained from (27) and (28): 

 𝜇$ =
𝛼"

𝜔	𝐶<𝐿"
𝑥#"

𝜔
𝑟𝛺

1 + 4𝑟"𝛺"	   (29) 

From (29) yields the expression of the damping ratio3, 𝛽(:'(: 

 𝛽(:'( =
𝑘#" 𝑄
4

𝑥#"

𝑥!"
𝑟

1 + 4𝑟"𝛺"	   (30) 

The damping ratio in case of a nonlinear piezoelectric force is 
also proportional to 𝑘$& 𝑄, similarly as in the linear case (24). 
However, the damping ratio in the nonlinear case also depends 

on Y-"
$

-#$
Z, meaning that a larger displacement amplitude leads 

to a larger effective electromechanical coupling. The 
maximum value that can be taken by 𝛽"#2" is given by (31) and 
is obtained when 𝑟 = 4

&5
 (𝑅 = 4

&6&+
). 

 Max(𝛽(:'() =
𝑘#" 𝑄
16Ω 	b

𝑥#
𝑥!
c
"
= Max(𝛽:'() +

𝑥#
2√2𝑥!

.
"

   (31) 

Max(𝛽"#2") is greater than Max(𝛽#2") if 𝑥$ > 2√2	𝑥!. This 
means that structures such as the one introduced in Fig.8 might 
be more efficient that the ones presented in Fig.7 if the 
acceleration amplitude (and displacement amplitude) is 
important enough.  

 

 

3 Note that the expressions of 𝛽$%& and 𝛽&$%& are only valid if the excitation 

3. Numerical and experimental validation  

3.1 Experimental setup and bistable prototype 

In order to validate the proposed model, a prototype of bistable 
PEH has been developed, based on the structure shown in 
Fig.8 (piezoelectric energy harvester with buckled beams). 
The prototype is shown in Fig.9, and its dimensions are 
summarized in Table 3. The beams as well as the inertial mass 
are made in steel, while the amplified piezoelectric actuator 
(APA) is made with PZT and is the APA120S fabricated by 
Cedrat Technologies. 

Table 3. Dimensions of the proposed PEH prototype. 

Variable Quantity (unit) Identified 
Value 

𝑀>> Mass of a buckled beam (g) 0.1 

𝑙>> Length of a buckled beam (mm) 35 

𝑤>> Width of a buckled beam (mm) 10 

𝑡>> Thickness of a buckled beam (mm) 0.2 

𝑀# Mass of the inertial mass (g) 6.5 

𝑙# Length of the inertial mass (mm) 13 

𝑤# Width of the inertial mass (mm) 10 

𝑡# Thickness of the inertial mass (mm) 11 

 
The parameters of this harvester have been identified under 
weak sinusoidal excitation (𝛾$ = 0.05𝑚. 𝑠7&) and are 
summarized in Table 4.  

 
Figure 9. Prototype of bistable PEH based on a buckled beam 

structure.  

is sinusoidal. 



Journal XX (XXXX) XXXXXX Morel et al  

 10  
 

Table 4. Identified parameters of the bistable energy harvester 
prototype. 

Variable Quantity (unit) Identified 
Value 

𝑀 Total inertial mass (g) 6.5 

𝐿 Horizontal distance from the mass to 
the frame (mm) 

35 

𝑙 Length of a buckled beam (mm) 35.01 

𝑥! Stable position (mm) 0.8 

𝜔! Linearized natural  
angular frequency (rad.s-1) 

333 

𝐶< Piezoelectric capacitance (𝜇𝐹) 1.12 

𝑄 Quality factor of the resonator 80 

𝛼 Force factor (N.V-1) 0.16 

𝑘#"  Expedient electromechanical coupling  0.068 

As detailed in [23], the parameters of the bistable PEH shown 
in Fig.9 can be expressed as follows: 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
𝜔! =

𝑥!
𝐿 	
M4𝐾
𝑀

𝑄 =
𝑥!
𝐿 	
√4𝐾𝑀
𝜇#

𝑥! = |𝑙" − 𝐿"

𝑘#" =
𝛼"

𝐾	𝐶<

𝑘" =
𝑘#"

1 + 𝑘#"

   (32) 

With 𝐾 being the stiffness of the APA (approximately 0.342 
N/µm), and 𝑙 being the length of a buckled beam. 

