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Abstract
We present and evaluate d4Max, an exact approach for solving the Weighted Max#SAT problem.
The Max#SAT problem extends the model counting problem (#SAT) by considering a tripartition
of the variables {X, Y, Z}, and consists in maximizing over X the number of assignments to Y that
can be extended to a solution with some assignment to Z. The Weighted Max#SAT problem is an
extension of the Max#SAT problem with weights associated on each interpretation. We test and
compare our approach with other state-of-the-art solvers on the challenging task in probabilistic
inference of finding the marginal maximum a posteriori probability (MMAP) of a given subset
of the variables in a Bayesian network and on exist-random quantified SSAT benchmarks. The
results clearly show the overall superiority of d4Max in term of speed and number of instances solved.
Moreover, we experimentally show that, in general, d4Max is able to quickly spot a solution that is
close to optimal, thereby opening the door to an efficient anytime approach.
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1 Introduction

Weighted model counting is a fundamental task that consists in computing the number
of weighted models of a given propositional formula, typically in CNF. Model counting is
computationally hard (#P-complete), and actually much harder in practice than satisfiability
(the SAT problem). Weighted projected model counting is an extension of weighted model
counting, that also considers a set of propositional variables Y to be forgotten. The objective
is then to compute the weighted model count of the quantified Boolean formula ∃Y.Φ over
its variables (i.e., the variables occurring in Φ but not in Y ). These tasks are of tremendous
importance to many problems, including probabilistic inference [52, 13, 2], explainable AI [43],
planning [44, 19, 6], reliability [21], verification [22, 29], among others.

Real world scenarios often require reasoning in an uncertain environment, which leads to
the use of PP oracles [24]. PP is the class of decision problems solvable by a probabilistic
Turing machine in polynomial time, with an error probability of less than one half for all
instances. Toda [57] showed that #P and PP are equally powerful when used as oracles,
indicating that the class PP is closely related to #P. For many relevant problems in AI
such as calculating maximum a posteriori hypotheses (MAP) [45], explainable AI [61], and
probabilistic conformant planning [38], NPPP oracles are often necessary. As highlighted by
Torán [58], NPPP class can be thought as the class of problems which consists in guessing a
proof of polynomial size and verifying it using a PP oracle.
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E-MajSAT [38] is one prototypical example of the NPPPproblems. It asks for a given
CNF formula Φ over X ∪ Y whether there exists an assignment to variables in X such that
half of its extensions satisfies Φ. In [48], Knot Pipatsrisawat and Adnan Darwiche introduced
an optimization version of E-MajSAT, called functional E-MajSAT, that asks for a complete
assignment τ of X such that the weighted model count of Φ conditioned by τ is maximal.
On top of considering an optimization version of E-MajSAT, functional E-MajSAT also
considers weights over variables of Y . Recently, Fremont et al. [23] proposed an unweighted
extension of E-MajSAT, called Max#SAT, that introduces a set of variables to be forgotten.
Given a CNF formula Φ over X ∪ Y ∪ Z, Max#SAT asks for a complete assignment τ of X

so that the projected model count of ∃Z.Φ conditioned by τ is maximal.

In this paper we introduce the WeightedMax#SAT problem, which generalizes both
functional E-MajSAT and Max#SAT problems and can be formulated as an Exist-Random-
Exist quantified SSAT problem. Given a CNF formula Φ over X ∪ Y ∪ Z and a weight
function over literals of Φ, it asks for a complete assignment τ of X such that the weighted
projected model count of ∃Z.Φ conditioned by τ is maximal. It extends both Max#SAT and
functional E-MajSAT, as it considers a set of variables to be forgotten, as well as a weight
function that is not limited to probabilities on variables. Considering unrestricted weight
functions (weights still represented with a linear number of bits) increases the expressiveness
of the language, and consequently allows the use of different encodings [8].

To tackle the WeightedMax#SAT problem in practice, we present a top-down tree-search
procedure based on the model counter d4, called d4Max. The solver given in this paper
extends the preliminary Max#SAT solver introduced in [3] by considering a weight function
in the problem definition, which is necessary for several concrete applications s.t. probabilistic
database, verification, XAI, . . . We also add the requirements to efficiently turn d4Max into
an anytime approach. These conditions can also be used to answer the decision version of
WeightedMax#SAT, that asks whether there exists an assignment τ of X such that the
weighted projected model count of ∃Z.Φ conditioned by τ is greater than some threshold.

For our experiments we first consider as a case study the inference query of MMAP on
Bayesian Networks (BN) [47] (and Markov Networks (MN)), which asks to find the most
probable combination of values of a set of random variables in a BN (or MN). In order to
evaluate how efficient is d4Max on this problem, we first encode MMAP benchmarks into
WeightedMax#SAT instances. We use a BN to CNF translator, based on the encoding
presented in [13], which associates with an input graphical model (either a BN or a MN) a
CNF formula and a weight map. For comparison purpose we use the state-of-the-art inference
tool merlin. Because MMAP instances can be naturally encoded as Exist-Random SSAT
problems, we also consider the solvers erSSAT [35] and ClauSSat [15] in our evaluation. The
empirical results obtained show that d4Max is quite competitive on the MMAP instances
in comparison to the SSAT solvers and the dedicated tool merlin. As a second test bed,
we consider Exist-Random SSAT application formulas used in [35]. We show that d4Max
outperforms erSSAT and ClauSSat on these benchmarks (which merlin can not handle).
Finally, we experimentally show that in general, d4Max is able to quickly spot a solution
close to the optimal, thereby being a quite efficient anytime solver.

The rest of the paper is organized as follows. After some formal preliminaries (Section 2),
the WeightedMax#SAT problem is presented in Section 3. Section 4 describes d4Max, our
exact WeightedMax#SAT solver, alongside an anytime version. An empirical evaluation is
provided in Section 5, before the conclusion section (Section 6).
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2 Preliminaries

Let X be a set of Boolean variables {x1, . . . , xm}. A literal ℓ is a variable x or its negation.
A clause is a disjunction of literals (ℓ1 ∨ . . . ∨ ℓc) and a term is a conjunction of literals
(ℓ1 ∧ . . .∧ ℓt). A unit clause contains only one literal. A propositional formula in Conjunctive
Normal Form (CNF) is a conjunction of clauses. Clauses and terms will be denoted by lower
greek letters (α, τ, . . .) while CNF formulas will be represented by upper ones (Φ, Ψ, . . .).
V ar(Φ) is the set of variables occurring in Φ and Lit(Φ) is its set of literals. Lit(X) would
also denote the set of literals we can build over the set of variables X. For convenience, we
will write Φ(X) to represent that Φ is defined on the set of variables X.

▶ Example 1. Let Φ = (x1∨¬y1)∧(x1∨¬y2)∧(x1∨y1∨y2∨¬y3)∧(¬x1∨¬y1∨y2)∧(¬x1∨
y1∨¬y2)∧ (¬x1∨x2∨¬y3)∧ (¬x1∨¬z1) be a CNF formula. V ar(Φ) = {x1, x2, y1, y2, y3, z1}
and Lit(Φ) = {x1, x2, y1, y2,¬x1,¬y1,¬y2,¬y3,¬z1}.

