A Local Version of R-hat to Improve MCMC Convergence Diagnostic
Théo Moins, Julyan Arbel, Stéphane Girard, Anne Dutfoy

To cite this version:
Théo Moins, Julyan Arbel, Stéphane Girard, Anne Dutfoy. A Local Version of R-hat to Improve MCMC Convergence Diagnostic. ISBA 2022 - World Meeting of the International Society for Bayesian Analysis, Jun 2022, Montréal, Canada. pp.1-1. hal-03765331

HAL Id: hal-03765331
https://hal.archives-ouvertes.fr/hal-03765331
Submitted on 31 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Overview: has the chain converged?

- Diagnosing convergence of Markov chain Monte Carlo (MCMC) is crucial in Bayesian analysis.
- It is frequent to run multiple chains in parallel with different initial values.
- At convergence, all chains should have a similar distribution.

\[R = \frac{W + B}{W} \]

\(M \) chains of size \(N \), and \(\theta^{(m,n)} \) the \(n \)th draw from chain \(m \). Comparison of the between-variance \(B \) and the within-variance \(W \) of the chains: if \(\theta^{(1,m)}, s_m^{(1)} \) is the mean and variance of \(\theta^{(n,m)} \), and \(\theta^{(1)} \) the mean of \(\theta^{(m)} \),

\[R = \frac{W + B}{W} \] with \(B = \frac{1}{M - 1} \sum_{m=1}^{M} (\theta^{(1,m)} - \theta^{(1)}; s_m^{(1)}) \), \(W = \frac{1}{M} \sum_{m=1}^{M} s_m^{(1)} \).

If \(R > 1.01 \) convergence issue detected.

Ways of fooling \(\hat{R} \) and improvements [2]

Two cases where \(\hat{R} \) fails:

- Chains with infinite mean and different locations: \(\hat{R} \approx 1 \) \(\Rightarrow \) Bulk-\(\hat{R} \): \(\hat{R} \) on \(z^{(n,m)} \), the normally transformed ranks of \(\theta^{(m)} \).
- Chains with same mean and different variances: \(\hat{R} \approx 1 \) \(\Rightarrow \) Tail-\(\hat{R} \): \(\hat{R} \) on \(z^{(m,n)} \), the deviations from the median.

\(\hat{R} \) = max(Bulk-\(\hat{R} \), Tail-\(\hat{R} \))

References

Densities

Idea: compute \(\hat{R} \) on indicator variables \(\{ \{ \theta^{(n,m)} \leq x \} \in \{0,1\} \} \) for a given \(x \).

Benefits:

- Detects (non-)convergence at different quantiles.
- Bernoulli variables \(\Rightarrow \) all moments exist (no need for ranks).
- Detects many false negatives.

Scalar summary: \(\hat{R}_\infty = \sup_x \hat{R}(x) \)

Fooling rank-\(\hat{R} \), robustness of \(\hat{R}_\infty \)

Idea: find two distributions such that the variables \(z^{(n,m)} \) and \(\zeta^{(n,m)} \) share the same mean, to fool Bulk-\(\hat{R} \) and Tail-\(\hat{R} \) at the same time \(\Rightarrow \) Rank-\(\hat{R} \) < 1.01, and \(\hat{R}_\infty > 1.01 \).

Uniform and Normal densities

Replications of Rank-\(\hat{R} \) and \(\hat{R}_\infty \)

- Two step algorithm for multivariate diagnostic:
 1. Compute the univariate \(\hat{R}_\infty(i) \) separately on each coordinate \(i \).
 2. If \(\hat{R}_\infty(i) < 1.01 \) for all \(i \), compute the multivariate \(\hat{R}_\infty \) to check convergence of the dependence structure.

Multivariate extension

Idea: compute \(\hat{R} \) on \(\{ \{ \theta^{(n,m)} \leq x_1, \ldots, \theta^{(n,m)} \leq x_d \} \} \).

- Eq. (1) remains valid for \(\hat{R}(x) \) with \(x = (x_1, \ldots, x_d) \).
- Invariance to reparameterization: if margins are equal, we can assume uniform margins and compute \(\hat{R}(x) \) on \(M \) copulas.

Upper bound in the multivariate case

Denote by \(R_{i,k} \) the value of \(R_{i,k} \) for \(C_1 \) and \(C_2 \) (\(M = 2 \)). Let \(W_i \) and \(M_i \) Fréchet–Hoeffding copulas in dimension \(d \):

\[W_i(u) \leq C_i(u) \leq M_i(u), \forall u \in [0,1]^d. \]

Then

\[R_{i,k} \leq R_{i,k}(W_i, M_i) = \frac{d + 1}{2}. \]