Experimental measurements have been conducted with the 
setup shown in Fig.10. The prototype (Fig.9) is fixed on an 
electromagnetic shaker driven by a power amplifier. The 
acceleration of the shaker is sensed with an accelerometer and 
is sent to the dSpace board. As shown in Fig.10, the same 
dSpace board sends a signal to the power amplifier driving the 
shaker. By mean of a PI controller, the amplitude of the shaker 
acceleration is maintained to 𝛾$ = 5𝑚. 𝑠7& throughout the 
whole experiment. The electrodes of the piezoelectric 
transducer are connected to a programmable resistor whose 
value is adjusted with another signal coming from the dSpace 
board. The voltage across the piezoelectric element is sent to 
the dSpace board through a voltage follower. The speed and 
displacement waveforms are also sensed with a laser 
vibrometer. 

 
Figure 10. a. Experimental setup used to validate the proposed 

models of bistable energy harvesters and b. Schematic of this setup. 

3.2 Experimental results  

Before each run, the amplitude of the sinusoidal acceleration 
is increased to 𝛾$ = 18𝑚. 𝑠7& in order to jump from intrawell 
to interwell orbits. Thereafter, the acceleration amplitude is 
gradually decreased to 𝛾$ = 5𝑚. 𝑠7&. Additional information 
on the experimental procedure is provided in Appendix B. 

 
Figure 11. Experimental measurements of a. displacement 

amplitude and b. harvested power as a function of the vibration 
frequency and the resistance of the load, for 𝛾# = 5𝑚. 𝑠/". Each 

dot corresponds to a waveform and phase portrait in Fig.12. 
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Figure 12. Experimental measurements of a. intrawell and interwell 

phase portraits and b. time signals. 

The voltage, displacement, speed and acceleration waveforms 
are then measured for 600 frequencies between 30Hz and 
90Hz. The same procedure is repeated for 70 resistances from 
100𝛺 to 30k𝛺. Figure 11 shows the displacement amplitude 
𝑥$ and the harvested power 𝑃)./0 (calculated from the 
squared root mean square value of the voltage divided by the 
resistance) as a function of the vibration frequency and the 
resistance of the load. As shown in Fig.11, the displacement 
amplitude and power are large in the left part of the plane (for 
low vibration frequencies). Indeed, for these frequencies, 
interwell motion occurs, leading to large displacement 
amplitudes. For higher frequencies, intrawell motion occurs, 
which explains why the displacement amplitude as well as the 
harvested power are much lower. Note that interwell motion 
cut-off frequency depends on the resistance value 𝑅, and 
hence on the damping ratio 𝛽, which is consistent with the 
theoretical prediction (16). This point will be further detailed 
in the next subsection. 

Figure 12.a shows examples of intrawell and interwell phase 
portraits, with various frequencies and resistances (each one 
of them corresponding to a dot in Fig.11.a). These phase 
portraits illustrate that interwell and intrawell motions are 
relatively close to the iso-energy orbits shown in Fig.3.b, and 
are consistent with other publications on bistable energy 
harvesters [27].  

Figure 12.b illustrates the time-varying mechanical 
displacement that can be associated with each phase portrait. 
The purple and green waveforms illustrate intrawell motion of 
the inertial mass, around one of the two well (±0.8𝑚𝑚) of the 
PEH. The blue, red and yellow waveforms illustrate interwell 

motion of the inertial mass for vibration frequencies of 30Hz, 
45Hz and 60Hz, respectively. As shown in Fig.11.a, the 
displacement amplitude slightly increases with the vibration 
frequency. Note that interwell and intrawell motions remain 
relatively close to sinusoidal motion (with total harmonic 
distortion below 0.1) which supports the first-harmonic 
assumption discussed in section 2.4. 

3.3 Experimental validation of the proposed models 

Figure 13.a shows the experimental measurements, the 
simulation, and the theoretical prediction of the displacement 
amplitude as a function of the vibration frequency. The 
experimental results are in good agreement with the model, 
the relative error on the displacement in interwell motion 
remaining below 10%. As predicted from (14), the interwell 
motion displacement amplitude (for a fixed vibration 
frequency) does not vary much (less than 2% variation) with 
the resistance 𝑅.  