An interpretation or an assignment τ is a mapping from variables to {true, false} and
can be represented either as a set of literals or as a term. A literal ℓ (resp. ¬ℓ) with
V ar(ℓ) = x is satisfied when τ(x) = true (resp. τ(x) = false). An interpretation is complete
when all variables from a formula are assigned, otherwise it is partial. A clause is satisfied
when one of its literals is satisfied. An interpretation that satisfies all clauses from a CNF
formula is called a model. The Boolean Satisfiability Problem (SAT) is the decision problem
determining whether a model of a CNF formula exists [1]. We denote by 2V ar(Φ) the set
of all interpretations of a CNF formula Φ, and by Mod(Φ) the set of all models, with
Mod(Φ) = {τ ∈ 2V ar(Φ) | τ |= Φ}, |= denoting logical entailment.

▶ Example 2 (Example 1 cont’d). The models of Φ are:
{¬x1,¬x2,¬y1,¬y2,¬y3,¬z1} {¬x1,¬x2,¬y1,¬y2,¬y3, z1} {x1,¬x2, y1, y2,¬y3,¬z1}
{¬x1, x2,¬y1,¬y2,¬y3, z1} {¬x1, x2,¬y1,¬y2,¬y3,¬z1} {x1, x2, y1, y2, y3,¬z1}
{x1,¬x2,¬y1,¬y2,¬y3,¬z1} {x1, x2,¬y1,¬y2, y3,¬z1} {x1, x2, y1, y2,¬y3,¬z1}
{x1, x2,¬y1,¬y2,¬y3,¬z1}

Given a CNF formula Φ(X, Y ), with X and Y two disjoint sets of variables, ∃Y.Φ is a
quantified Boolean formula denoting (up to logical equivalence, denoted by ≡) the most
general consequence of Φ which is independent from the variables of Y [37]. In consequence,
Mod(∃Y.Φ) = {τ ∈ 2X | ∃τ ′ ∈ 2Y and τ ∧ τ ′ |= Φ}, i.e., the number of assignments to X

such that there exists an extension to Y that satisfies Φ.

▶ Example 3 (Example 1 cont’d). The models of ∃z1.Φ are listed below:
{¬x1,¬x2,¬y1,¬y2,¬y3} {x1,¬x2, y1, y2,¬y3} {¬x1, x2,¬y1,¬y2,¬y3}
{x1, x2, y1, y2, y3} {x1,¬x2,¬y1,¬y2,¬y3} {x1, x2,¬y1,¬y2, y3}
{x1, x2, y1, y2,¬y3} {x1, x2,¬y1,¬y2,¬y3}

If a variable x ∈ X is not in V ar(Φ(X)), then it is said to be free. The conditioning
of a CNF formula Φ by a consistent term τ is the CNF formula Φ|τ , obtained from Φ by
removing all satisfied clauses (which contain a literal ℓ ∈ τ) and all occurrences of ¬ℓ. If a
clause becomes empty, then Φ is falsified. The unit propagation of a unit clause (ℓ) is the
conditioning of Φ on ℓ, which results into an equisatisfiable formula Φℓ, meaning that Mod(Φ)
and Mod(Φ|ℓ) have the same size. The Boolean Constraint Propagation (BCP) [64, 41] is the
algorithm that, given a CNF formula, returns an equivalent CNF closed under propagation,
i.e., it does not contain unit clauses.

▶ Example 4 (Example 1 cont’ed). Φ|¬x1 = (¬y1) ∧ (¬y2) ∧ (¬y3) is the formula obtained
after conditioning Φ by the literal ¬x1. In Φ|¬x1 the variables x2 and z1 are free.

SAT 2022
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Given a CNF formula Φ(X), the counting problem #SAT [26] returns the number of
models of Φ over X, denoted by ∥ Φ ∥. Given a quantified CNF formula ∃Y.Φ(X, Y ), Y

being the set of variables to be forgotten, the projected model counting problem #∃SAT
[63] is to compute the number of assignments over X that have at least one extension to Y

that satisfies Φ(X, Y ), which we denote by ∥ ∃Y.Φ(X, Y ) ∥. Naturally, if all variables from Φ
are in Y , then the problem #∃SAT boils down to solve the SAT problem.

▶ Example 5 (Example 1 cont’d). ∥ Φ ∥= 10 and ∥ ∃z1.Φ ∥= 8.

To distinguish relevant literals from irrelevant ones, a weight function ω : 2Lit(Φ) → R+
∗

gives for each literal a weight. In unweighted CNF formulas, all literals have a weight of one,
meaning that they have the same relevance. Given a weighted CNF formula Φ, the weight of
a model τ of Φ, denoted ω(τ), is the product of weights of Lit(τ). The problem of Weighted
Model Counting (WMC) [52], denoted by ∥ Φ ∥ω, is to compute the weighted model count
∥ Φ ∥ω=

∑
τ∈2V ar(Φ) ω(τ), with τ |= Φ. The Weighted Projected Model Counting (WPMC)

problem, denoted by ∥ ∃Y.Φ(X, Y ) ∥ω, extends WMC by computing the weighted model count
regarding a set of variables Y to forget, i.e., ∥ ∃Y.Φ(X, Y ) ∥ω=

∑
τ∈2X ω(τ) with τ |= ∃Y.Φ.

Let us remark that for existentially quantified variables Y , the weight function assigns 1 to
Lit(Y ).

▶ Example 6 (Example 1 cont’d). Let us consider the following weight function ω:
ω(x1) = 1 ω(¬x1) = 1 ω(x2) = 1 ω(¬x2) = 2 ω(y1) = 0.5 ω(¬y1) = 0.5
ω(y2) = 0.5 ω(¬y2) = 0.5 ω(y3) = 2 ω(¬y3) = 1 ω(z1) = 1 ω(¬z1) = 1

Given the weight function ω, we have ω(¬x1, x2,¬y1,¬y2,¬y3, z1) = 0.25, ∥ Φ ∥ω= 4 and
∥ ∃z1.Φ({x1, x2, y1, y2, y3}, {z1}) ∥ω= 3.25.

Weighted model counting is computationally hard (#P-complete [59]), and actually much
harder in practice than satisfiability (the SAT problem). Despite this difficulty, much effort
has been spent in the last decade in developing new algorithms for model counting (either exact
[51, 27, 56, 16, 7, 31, 42, 40, 17, 33, 50, 53, 34, 30, 20, 9] or approximate [55, 25, 11, 12, 60, 54])
which prove practical for larger and larger instances (see https://mccompetition.org/).
Most exact counters are tree-search algorithms exploring the whole space of propositional
interpretations and take advantage of several dedicated techniques. More precisely, these
counters work by recursively branching on a variable x until either a contradiction (non-
chronological backtracking) is reached or the formula is satisfied, relying on the simple
observation that Φ = (x∧Φ|x)∨ (¬x∧Φ|¬x) (Shannon expansion), which translates in terms
of model counting into ∥ Φ ∥=∥ Φ|x ∥ + ∥ Φ|¬x ∥. To avoid visiting all possible branches, the
computed values are memorized so that if the algorithm is recursively called on a subformula
that has already been seen during computation, the number of models of this subformula is
directly returned by the cache (component caching). Another improvement of this algorithm
is based on the observation that if Φ = Φ1 ∧ Φ2 with V ar(Φ1) ∩ V ar(Φ2) = ∅ (disjoint
component analysis), then ∥ Φ ∥=∥ Φ|x ∥ × ∥ Φ|¬x ∥, which allows to significantly reduce
the number of recursive calls. This algorithm can be turned into a projected model counter
algorithm by only branching on projected variables and by associating the constants 0 or 1
to the subformulas that only contain existentially quantified variables (0 if the subformula is
unsatisfiable, 1 otherwise). For weighted model counting, it is enough to slightly modify the
branching rule by considering weights, i.e., ∥ Φ ∥ω= ω(x)× ∥ Φ|x ∥ω +ω(¬x)× ∥ Φ|¬x ∥ω.

https://mccompetition.org/
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3 The Weighted Max#SAT problem

In this section we propose to unify both the functional E-MajSAT [48] and the Max#SAT [23]
problems under a new problem, called the Maximum Weighted Model Counting problem
(WeightedMax#SAT for short). Let us first introduce what are functional E-MajSAT and
Max#SAT problems.

Given a CNF formula Φ, MajSAT(Φ) asks whether a propositional formula is satisfied
by a majority of assignments (2n−1 + 1 for a formula containing n variables). This problem,
an extension of the SAT problem, is the PP-complete problem of reference. Given a CNF
formula Φ(X, Y ), X and Y being disjoint, E-MajSAT(Φ(X, Y )) [38] asks whether there
exists an assignment τ to X such that the majority of complete assignments to Y satisfies
the formula Φ conditioned on τ . E-MajSAT is an NPPP-complete problem [38, 46] and is a
special case of the stochastic satisfiability (SSAT) problem [39].

▶ Example 7 (Example 1 cont’d). Φ is satisfied by 10 assignments, which do not constitute
the majority of assignments (that is 33 models). Thus, MajSAT(Φ) is false. Given X =
{y1, y2, y3} and Y = {x1, x2, z1}, τ = {¬y1,¬y2,¬y3} is a solution for E-MajSAT(Φ(X, Y )).
Indeed, Φ|τ = (¬x1 ∨ ¬t1) is satisfied by 6 assignments (the majority being 5 assignments).

In [48] the authors propose an optimization version of E-MajSAT, called functional
E-MajSAT. In this extension, variables are partitioned into choice variables X and chance
variables Y , that are assigned respectively by the user and by the nature. Given a weight
function ω that assigns probabilities on chance variables, functional E-MajSAT(Φ(X, Y ), ω)
asks for the assignment τ to X that maximizes the weighted model count of Φ|τ , which
corresponds to the maximum probability of the functional E-MajSAT problem on Φ(X, Y ).

▶ Example 8 (Example 1 cont’d). Let us split V ar(Φ) into X = {x1, x2, z1} and Y =
{y1, y2, y3}. ω is the weight function such that ω(y1) = 0.6, ω(y2) = 0.5, ω(y3) = 0.1
(we have ω(¬yi) = 1 − ω(yi)). ∥ Φ|{x1,x2,¬z1} ∥ω= 1.5 is the maximum probability of the
functional E-MajSAT problem on Φ(X, Y ) over ω.

In [23] the authors propose an extension of functional E-MajSAT, called Max#SAT.
Given a formula Φ over disjoint sets of variables X, Y , and Z, the Max#SAT problem is
to maximize over X the number of assignments to Y that have an extension over Z which
satisfies Φ. Contrarily to functional E-MajSAT, variables are all unweighted and some
variables can be forgotten, which can be indispensable to model some concrete problems.

We can now formally define the Maximum Weighted Model Counting problem (Weighted-
Max#SAT), which generalizes both functional E-MajSAT and Max#SAT problems.

▶ Definition 9 (WeightedMax#SAT problem). Given a propositional formula Φ(X, Y, Z)
over disjoint sets of variables X, Y , and Z, and a weight function ω over Lit(X ∪ Y ),
the WeightedMax#SAT problem is to determine an assignment τ to X that maximizes
∥ ∃Z.Φ(X, Y, Z)|τ ∥ω.

▶ Example 10 (Examples 1 and 6 cont’d). Let us split V ar(Φ) into X = {x1, x2},
Y = {y1, y2, y3} and Z = {z1}. τ = {x1, x2} is an optimal solution for both
Max#SAT(Φ(X, Y, Z)) (∥ ∃z1.Φ|τ ∥= 4) and WeightedMax#SAT(Φ(X, Y, Z), ω) (∥
∃z1.Φ|τ ∥ω= 1.5).

For a given functional E-MajSAT problem (Φ(X, Y ), ω), it is easy to determine, using a
WeightedMax#SAT oracle, a solution by considering the propositional formula Φ(X, Y, ∅)
and the exactly same weight function ω. Similarly, we can translate a given Max#SAT

SAT 2022
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problem Φ(X, Y, Z) into a WeightedMax#SAT problem by considering the weight function
that assigns 1 on each literal. A solution for a given WeightedMax#SAT problem (Φ(X, Y, Z),
ω) will be represented by a couple ⟨τ, c⟩, where τ is an assignment of X that maximizes
∥ ∃Z.Φ(X, Y, Z)|τ ∥ω and c is the weighted model count associated to τ . When convenient,
the notation WMax#SAT(Φ(X, Y, Z), ω) will also be used to represent a solution. We
introduce three operators to combine solutions together: ×, ÷, >, and the function max:
⟨τ1, c1⟩ × ⟨τ2, c2⟩ = ⟨τ1 ∪ τ2, c1 × c2⟩;
⟨τ1, c1⟩ ÷ ⟨τ2, c2⟩ = ⟨τ1 \ τ2, c1/c2⟩;
⟨τ1, c1⟩ > ⟨τ2, c2⟩ is true when c1 > c2;
max(⟨τ1, c1⟩, ⟨τ2, c2⟩) = (c1 > c2) ? ⟨τ1, c1⟩ : ⟨τ2, c2⟩.

4 An Exact Weighted Max#SAT Approach

In this section, we propose an algorithm to solve exactly the WeightedMax#SAT problem
in practice. First, we focus on the case where an optimal solution is required. Afterwards,
we show how this algorithm can be enhanced to become an anytime solver able to handle
the decision problem associated to the WeightedMax#SAT problem.

4.1 Solving Exactly the WeightedMax#SAT Problem
Given a propositional formula Φ(X, Y, Z) over disjoint sets of variables X, Y , and Z, and a
weight function ω over Lit(X∪Y ), our approach takes advantage of the following observations:
1. If x ∈ X then

WMax#SAT(Φ(X, Y, Z), ω) = max(WMax#SAT((Φ ∧ x)(X, Y, Z), ω),
WMax#SAT((Φ ∧ ¬x)(X, Y, Z), ω))

2. If Φ is not satisfiable, then WMax#SAT(Φ(X, Y, Z), ω) = ⟨τ ∈ 2X , 0⟩
3. If X = ∅, then WMax#SAT(Φ(X, Y, Z), ω) = ⟨∅, ∥ ∃Z.Φ ∥ω⟩
4. If ℓ is unit in Φ and V ar(ℓ) ∈ X, then

WMax#SAT(Φ(X, Y, Z), ω) = ⟨ℓ, ω(ℓ)⟩ ×WMax#SAT(Φ|ℓ(X \ {V ar(ℓ)}, Y, Z), ω)
5. If x ∈ X is free in Φ(X, Y, Z), then

WMax#SAT(Φ(X, Y, Z), ω) = ⟨ℓ, ω(ℓ)⟩ × WMax#SAT(Φ(X \ {x}, Y, Z), ω)
with ℓ = x if ω(ℓ) ≥ ω(¬ℓ) and ℓ = ¬x otherwise