Figure 13 also shows that for 𝑅 = 1.3𝑘Ω (yellow curves), the 
interwell motion cut-off frequency is around 50Hz. For a 
larger resistance 𝑅 = 5.7𝑘Ω (red curves), the cut-off 
frequency becomes 66Hz. This illustrates that the cut-off 
frequency of the interwell motion depends on the value of the 
resistance 𝑅, which is consistent with the theoretical 
predictions. Indeed, (30) proves that the resistance 𝑅 has an 
impact on the damping ratio 𝛽. (16) illustrates that a larger 𝛽 
leads to a lower cut-off frequency.  

Figure 13.b shows the harvested power as a function of the 
vibration frequency. Again, the experimental, theoretical and 
simulated results are in good agreement, with a relative 
difference always below 15%. As predicted by the theory, the 
power (in interwell motion) grows with the vibration 
frequency. When the cut-off frequency is reached, the 
harvested power drops from a few mW to a few hundreds of 
µW. While the displacement amplitude (for a given vibration 
frequency) does not vary much with the resistance value, the 
power largely depends on the choice of the resistance. For 
example, for a vibration frequency of 50Hz, the power reaches 
4.4mW with 𝑅 = 1.3𝑘Ω, 2.2mW with 𝑅 = 5.7𝑘Ω, and 1mW 
with 𝑅 = 139Ω. For all these resistances, the displacement 
amplitude 𝑥$ remains almost equal to 1.6mm. 
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 Figure 13. Experimental measurements (dashed lines), simulation 
(dotted lines), and theoretical prediction (solid lines) of a. 
displacement amplitude and b. harvested power, for three 

resistances. 

The evolution of the cut-off frequency as a function of the 
resistance value can be observed in Fig.14.a. As predicted in 
section 2.7, there exists a resistance value (≈ 1.4𝑘Ω) that 
maximizes the damping ratio 𝛽 and thus minimizes the cut-off 
frequency (50Hz). The value of this resistance is in agreement 
with the theory which predicts that the resistance value 
maximizing 𝛽 is given by 𝑅 = 4

&6&+
= 1.42𝑘Ω. As shown in 

Fig.14.a, when the resistance gets larger or smaller than this 
particular value, the cut-off frequency of the harvester 
becomes larger, up to 70Hz. Indeed, with a larger (or smaller) 
resistance, the value of the damping ratio 𝛽 decreases, which 
increases the cut-off frequency (16). The experimental results 
illustrated in Fig.14.a are in good agreement with the 
theoretical predictions, with a relative error below 10%. One 
may note that the error of the model is maximal for extreme 
values of the resistance (𝑅 > 7𝑘Ω or 𝑅 < 200Ω). Indeed, for 
these resistances, the mechanical displacement at the cut-off 
frequency becomes larger than 1.8mm (Fig.11). Under such 
large displacement, the mechanical quality factor of the 
harvester tends to decrease, which reduces the cut-off 
frequency of the harvester (16). The variation of the 
mechanical quality factor (due to nonlinear behavior of 
mechanical losses) has not been taken into account in our 
model, but could be added in the future, in order to obtain 
closer predictions for extreme values of the resistance.  

 

Figure 14. a. Cut-off frequency and b. harvested power at the cut-
off frequency 𝑃&+*4|232" as a function of the resistance. 

Figure 14.b. shows the harvested power at the cut-off 
frequency as a function of the resistance. One may notice that 
the resistance maximizing the damping ratio is not the one 
maximizing the harvested power. Indeed, in order to maximize 
the harvested power, the damping ratio should be equal to 1 
(in other words, the electrical damping should be equal to the 
mechanical damping), as predicted by (20) and (21). Since the 
electromechanical coupling of our prototype is relatively 
large, the maximum value of 𝛽 is larger than 1. Therefore, the 
resistance maximizing 𝛽 (≈ 1.4𝑘Ω) overdamps the harvester, 
and does not maximize the harvested power. The resistances 
maximizing the harvested power (≈	4.8mW) are, 
theoretically, around 450Ω and 4𝑘Ω. Experimentally, one 
may notice that the second resistance (4𝑘Ω) allows to harvest 
a slightly larger power than the first one (450Ω).  