6. If ℓ is unit in Φ and V ar(ℓ) ∈ Y , then
WMax#SAT(Φ(X, Y, Z), ω) = ⟨∅, ω(ℓ)⟩× WMax#SAT(Φ|ℓ(X, Y \ {V ar(ℓ)}, Z), ω)

7. If y ∈ Y is free in Φ(X, Y, Z), then
WMax#SAT(Φ(X, Y, Z), ω) = WMax#SAT(Φ(X, Y \ {y}, Z), ω) × ⟨∅, ω(y) + ω(¬y)⟩

8. If Φ(X, Y, Z) ≡ Φ1(X1, Y1, Z1) ∧ Φ2(X2, Y2, Z2) with V ar(Φ1) ∩ V ar(Φ2) = ∅, then
WMax#SAT(Φ(X, Y, Z), ω) = WMax#SAT(Φ1(X1, Y1, Z1), ω)

× WMax#SAT(Φ2(X2, Y2, Z2), ω)
Let us give the intuition of why these observations hold, with the help of the following
example:

▶ Example 11. Let ∃Z.Φ(X, Y, Z) = (a∨ b)∧ (a∨c∨d)∧ (¬a∨c∨d)∧ (¬a∨¬c∨¬d)∧ (¬a∨
¬c ∨ d) ∧ (e ∨ f) be a weighted projected CNF formula, with X = {a, b, e}, Y = {c, f} and
Z = {d}, and ω the weight function such that ω(a) = 0.4, ω(b) = 0.3, ω(c) = 0.7, ω(e) = 0.3,
ω(f) = 0.5 (wih ω(ℓ) = 1− ω(¬ℓ)). The tree depicted in Figure 1 represents a possible trace
of d4Max regarding ∃Z.Φ(X, Y, Z).

By definition, if x belongs to X, then the variable x must be assigned in the solu-
tion. Let ⟨τx, cx⟩ and ⟨τ¬x, c¬x⟩ evaluate the two possible situations for x, with ⟨τx, cx⟩ =
WMax#SAT((Φ ∧ x)(X, Y, Z), ω) and ⟨τ¬x, c¬x⟩ = WMax#SAT((Φ ∧ ¬x)(X, Y, Z), ω).
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Figure 1 Possible trace of d4Max regarding the formula given in Example 11.

It is clear that an optimal solution for WMax#SAT(Φ(X, Y, Z), ω) should maximize the
number of the weighted model count, that is ⟨τx, cx⟩ if cx > c¬x and ⟨τ¬x, c¬x⟩ otherwise
(see the operator max in Section 3). Concerning Observation 2, since the weight function only
assigns strictly positive values to literals, if Φ is unsatisfiable, then whatever the assignment
to X is, the weighted model count will be zero (i.e., ⟨τ ∈ 2X , 0⟩ is a solution). Observation 3
is a direct consequence of the WeightedMax#SAT definition. Because weights are strictly
positive, Observation 4 can be obtained from Observations 1 and 2. If x ∈ X is free in
Φ(X, Y, Z), then Φ ∧ x ≡ Φ ∧ ¬x. Let ⟨τ, c⟩ = WMax#SAT(Φ(X \ {x}, Y, Z), ω). Since x is
free in Φ, then WMax#SAT((Φ∧x)(X, Y, Z), ω) = ⟨τ ∧x, c×w(x)⟩. Consequently, choosing
the literal of x that is maximal regarding ω constructs an optimal solution (Observation 5).
Since unit literals and free variables from Y and Z can be accumulated and considered only
when the set of optimization variables is empty, we directly get that Observations 6 and 7
are correct.

▶ Example 12 (Example 11 cont’d). As in ∨3 there is no more X variables, we know
that ω1 is equal to 0 (Observation 2, no extension to Z satisfies Φ1|{a,c}), and that ω2
is equal to ω(c) (Observation 3). Then, as b is free, ω(Ψ1|a) is equal to (ω1 + ω2) ×
ω(¬b) = 0.49, as per Observation 5 and as ω(¬b) > ω(b). Likewise, there is no more X

variables in ∨4 and whatever the valuation of c, there exists an extension to d that satisfies
Ψ1|¬a. Thus, as b is propagated to true when a is fixed to false to ensure the satisfiability
of Φ1, ω(Φ¬a) = (ω3 + ω4) × ω(b) = 0.3 (Observation 4). As in ∨1, a belongs to X,
ω(∨1) = max(ω(Φa)×ω(a), ω(Φ¬a)×ω(¬a)) = max(0.196, 0.18) (Observation 1). Thus, the
solution returned by ∨1 is {a ∧ ¬b, 0.196}. Concerning Φ2, ω5 is equal to ω(f) + ω(¬f) = 1
(Observation 7, f being free) and ω6 to ω(f) (Observation 6, f being fixed). Then, as in ∨1,
ω(Φ2) = max((Φ2|e × ω(e), Φ2|¬e × ω(¬e)) = max(0.3, 0.35) (Observation 1, e ∈ X). The
solution returned by ∨2 is {¬e, 0.35}.

Regarding Observation 8, let us suppose that Φ(X, Y, Z) can be split into two connected
components Φ1(X1, Y1, Z1) and Φ2(X2, Y2, Z2), i.e., Φ ≡ Φ1 ∧Φ2 and V ar(Φ1) ∩ V ar(Φ2) =
∅. Let us consider two optimal solutions for the corresponding subproblems: ⟨τ1, c1⟩ =
WMax#SAT(Φ1(X1, Y1, Z1), ω) and ⟨τ2, c2⟩ = WMax#SAT(Φ2(X2, Y2, Z2), ω). We already
know that connected components can be leveraged for weighted projected model counting.
Then, ∥ ∃Z.Φ|τ1∧τ2 ∥ω= c1 × c2. Let ⟨τ ′

1 ∧ τ ′
2, c⟩ = WMax#SAT(Φ(X, Y, Z), ω) with

V ar(τ ′
1) ∩ X2 = V ar(τ ′

2) ∩ X1 = ∅ and suppose, for sake of contradiction, that c > c1× c2.
Since Φ1(X1, Y1, Z1) and Φ2(X2, Y2, Z2) do not share any variables, c = c′

1 × c′
2 = ∥

∃Z1.Φ(X1, Y1, Z1)|τ ′
1
∥ω × ∥ ∃Z2.Φ(X2, Y2, Z2)|τ ′

2
∥ω. Then, c > c1 × c2 means either c′

1 > c1
or c′

2 > c2. Without loss of generality, let us suppose that c′
1 > c1. Thus, ⟨τ ′

1, c′
1⟩ is a

solution for WMax#SAT(Φ1(X1, Y1, Z1), ω) and would be strictly better than ⟨τ1, c1⟩, which
contradicts the fact that ⟨τ1, c1⟩ is an optimal solution for WMax#SAT(Φ1(X1, Y1, Z1), ω).
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Algorithm 1 d4Max.

Input: Φ(X, Y, Z): a CNF formula, and ω a weight function over Lit(Φ).
Output: ret = ⟨τ, c⟩ s.t. τ is an optimal WeightedMax#SAT solution for the given
input, with c =∥ ∃Z.Φ|τ ∥ω the weighted model count obtained.

Global variables: best = ⟨β, b⟩ is the best solution found so far (it is initialized to
⟨∅,−1⟩), and scale = ⟨σ, s⟩ is a partial solution (it is initialized to ⟨∅, 1⟩).

1 if Φ is unsat then return ⟨τ ∈ 2X , 0⟩
2 (Φ′, µ) ← BCP (Φ)
3 m← ω(µ∩Lit(X∪Y ))×

∏
x∈X\V ar(Φ′) max(w(x), w(¬x))×

∏
y∈Y \V ar(Φ′) w(y)+w(¬y)

4 α← µ ∩ Lit(X)
5 α← α ∪ {ℓ | x ∈ X \ V ar(Φ′) with ℓ = x if w(ℓ) ≥ w(¬ℓ) and ℓ = ¬x otherwise}
6 ret← ⟨∅, 1⟩
7 if cache[Φ′] ̸= ∅ then ret←cache[Φ′]
8 else if V ar(Φ′) ∩ X = ∅ then ret← ⟨∅, ∥ ∃Z.Φ′ ∥ω⟩

else
9 saveScale← scale; scale← scale× ⟨α, m⟩

10 {Φ1, . . . , Φj} ← connectedComponent(Φ′)
11 if j > 1 then
12 map← dig({Φ1, . . . , Φj},(X, Y, Z), ω) // with map[Φi] = soli
13 scale← scale×map[Φ1]× . . .×map[Φj ]
14 for Φi ∈ {Φ1, . . . , Φj} do
15 scale← scale÷map[Φj ]
16 current← d4Max(Φi(X ∩ V ar(Φi), Y ∩ V ar(Φi), Z ∩ V ar(Φi)), ω)
17 scale← scale× current

18 ret← ret× current

else
19 v ← selectVar(V ar(Φ′) ∩X)
20 ⟨τ1, c1⟩ ← d4Max((Φ′ ∧ v)(X ∩ V ar(Φ′), Y ∩ V ar(Φ′), Z ∩ V ar(Φ′), ω)
21 ⟨τ2, c2⟩ ← d4Max((Φ′ ∧ ¬v)(X ∩ V ar(Φ′), Y ∩ V ar(Φ′), Z ∩ V ar(Φ′), ω)
22 ret← max(⟨τ1, c1⟩, ⟨τ2, c2⟩)
23 cache[Φ′]← ret

24 scale← saveScale

25 if ret× ⟨α, m⟩ × scale > best then best← ret× ⟨α, m⟩ × scale

26 return ret× ⟨α, m⟩

▶ Example 13 (Examples 11 and 12 cont’d). Previously, we compute that the solutions for
Φ1 and Φ2 are respectively equal to {a ∧ ¬b, 0.196} and {¬e, 0.35}. As Φ ≡ Φ1 ∧ Φ2 and
V ar(Φ1) ∪ V ar(Φ2) = ∅, we have, thanks to Observation 8, WMax#SAT(Φ(X,Y ,Z), ω) =
{a ∧ ¬b ∧ ¬e, 0.196× 0.35}.

Based on the model counter d4 [33], d4Max is a top-down tree-search algorithm which is
decomposed into two parts. As long as the current formula contains variables from X, we
branch on such variables leveraging Observation 1. Once X is empty (line 8), we fall into
the observation 3 and compute the assignment that maximizes ∥ ∃Z.Φτ ∥ω.

Algorithm 1 provides the pseudo-code of d4Max that solves exactly WeightedMax#SAT
(we leave for the next subsection the blue part of the algorithm which concerns the anytime
version). It takes as an input a CNF Φ(X, Y, Z) and a weight function ω over the literals
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of Φ. (X, Y, Z) forms a partition of V ar(Φ), with X, Y and Z respectively the optimization,
counting, and existentially quantified variables. It returns a term τ , corresponding to an
assignment to X, and the projected number of weighted models of ∃Z.Φ|τ over Y .

First, at line 1, one tests whether the formula Φ is satisfiable (this case meets Observa-
tion 2). If not, whatever the interpretation considered on X is, the corresponding weighted
model count would be equal to zero and d4Max would return ⟨τ ∈ 2X , 0⟩. BCP simplifies
Φ at line 2 and returns Φ′, the formula obtained after applying unit propagation over Φ,
alongside the unit literals µ which were propagated. Since all variables that became free
during propagation are not returned by BCP, we need to retrieve them to compute the
correct solution (for both the weight model count and the term). Propagated literals that
belong in X or Y also need to be considered in the returned solution. Consequently, we
compute a multiplicative factor m (line 3) that is obtained from the observations 4–7 and
that considers both unit literals (ω(µ ∩ Lit(X ∪ Y ))) and free variables (the remaining
part). This multiplicative factor is then used to get the correct count when the solution is
returned by d4Max (line 26). Similarly, thanks to the observations 4 and 5, we compute a
term α that will be concatenated with the solution returned by d4Max to get the correct
solution (lines 4–5).

Afterwards, we initialize ret = ⟨∅, 1⟩ (line 6), a temporary variable which serves to store
the result returned at line 26. We use a cache to avoid computing once more an already
encountered subformula (line 7). More precisely, each time a new value of ⟨τ, c⟩ is computed
for a given input Φ, it is memoized in a hash table (Φ being the key and ⟨τ, c⟩ the associated
value). Thus, if Φ′ has already been cached, cache[Φ′] can be reused and then ret is set
accordingly (line 7). As we ensure that the formula is satisfiable (line 1), we can not have
cache inconsistency [52, 10], that makes the formula memoized line 23 usable.

Next, if the set of optimization variables is empty, we take advantage of Observation 3 to
directly construct a solution by calling a weighted projected model counter on Φ′ (line 8).

Finally, we consider the case where V ar(Φ′)∩X ̸= ∅ (lines 9–23). We first take advantage
of the dynamic decomposition of d4. If Φ can be partitioned into disjoint subformulas
{Φ1, . . . , Φd}, then regarding the observation 8, each subformula Φi is treated separately and
their solutions aggregated afterwards (lines 11–18). More precisely, connectedComponent
partitions Φ′ into a set of disjoint connected components at line 10. If there are more than
one component, then at lines 11–18, ret is used to aggregate solutions of all subcomponents.
If Φ′ can not be partitioned into more than one component (j = 1), a variable v from
V ar(Φ′) ∩X is selected (line 19). In our experiments the heuristic VSADS is used [52]. We
compute via two recursive calls to d4Max the solutions for either conditioning Φ′ by v or ¬v

(lines 20 and 21). As pointed out by Observation 1, the optimal solution is equal to the one
having the higher weighted model count (line 22). At line 26, we return the current result
stored in ret by extending its term with α and by multiplying its number of models by m.

4.2 An Anytime Weighted Max#SAT Solver
The previous subsection left the blue part of Algorithm 1 undescribed. However, it is
primordial whether we want to turn d4Max into an anytime solver. Without it, we can not
update from anywhere in the search space the current best solution found as we would need
to wait for the completion of the recursion, preventing the anytime aspect.

Even if an optimal solution of the input formula is returned at line 26 of Algorithm 1, it
can not be considered as an optimal solution of the original problem as it misses information
given at the end of the recursion. First, information about which literals are assigned or
which variables are free is lost when d4Max is recursively called. To recover this information
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Algorithm 2 dig.

Input: {Φ1, . . . , Φj}: a set of satisfiable CNF formulas, (X, Y, Z) a partition of
propositional variables, and ω a weight function over Lit(Φi).

Output: map = {Φ1 : ⟨τ1, c1⟩, . . . , Φj : ⟨τj , cj⟩} s.t. ∀Φi, τi ∈ 2X∩V ar(Φi) and
ci =∥ ∃Z.Φi(X ∩ V ar(Φi), Y ∩ V ar(Φi), Z ∩ V ar(Φi))|τi

∥ω.