The bifurcation of the optimal resistances with strong 
coupling harvesters is a common feature of linear piezoelectric 
energy harvesters, and has already been thoroughly studied in 
the literature [24,39]. 

Figure 14 illustrates the trade-off in the choice of the 
resistance value for bistable energy harvesters. Indeed, 
selecting a resistance around 4𝑘Ω allows to harvest a large 
power of 4.8mW around 60Hz. On the other hand, selecting a 
10𝑘Ω resistance decreases the maximum power to 3mW, but 
increases the cut-off frequency to 69Hz. Therefore, adapting 
the resistance value (or the input resistance of any electrical 
interface) according to the vibration frequency with maximum 
power point tracking (MPPT) algorithms could be particularly 
useful in order to maximize the harvested power on large 
frequency bands, and fully exploit the potential of bistable 
VEH. 
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3.4 Experimental validation of acceleration amplitude 
impact 

Additional measurements have been realized on the prototype 
shown in Fig.9, in order to study the effects of the acceleration 
amplitude on bistable energy harvester dynamics. During 
these experimentations, the voltage, displacement, speed and 
acceleration waveforms have been measured for 600 
frequencies between 30Hz and 90Hz and for 20 accelerations 
amplitudes between 2m.s-2 and 7m.s-2. The value of the 
resistance has been arbitrarily fixed to 200Ω. 

Figure 15.a shows the experimental measurements, the 
simulation, and the theoretical prediction of the displacement 
amplitude as a function of the vibration frequency for three 
acceleration amplitudes. As predicted from (14) and from 
Fig.5, the displacement amplitude in interwell motion (for a 
given vibration frequency) does not vary much (less than 2% 
variation) with the acceleration amplitude 𝛾$. The cut-off 
frequency of the interwell motion, on the other hand, strongly 
depends on the acceleration amplitude. For an acceleration 
amplitude of 3.05m.s-2, the cut-off frequency is measured to 
be 50Hz. When the acceleration amplitude is increased to 4.37 
m.s-2 and 5.68m.s-2, the cut-off frequency becomes equal to 
60Hz and 66Hz, respectively. The relative difference between 
the experimental cut-off frequency and the theoretical cut-off 
frequency predicted by (16) remains below 5%, which 
illustrates the good agreement between the proposed model 
and the experimental measurements. 

The harvested power as a function of the vibration frequency 
is shown in Fig.15.b. The maximum power increases with the 
acceleration amplitude, from 1.6mW for 𝛾$ = 3.05𝑚. 𝑠7& to 
5.1mW for 𝛾$ = 5.68𝑚. 𝑠7&. Once again, the experimental 
data are in good agreement with the theoretical power, with an 
error below 0.5mW. Figure 15.b confirms the theoretical 
prediction (20) that the harvested power at the cut-off 
frequency increases with the square of the acceleration 
amplitude. 

The evolution of the cut-off frequency and 𝑃)./0|+1+% for 
acceleration amplitudes between 2.2m.s-2 and 6m.s-2 is 
illustrated in Fig.16. As predicted by (16) and (21), both the 
cut-off frequency (∝ i𝛾$) and the harvested power (∝ 𝛾$& )  
increase with a larger acceleration amplitude. The differences 
between experimental measurements and analytical models 
remain below 10% for values of 𝛾$ smaller than 5m.s-2. 
However, for larger acceleration amplitude, the error of the 
analytical model becomes more important (67Hz instead of 
71Hz and 5.5mW instead of 6.5mW for 𝛾$ = 6m. s7&). 
Similarly as in Fig.14, this error comes from the variation of 
the mechanical quality factor of the PEH due to mechanical 
nonlinearities under large mechanical displacements (when 
𝑥$ >1.8mm). 

 

Figure 15. Experimental measurements (dashed lines), simulation 
(dotted lines), and theoretical prediction (solid lines) of a. 
displacement amplitude and b. harvested power, for three 

acceleration amplitudes. 

 

Figure 16. a. Cut-off frequency and b. harvested power at the cut-
off frequency 𝑃&+*4|232" as a function of the acceleration 

amplitude. 