1 map← {}
2 for Φi ∈ {Φ1, . . . , Φj} do
3 τi ← solve(Φi) ∩ Lit(V ar(Φ) ∩X)
4 map[Φi]← ⟨τi, ∥ ∃Z.Φi(X ∩ V ar(Φi), Y ∩ V ar(Φi), Z ∩ V ar(Φi))|τi

∥ω⟩
5 return map

we need to aggregate to a global variable, called scale and initially set to ⟨∅, 1⟩, the partial
solutions ⟨α, m⟩ that are extracted from the free variables and the unit literals of the input
formula (lines 3–5 of Algorithm 1). Nevertheless, even if scale now gives enough information
to retrieve the context for the considered formula, it is still possible that ret, updated with
the information contained in scale, is greater than the optimal solution. Indeed, if the
formula has been previously partitioned into disjointed components, the current solution only
concerns the current component and not the global formula. Let us illustrate this situation
with the formula of Example 1 and the weight function given in Example 6.

In Algorithm 1, if we first branch on x1 and call d4Max on (Φ∧x1), then we get the following
two connected components {{(x2 ∨¬y3)}, {(¬y1 ∨ y2), (y1 ∨¬y2)}} and scale = ⟨x1, 1⟩. Let
us consider first the component {(x2∨¬y3)}, then the optimal solution for this formula would
be ⟨x2, 3⟩, which becomes ⟨x1 ∧ x2, 3⟩ when updated with the context. Clearly this solution
is greater than the optimal solution which is equal to 1.5 for this problem (Example 10).
This situation occurs because the weight function can assign values in [0, 1] to literals. Thus,
we need to consider all the connected components to obtain a complete solution.

To overcome this issue, that arises when considering connected components, we consider
suboptimal solutions on the connected components that have not yet been checked. By
updating scale accordingly, it lets us consider solutions that are complete and thus which can
be used to update the best solution found so far. The function dig, described in Algorithm 2,
constructs a map that respects this requirement. Given a set of satisfiable CNF formulas, a
partition of variables and a weight function, this function computes a map that associates
for each given CNF formula a suboptimal solution. It begins by initializing an empty map
(line 1), that will be filled in within the for loop (lines 2–4) and finally returned at line 5.
For each CNF formula Φi, a suboptimal solution is computed and saved in the returned
map. First, a model of Φi is obtained by calling a SAT solver via the function call solve(Φi)
(line 3) and narrowed afterwards to the literals of V ar(Φi)∩X to produce the assignment τi.
Finally, a weighted projected model counter is called to get the weight model count ci of Φi

associated with τi in order to map with Φi the (potentially suboptimal) solution ⟨τi, ci⟩.
Now, let us continue the description of Algorithm 1. Besides the input/output variables,

we consider two global variables: best, used to store the best solution found so far and
initialized to ⟨∅,−1⟩, and scale the suboptimal solution described before, which is used to
test if the current solution can be completed with a better solution than best (line 25). At line
9, scale is saved in saveScale and updated with the information about propagated literals and
free variables from BCP. In order to keep up to date the variable for the caller, scale is reset to
its initial value (line 24). The remaining blue part revolves around the connected component
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management. We first compute a map that associates for each formula a suboptimal solution,
by calling dig (line 12), and we update scale by aggregating all the computed potentially
suboptimal solutions (line 13). Then, when a formula Φi is considered, we remove from
scale the contribution of the suboptimal solution map[Φi] (line 15). Consequently, when
d4Max is recursively called on the ith component (line 16), scale only contributes for the
other connected components. Because the solution computed line 16 is optimal, we can use
it to update scale (line 17) and to improve the suboptimal solution used for the remaining
connected components.

Let us remark that, in Algorithm 2, it would be possible to promote literals with high
weights by modifying the polarity heuristic of the SAT solver in such a way that the solver,
when deciding the phase of the selected variable, branches first on the literal with the highest
weight. However, we have decided to keep the solver unchanged and to leave this lead for
future works. Nonetheless, we chose to exploit this idea in Algorithm 1 by considering first
the best literal (regarding the weight function) when calling recursively d4Max (lines 20–21).
This is the version we ran for the experiments presented in the next section.

5 Experimental Evaluation

In order to evaluate d4Max, we consider benchmarks that model the problem of searching
for the marginal maximum a posteriori hypothesis (MMAP) in probabilistic inference, as
well as Exist-Random SSAT formulas. The experiments have been conducted on Intel Xeon
E5-2643 (3.3 GHz) bi-processors with 64 GiB RAM. A time-out of thirty minutes and a
memory-out of 32 GiB have been considered on each instance. The source code of d4Max,
the benchmarks used, and logs of empirical results are available in supplementary materials.

On MMAP benchmarks, we compare d4Max with the inference tool merlin (https:
//github.com/radum2275/merlin), that implements state-of-the-art exact and approximate
algorithms for probabilistic inference over Bayesian networks and Markov random fields.
merlin takes upon entry instances respecting the UAI competition format, as well as two
input files: one taking the evidence (in our case an empty set) and the other the selected
MAP variables. We selected MMAP among the different probabilistic inference tasks it
supports and the exact algorithm bte for Bucket Tree Elimination [28]. We also consider
the SSAT solvers erSSAT (https://github.com/NTU-ALComLab/ssatABC) and ClauSSat (https:
//github.com/NTU-ALComLab/ClauSSat) for both MMAP and Exist-Random SSAT formulas.
ClauSSat is executed using the option sguwc that enables all optimization techniques. erSSat
is run sequentially using its default parameters. However, an underflow problem occuring
whenever the probabilities are too small (which was our case) lead us to prefer the model
counter Cachet [51], rather than using BDDs, to compute weighted model counts. This issue
has also been pointed out by the github community. For d4Max, the branching heuristic used
depends on the problem. Concerning MMAP benchmarks, we chose the VSADS heuristic [52],
a well-established heuristic in model counters. For SSAT instances, the DLCS heuristic,
which prioritizes variables that appear in more clauses, is used. The heuristic best selects
the polarity to explore first of the maximizing variable chosen in decision nodes, taking into
account the best solution found so far. Otherwise, default parameters are used.

MMAP Formulas

We considered 1190 weighted constraint networks from the Compile!Project (http://www.
cril.univ-artois.fr/kc/benchmarks.html), corresponding to Bayesian networks or random
Markov fields in the UAI competition format. They are gathered into seven data sets (see
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https://www.ics.uci.edu/~dechter/softwares/benchmarks/UAI08 for more details about the
benchmarks), as follows: bn2o (BN, 18), diagnose (BN, 100), grids2 (BN, 320), linkage (RN,
22), promedas (RN, 238), BN, relational (395), UAI06 (RN, 97).

In the following we present the experimental protocol we use to generate MMAP
benchmarks from Bayesian networks (BN). Since Markov networks are, in essence, quite
similar to Bayesian networks, the protocol would be the same. Given a BN and an assignment
(called an evidence) on some variables, the MAP query is to find the configuration of a
selected subset of MAP variables with the highest probability. The MMAP estimation, in
addition, marginalizes a set of (hidden) variables, which means it averages their probability.

In our experiments, we searched for the most probable configuration among all possible
combinations (i.e., without any evidence), of a subset of variables taken randomly from
the original set of MAP variables. Obviously, this problem is computationally harder than
one single #SAT query, as per each computation the associated probability is computed.
Therefore, there is no need to consider all instances for which a single weighted model
counting fails within 10 minutes. Thus, we retrieved all instances whose weighted model
count was successfully computed by d4 given this time limit. We also gather instances the
inference tool merlin solved1. Finally, 861 instances were considered, d4Max and merlin
having solved respectively 763 and 359 instances.