4. An intuitive appreciation of bistable VEH dynamics 

The analytical model introduced in this paper allows to 
understand how the parameters of bistable VEH impact their 
performances. This section describes and summarizes these 
impacts in order to provide an intuitive understanding of the 
interwell behavior. Note that the analyses in sections 4.1-4.5 
correspond to the bistable VEH of Fig. 8. 
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4.1 Impact of 𝑥* 

Figure 17 shows the evolution of the displacement amplitude 
and harvested power as a function of the vibration frequency, 
for three values of 𝑥!. As predicted by (14), a larger 𝑥! leads 
to a larger displacement amplitude. On the other hand, a larger 
𝑥! tends to decrease the cut-off frequency of the interwell 
motion, as predicted by (16) and (17). As expressed by (18), a 
larger 𝑥! leads to a larger harvested power at a given 
frequency. Nevertheless, Fig. 17 shows that the power at the 
cut-off frequency 𝑃)./0|+1+% decreases with 𝑥!. As shown in 
(20), 𝑃)./0|+1+% depends on the damping ratio 𝛽 which 
decreases as (𝑥$/𝑥!) is reduced (30). Note that the power at 
the cut-off frequency could also be increased with 𝑥!, if the 
resistance value was different. Indeed, the relation between 
𝑃&+*4|232" and 𝛽 is not monotonic. If 𝛽 > 1, a larger 𝑥! would 
reduce its value and make it closer to its optimal value, 𝛽 = 1, 
increasing 𝑃)./0|+1+%. On the other hand, if 𝛽 < 1 (as this is 
the case in Fig.17), a larger 𝑥! decreases 𝑃)./0|+1+%. 

 
Figure 17. Displacement amplitude and harvested power as a 

function of the vibration frequency, for various values of 𝑥!, with 
𝑅 = 100Ω and 𝛾# = 5𝑚. 𝑠/" (the other parameter values are given 

in Table 2). 

4.2 Impact of 𝜔* 

Figure 18 shows the evolution of the displacement amplitude 
and harvested power as a function of the vibration frequency, 
for three values of 𝜔!. As shown by the analytical expression 
of 𝑥$ (14), a larger 𝜔! leads to a lower displacement 
amplitude. As predicted by (17), the value of 𝜔! has little to 
no impact on the cut-off frequency of the interwell motion. 
Since 𝑥$ ∝ 1/𝜔! (14) and 𝛽 ∝ 1/𝜔! (30) (under the 
assumption that 𝜔& ≫ 𝜔!&), then 𝑃)./0 ∝ 1/𝜔!&  and 
𝑃)./0|+1+% ∝ 1/𝜔!

&. This explains why the power decreases 
with a larger 𝜔! in Fig.18. 

 
Figure 18. Displacement amplitude and harvested power as a 

function of the vibration frequency, for various values of 𝜔!, with 
𝑅 = 100Ω and 𝛾# = 5𝑚. 𝑠/" (the other parameter values are given 

in Table 2). 

4.3 Impact of 𝑄 

Figure 19 illustrates that neither the displacement amplitude 
nor the harvested power depends on the value of 𝑄, for a given 
vibration frequency. Indeed, as shown by (14), the analytical 
expression of 𝑥$ does not depend on	𝑄.	Furthermore, since 
𝛽 ∝ 𝑄, the expression of the harvested power given by (18) 
proves that 𝑃)./0 does not vary with 𝑄. Nevertheless, as 
illustrated in Fig.19 and proved by (16), the cut-off frequency 
of interwell motion gets larger with 𝑄. It can also be noted that 
the damping ratio 𝛽 (30) is proportional to 𝑄. 

 
Figure 19. Displacement amplitude and harvested power as a 

function of the vibration frequency, for various values of 𝑄, with 
𝑅 = 100Ω and 𝛾# = 10𝑚. 𝑠/" (the other parameter values are 

given in Table 2). 
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4.4 Impact of 𝑀 

Figure 20 depicts the evolution of the displacement amplitude 
and harvested power as a function of the vibration frequency, 
for three values of the inertial mass, 𝑀.  Interestingly, the 
displacement amplitude as well as the interwell cut-off 
frequency do not depend on 𝑀 (which is consistent with the 
analytical expressions (14) and (16)). Conversely, the 
harvested power is proportional to 𝑀, as illustrated by Fig.20 
and (18). 

4.5 Impact of 𝑘+,  

Figure 21 shows the evolution of the displacement amplitude 
and harvested power as a function of the vibration frequency, 
for three values of the electromechanical coupling 𝑘$& . As 
predicted by (14), the displacement amplitude does not vary 
with the value of the electromechanical coupling. Figure 21 
also illustrates that the cut-off frequency of the interwell 
motion becomes smaller with a larger coupling.  

 
Figure 20. Displacement amplitude and harvested power as a 

function of the vibration frequency, for various values of 𝑀, with 
𝑅 = 100Ω and 𝛾# = 5𝑚. 𝑠/" (the other parameter values are given 

in Table 2). 

Indeed, a stronger coupling implies a larger damping ratio 𝛽 
(30), and therefore a decrease of the cut-off frequency value 
(16). Because of the increase of the damping ratio 𝛽, the 
harvested power at a given frequency 𝑃)./0 gets larger with a 
stronger coupling (𝑃)./0 ∝ 𝛽 (19)). Yet, the impact of 𝑘$&  on 
the harvested power at the cut-off frequency 𝑃)./0|+1+% is not 
monotonic, as proven by (21). 𝑃)./0|+1+% is maximized for 
𝛽 = 1, so if 𝛽 < 1, increasing the coupling will increase the 
power (because 𝛽 will get closer to its optimal value). If 𝛽 >
1, increasing the coupling will decrease the power (because 𝛽 
will get farther from its optimal value) because the harvester 

will be overdamped by the electrical interface. Such case can 
be observed in Fig.21. When 𝑘$&  is equal to 0.05, the value of 
the power at the cut-off frequency 𝑃)./0|+1+% is 4.55mW 
(with simulations, red solid line). When 𝑘$&  is equal to 0.2, the 
value of the power at the cut-off frequency 𝑃)./0|+1+% is 
3.95mW (with simulations, blue solid line). Therefore, in this 
case, a larger coupling leads to a lower power because of the 
overdamping phenomenon (𝛽 > 1).  

Note that if the input resistance of the electrical interface were 
adjusted and optimized with an MPPT algorithm (as in [34]), 
the conclusions of this section would be quite different. 
Indeed, as shown in section 2.7, tuning the input resistance of 
the electrical interface allows to tune the damping ratio 𝛽. This 
means that the optimal value of 𝛽 (𝛽 =1) could be reached for 
any electromechanical coupling 𝑘$& , as long as the maximum 
value of 𝛽 is greater than 1 (31). Furthermore, the maximum 
value of 𝛽 depends on 𝑘$&  (31), which means that a stronger 
electromechanical coupling leads to a larger range of damping 
ratio that can be obtained with a tunable electrical interface. 

 

Figure 21. Displacement amplitude and harvested power as a 
function of the vibration frequency, for various values of 𝑘#" , with 
𝑅 = 500Ω and 𝛾# = 5𝑚. 𝑠/" (the other parameter values are given 

in Table 2). 

4.6 Summary of the influences in bistable VEH 

Table 4 summarizes the impacts of the harvester parameters 
(𝑀, 𝑥!, 𝜔!, 𝑅, 𝑘$& , 𝑄, 𝛾$) on the characteristics of the 
harvester (𝑥$, 𝜔(, 𝛽$.-, 𝑃)./0, 𝑃)./0|+1+%, 𝑃#2$). Note that 
the impacts of the vibration acceleration and resistance are 
depicted in Fig.15 and Fig.13, respectively. 
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Table 5. Influences of each parameter on various characteristics of 
the harvester in case of nonlinear influence of the electrical interface 
(Fig.8). A green color means that an increase of the parameter (left 
column) increases the considered characteristic. A red color means 
that an increase of the parameter (left column) decreases the 
considered characteristic. A yellow color means that the considered 
characteristic does not vary much with variations of the parameter. A 
blue color means that the dependency of the characteristic to the 
parameter is not monotonic. The case where (*) is indicated is valid 
under the assumption 𝜔 > 𝜔!. For 𝜔 < 𝜔!, the case (*) should be 
green. 