For each network, we first randomly selected four different sets of random variables,
containing respectively 20%, 40%, 60% of the initial set, and a fixed-size set of 10 variables.
These campaigns will be denoted p20, p40, p60 and f10. Then, a total of 3444 instances were
considered for this first experimentation. Afterwards, as d4Max takes as input weighted CNF
instances, we translated the graphical models into CNF formulas and weight maps with
the translator bn2cnf [8]. The random variables are encoded using a logarithmic boolean
representation of the domains [8] and the conditional probability tables (CPTs) are translated
into SAT using the classic encoding presented in [13].

Considering the WeightedMax#SAT instances, for a given BN problem encoded into SAT
using bn2cnf, we put into X the propositional variables that represent the selected MAP
variables. All remaining propositional variables (meaning those used to encode the remaining
random variables and those added to represent CPTs) are put into Y . For this problem the
set Z is always empty. Concerning the weight function ω, we simply use the one generated
by bn2cnf. That is, for each variable x used to encode random variables ω(x) = ω(¬x) = 1,
and for each propositional variable encoding CTP probabilities ω(x) + ω(¬x) = 1.

In order to take advantage of the two SSAT solvers2, we convert MMAP problems into
functional E-MajSAT problems by splitting the variables into MAP variables, that will be
considered as existentially quantified, and the others variables, that will be considered as
randomized quantified. About the randomized quantifiers, we consider for each variable x

used to encode random variables Pr(x) = Pr(¬x) = 0.5, and for each propositional variable
encoding CTP probabilities Pr(x) + Pr(¬x) = 1.

For each instance, we measured the time in seconds required by all solvers to find the best
configuration. We also retrieve the best solutions found to ensure the exactness of all solvers,
but we will not include them in the following figures. Table 1 summarizes the number of
instances considered per each family, as well as the number of instances solved per each
solver and per each campaign.

1 For this selection phase, erSSAT and ClauSSat were not considered as they have the same behavior as
d4 on weighted counting problems.

2 In [48], the authors proposed a branch-and-bound solver for functional E-MajSAT problems, that
exploits upper bounds computed from d-DNNF [18] representation of the given formula. Unfortunately,
this software is no more maintained and the authors were not able to provide us a version we could use
for our experiments.

https://www.ics.uci.edu/~dechter/softwares/benchmarks/UAI08
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Table 1 Summary of the number of solved inputs per each family and per each campaign.

Benchmark d4Max merlin erSSAT ClauSSat
Family #I p20 p40 p60 f10 p20 p40 p60 f10 p20 p40 p60 f10 p20 p40 p60 f10
bn2o 18 0 0 0 0 17 6 0 18 0 0 0 0 0 0 0 0
diagnose 100 0 0 0 0 0 0 5 100 0 0 0 0 0 0 0 0
grids2 244 73 74 76 77 0 0 21 56 0 0 0 0 0 0 0 7
linkage 5 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
promedas 91 44 26 21 25 8 17 23 25 6 6 3 16 1 1 1 1
relational 384 256 257 269 383 1 1 1 103 105 123 65 306 1 1 1 1
UAI06 19 5 6 6 5 15 11 5 15 3 1 0 1 0 0 0 0

As can be seen, the results show that d4Max outperforms the SSAT solvers erSSAT and
ClauSSat whatever the campaign or the family considered. Specifically, d4Max is able to
solve all the benchmarks solved by ClauSSat. erSSAT seems better than ClauSSat, which is
quite surprising since ClauSSat is a more recent version of erSSAT with additional features.
However, as it will be pointed out in the next paragraph, erSSAT appears to be incorrect since
it can return solutions that are not optimal. For 6 ouf of 8 instances solved by ClauSSAt,
erSSAT returns a different satisfying probability than d4Max and ClauSSat. Nevertheless,
regardless the correctess of erSSAT, d4Max solves more instances than erSSAT and in quicker
times. We can note that both SSAT solvers seem to behave similarly to d4Max, solving
instances from the same families with a better rate when few variables are existentially
quantified (f10).

Concerning the comparison with the dedicated tool merlin, we show that d4Max and
merlin solve different families of instances, as stated in Figures 2. Only campaigns p20 (Fig.
2a) and f10 (Fig. 2b) are figured, as there is no significant distinction between p20 and
campaigns p40 and p60. More precisely, d4Max and merlin only solve the same 184 instances:
14 for p20, 21 for p40, 19 for p60 and 130 for f10. Both solvers completed more instances in
f10 than in other campaigns. However, we can note that in general, merlin either succeeds
within 10 seconds or fails. Thus, the solving times of merlin are significantly lower than
d4Max’s, but merlin, no matter the campaign, also solves less instances that d4Max.

We remark that while merlin solves all bn2o benchmarks when there are less than 25%
of selected MAP variables and all diagnose instances in campaign f10, d4Max solves none
(as both SSAT solvers). It may be due to an encoding problem. bn2o networks consist
of noisy-OR relations between nodes distributed in two layers [32] and diagnose instances
are hand-built and relatively large with approximately 200-300 nodes that assume causal
independence, i.e., noisy-MAX relations. In [36], authors state that instances containing
noisy-OR and noisy-MAX relations are intractable for weighted model counters if the encoding
used does not exploit their semantics, which was not the case here. Thus, it may explain why
d4Max could not solve these two families. We could also note that merlin scores among its
longer solving times for bn2o instances, with in average 105 seconds against an handful for
others families. In general, merlin has difficulties to solve instances whenever the number
of MAP variables is large, and could only solve diagnose instances when the number of
selected variables was fixed at ten (against between 41-66, 82-132 and 122-198 variables for
respectively p20, p40 and p60 campaigns).

Both d4Max and merlin perform relatively well on small instances of the family UAI06,
excepted for graph coloring instances that none solves. Beside in campaign p60, merlin
completed more instances than d4Max in this category. Concerning the grids benchmarks,
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(a) Campaign p20. (b) Campaign f10.

Figure 2 Comparative of solved inputs for d4Max and merlin.

they are separated into three groups depending on the fraction of deterministic variable,
i.e. variables that are deterministic functions of their parents. merlin solves some instances
for the first two groups (50% and 75%), mainly on f10, but none for the last one (90%).
d4Max solves less instances for 50% and 75% instances but completes the major part of the
90% grids, the remaining unsolved ones being the larger grids that were encoded with more
than 2000 propositional variables. As other instances in the first two categories with less
variables were unsolved, we can suppose that determinism was the major key to be solved by
d4Max. As for linkage instances, there are relatively large in terms of MAP and propositional
variables, and only four out of the 88 were solved by merlin for the last campaign (f10).
Behaviors for promedas benchmarks were similar for both tools, with the completed instances
being the ones with few MAP and CNF variables.

The main discrepancy in the results remains with relational instances, in particular with
blockmap and students ones. d4Max nearly solves all in mere seconds, while merlin completes
none for p20, p40 and p60, only succeeding students family in f10. In the same way, only an
handful of mastermind benchmarks were solved by both solvers on the first three campaigns
while all of them were solved by d4Max in f10 and 36 for merlin (out of 128). All relational
instances have high levels of determinism, the main difference between blockmap and students
with masterminds benchmarks being the ratio of the level of CPT parameters to the number
of variables, higher for the two firsts [14].