Param. Energy harvester characteristics 

𝑥#(𝜔) 𝜔% 𝛽#+. 𝑃&+*4(𝜔) 𝑃&+*4|232" 𝑃:'# 

𝑀 = = = ↗ ↗ ↗ 

𝑥! ↗ ↘ ↘ ↗ ↝ = 

𝜔! ↘ =* ↘ ↘ ↘ ↘ 

R = ↝ = ↝ ↝ = 

𝑘#"  = ↘ ↗ ↗ ↝ = 

𝑄 = ↗ ↗ = ↗ ↗ 

𝛾# = ↗ = = ↗ ↗ 

 

Table 6. Influences of each parameter on various characteristics of 
the harvester in case of linear influence of the electrical interface 
(Fig.7). A green color means that an increase of the parameter (left 
column) increases the considered characteristic. A red color means 
that an increase of the parameter (left column) decreases the 
considered characteristic. A yellow color means that the considered 
characteristic does not vary much with variations of the parameter. A 
blue color means that the dependency of the characteristic to the 
parameter is not monotonic. The cases where (*) is indicated are valid 
under the assumption 𝜔 > 𝜔!. For 𝜔 < 𝜔!, the cases (*) should be 
red. 

Param. Influences 

𝑥#(𝜔) 𝜔% 𝛽#+. 𝑃&+*4(𝜔) 𝑃&+*4|232" 𝑃:'# 

𝑀 = = = ↗ ↗ ↗ 

𝑥! ↗ ↘ = ↗ = = 

𝜔! ↘ =* ↗ = =* ↘ 

R = ↝ ↝ ↝ ↝ = 

𝑘#"  = ↘ ↗ ↗ ↝ = 

𝑄 = ↗ ↗ = ↗ ↗ 

𝛾# = ↗ = = ↗ ↗ 

 

Table 5 as well as the analysis of this section allow to get an 
intuitive understanding of the influences of each parameter on 
the characteristics of the bistable energy harvester. For 
example, in order to increase the cut-off frequency of the 
interwell motion, Table 5 shows that either the quality factor 
or the acceleration amplitude can be increased. Decreasing the 
stable position 𝑥! or the electromechanical coupling 𝑘$&  also 
leads to an increase of the cut-off frequency. Finally, the load 
resistance can also be adjusted in order to tune the cut-off 
frequency, even though the impact of 𝑅 on 𝜔( is not 
monotonic (Fig.14.a). Note that the influence of the electrical 
time constant (defined as 𝜏% = 𝑅𝐶3 [40, 41]) is the same as the 
influence of the resistance R. As shown in Fig.14, there exists 
an optimal electrical time constant that maximizes the 
harvested power. If 𝜏% deviates from this value, the harvested 
power decreases. 

Table 5 is valid for bistable VEH whose voltage influence on 
the resonator dynamics is nonlinear (Fig.8). For bistable VEH 
whose voltage influence on the resonator dynamics is linear 
(Fig.7), the influences are slightly different because 𝛽 does not 
depend on (𝑥$/𝑥!) (24). Table 6 summarizes theses 
influences.  

Conclusion 

Due to their complex dynamics, bistable vibration energy 
harvesters are usually studied with numerical simulations or 
semi-analytical models. In this study, closed-form expressions 
of the displacement amplitude, harvested power, and cut-off 
frequency of bistable VEH have been been derived. These 
simple analytical expressions are in good agreement with both 
numerical simulations and experimental results obtained on a 
bistable PEH. The proposed models allow to understand and 
predict the influences of each parameter of bistable energy 
harvesters on their power-frequency response. As a matter of 
exemple, these models allow to predict the influences of the 
mechanical quality factor, inertial mass, and 
electromechanical coupling on the cut-off frequency of the 
interwell motion and on the power-frequency response of any 
bistable VEH.  

Such closed-form models might help scientists in finding the 
best trade-off while sizing a bistable energy harvester for any 
applicative cases. They might also help in developping an 
intuitive understanding of the intricate dynamics of bistable 
energy harvesters. Although in the present study, the 
analytical models have been derived for a resistive load, future 
works will focus on extending these models in order to predict 
the power-frequency response of bistable VEH connected to 
nonlinear electrical interfaces.  
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Appendix A – Proof of 𝝍 = 𝝅/𝟐 condition for the 
interwell motion cut-off frequency 

The mechanical power in the harvester coming from the 
vibration can expressed as (33): 

 𝑃4'> =
1
𝑇; 𝑀	𝛾(𝑡)

-

!
𝑥̇(𝑡)𝑑𝑡   (33) 

Solving (33) with the first-harmonic assumptions (𝑥(𝑡) =
𝑥$cos	(𝜔𝑡), 𝛾(𝑡) = 𝛾$𝑐𝑜𝑠(𝜔𝑡 + 𝜓)) yields (34): 

 𝑃4'> =
𝑀	𝛾#	𝑥#	𝜔	sin	(𝜓)

2 	   (34) 

On the other hand, the power dissipated in the mechanical 
damper 𝜇$ and electrical damper 𝜇% can be expressed as: 

 𝑃?'@@ =
1
𝑇;

(𝜇# + 𝜇$)	𝑥̇"(𝑡)
-

!
𝑑𝑡	   (35) 

Solving the integral in (35), the expression of the power 
dissipated in the dampers becomes (36): 

 𝑃?'@@ =
𝜔"𝑥#" 	(𝜇# + 𝜇$)

2 	   (36) 

Because of energy conservation, the power dissipated in the 
dampers should be equal to the power coming from the 
mechanical vibration. Therefore, equation (37) is obtained: 

 𝜔"𝑥#" 	(𝜇# + 𝜇$)
2 =

𝑀	𝛾#	𝑥#𝜔	sin	(𝜓)
2 	   (37) 

Re-arranging the terms in (37) and replacing 𝑥$ by its 
expression (14) yields (38): 

 sin(𝜓) =
2
√3

𝑥!	𝜔
𝛾#

(1 + 𝛽)
𝑄 M1 +

2𝜔"

ω!"
		   (38) 

(38) means that the phase-shift 𝜓 between the displacement 𝑥 
and the excitation 𝛾 depends on the vibration frequency 𝜔. If 
the vibration frequency is increased, 𝑃028 grows because 
sin(𝜓) gets larger with 𝜔. The maximum value of 𝑃028 is 
obtained when sin(𝜓) = 1, in other words when 𝜓 = 9

&
, which 

corresponds to 𝜔 = 𝜔(. For larger frequencies, the condition 
(38) cannot be met (because 𝑠𝑖𝑛	(𝜓) ≤ 1), meaning that the 
interwell motion does not exist. 

Appendix B - Details of the testing scenario set up in 
section 3 

In this appendix, we provide details of the testing scenario that 
allow to obtain the experimental data of the present paper and 
to plot Fig.11-16.  

As precised in section 3, Fig.11 was obtained for 600 
frequencies between 30Hz and 90Hz and for 70 resistances 
from 100𝛺 to 30k𝛺. For each of the 70 resistances, two 
frequency sweeps have been realized, in order to obtain a 
complete characterization of the bistable PEH interwell 
motion. The automated procedure that has been followed is 
described in Fig.22.  
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Figure 22. Procedure to characterize the interwell motion of the 

bistable PEH. 

First, the excitation frequency is set to 44Hz4, and the PEH 
operates in intrawell orbits. Thereafter, the acceleration 
amplitude is gradually increased, up to 18m.s-2, in order to 
jump to the interwell orbits of the PEH. Then, the acceleration 
amplitude is decreased back to 5m.s-2. The decrease of the 
acceleration is done slowly, in 100 seconds, in order to 
maintain the interwell motion even though the acceleration 
amplitude is reduced. Finally, the frequency has been swept 
up to 90Hz (and swept down to 30Hz), in order to characterize 
the interwell motion as a function of the vibration frequency. 
For 600 frequencies between 30Hz and 90Hz, the voltage, 

 

4 This particular frequency has been selected because, with our PEH, the 

displacement, speed, and acceleration have been acquired 
during 500 periods.  

As illustrated in Fig.23, the same procedure has been repeated 
for 70 values of resistance connected to the PEH. For each of 
the 63000 combinations of frequency and resistance, the data 
have been acquired, which allowed to plot Fig.11-14. Note 
that the same procedure has been followed to plot Fig.15-16, 
except that 20 accelerations have been tested instead of 70 
resistances. 

 
Figure 23. Flowchart illustrating the steps to obtain the data shown 

in Fig.11-14. 

 

 

 

 

 

 

 

 

 

 

 

 

interwell motion is most easily obtained at 44Hz. 
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