Then, experiments show that although d4Max is generic and not dedicated for MMAP
problem, it stays rather competitive and solves more instances than merlin, albeit less
rapidly. Furthermore, d4Max seems to scale better than merlin, which solves for the most
part when the set of maximizing variables was small. But, determinism rather seems to be
important for d4Max, and a customized encoding for noisy-OR and noisy-MAX relations may
be required to permit d4Max to solve more families.

Exist-Random Formulas

We considered all Exist-Random and Exist-Random-Exist formulas from the collection of
SSAT instance (https://github.com/NTU-ALComLab/ssat-benchmarks), excepted for random
k-CNF formulas. In Table 2, the first family (MaxCount) encodes maximum satisfiabilty,

https://github.com/NTU-ALComLab/ssat-benchmarks
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quantitative information flow and problem synthesis into Exist-Random SSAT; the second
family encodes the maximum probabilistic equivalence (MPEC); and the four last families
encode planning problems (Conformant, Sand-Castle, Tiger and ToiletA).

Table 2 Summary of the number of solved Exist-Random SSAT inputs per each family.

Benchmark
Family #I d4Max erSSAT ClauSSat

MaxCount 26 8 9 1
MPEC 60 11 40 4
Conformant 24 2 1 2
Sand-Castle 25 22 15 11
Tiger 5 4 3 2
ToiletA 77 61 43 49

In general, whenever the numbers of variables and clauses are large (more than a thousand
of each, mainly in MaxCount, MPEC and Conformant families), no solver found a solution.
On smaller benchmarks (Sand-Castle, Tiger and ToiletA from the planning family), with at
most a few hundred of variables, solvers are relatively efficient. Let us observe that d4Max
clearly outperforms ClauSSat since it solves all the instances solved by ClauSSat, and in
quicker times. Concerning erSSat, the evaluation is more complicated. Indeed, on several
instances (indicated in italics in Figure 2), the results found by erSSAT either differ from the
solutions given by d4Max and ClauSSAT or are erroneous. In the first case, we only compare
the results when all three solvers terminated and consider significant discrepancies that do
not revolve around approximation (for exemple 0.9772288[. . . ] against 9.772290e−01). This
issue, erSSAT disagreeing with d4Max and ClauSSat about the model counts, arises for two
MaxCount instances, one Conformant benchmark and 34 ToiletA instances. The second case
concerns benchmarks whose model counts are equal to 1, i.e., benchmarks where there exists
an assignment over the variables of X such that any assignment over the variables of Y can
be extended into a model. In such a case, we can check for the correctness of the solvers
on these instances by replacing all randomized quantifiers with universal quantifiers and
by using a QBF solver (in our case, DepQBF (https://lonsing.github.io/depqbf/)). If the
QBF solver returns unsatisfiable, then the solvers that return a model count equal to 1 are
incorrect. Following this protocol, we observe than erSSAT is incorrect on all benchmarks
from the MPEC family it solves. It is important to point out that on all the benchmarks
d4Max and ClauSSAT return a model count equal to 1, then the QBF version of the formula
is well satisfiable. Thus, the relative effectiveness of erSSAT regarding the Exist-Random
instances should be balanced with its discrepancies. When we compare d4Max with erSSAT
when all solvers agree on the solutions (mainly on the Sand-Castle family), d4Max is quicker
than erSSAT.

In the next section, we will evaluate d4Max anytime approach, to check if its longer
resolution times can be compensated by its quickness to find a solution close to the optimal.

Evaluating d4Max Anytime Approach

In this part we want to evaluate how fast d4Max picks a solution whose weight model count
is close to the optimal. To do so, we can not use any instance whose solution is unknown as
we need to compare the solutions found with the optimal one. Therefore, we only consider
benchmarks d4Max was able to solve and for each instance, we record whenever a better
solution is found and its quality, i.e., how close it is to the optimal in terms of percentage.

SAT 2022
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At first, in addition to retrieve the time (in seconds) required to compute the optimal
weight model count final, we also wanted to check when intermediate weight models counts
reached at least 90% and 95% of final. However, experiments show that weight model counts
rarely went through these levels and directly reached 100% of final instead. We denote by
best the first solution that reaches 100%. We can note that precision settings prevent from
differentiating weighted model counts past the fiftieth digit. Therefore, a weight model count
stamped 100% could, in fact, be slightly lower than the optimal one.
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(b) Evaluation of d4Max.

Figure 3 Quality evolution of solutions generated by d4Max.

Figure 3a shows for two instances (from the families grids2 and blockmap) the times
when new better solutions have been computed, as well as their quality. For both instances,
d4Max spotted a solution really close to the optimal well before the timeout. It found a good
solution at 438.45 seconds for blockmap and at 99.46 seconds for grids2, while their complete
times were respectively 937 and 824.98 seconds, meaning that at least half the time was
dedicated into scanning the remaining of the search space. Prior levels were 67% and 81%,
thus missing 90% and 95% stages. Figure 3b resumes for all instances solved by d4Max the
times in seconds it took to find the first solution at 100% (best) and to complete the search
(final). Experiments show that for 1469 out of 1613 instances, a good solution was found
under 100 seconds. For all instances whose final time is relatively long (>100 seconds): 50%
of them can have their final time cut at least by half, and 25% have a good enough solution
in at most 10% of the final time. Thus, d4Max benefits from becoming an anytime solver, as
for the major part, there is no need to wait for the completion of the algorithm. When a
good estimation of the optimal solution is known before the execution, a threshold can also
be set up to stop the search as soon as d4Max finds a solution that exceeds it.

We also looked at MMAP instances d4Max failed to solve but merlin completed. As
merlin outputs are less precise that d4Max’s, we could not generate percentages as in the
previous experiment, but we still can easily observe that d4Max and merlin have different
fields of expertise: d4Max was not able to draw near the solution, reaching, at most, 10% of
the optimal weight model counting.

6 Conclusion and Future Work

In this paper, we defined the WeightedMax#SAT problem, which generalizes both Max#SAT
and functional E-MajSAT problems. We presented an exact algorithm d4Max, a top-down
tree-search procedure based on the sequential counter d4 that computes the assignment, to a
given set of variables, which maximizes the weighted projected model count. Additionally, we
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proposed an alternative algorithm in order to make d4Max an anytime WeightedMax#SAT
solver. In our experiments, we first compared d4Max with the state-of-the-art inference tool
merlin on the MMAP query on Bayesian and Markov networks. Results shown that d4Max,
although not dedicated to this problem, is quite competitive and may be more scalable
than merlin. Additionally to the MMAP instances, we also considered exist-random SSAT
benchmarks to evaluate the effectiveness of d4Max against state-of-the-art SSAT solvers. Our
results clearly demonstrated the superiority of d4Max on the considered benchmarks. We
also shown how d4Max benefits from having an anytime approach.

As a next step, we plan to evaluate d4Max on other applications in areas such as probabil-
istic programming, explainable AI and probabilistic model checking. For the anytime version
of d4Max, we plan to investigate dedicated branching heuristics that could help converge
more rapidly towards an optimal solution. An option would be to leverage Multi-Armed
bandit techniques exploiting policy, such that EXP3 [5], UBC1 [4] or Thompson Sampling
[49], to estimate the best branch to explore. It would be also interesting to take advantage
of the best of the works presented in [48, 23, 60, 62], i.e., to exploit upper bounds that could
be computed approximately, in order to prune some parts of the search space.
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