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Abstract

Biochemical demands constrain the range of amino acids acceptable at specific sites resulting in across-

site compositional heterogeneity of the amino acid replacement process. Phylogenetic models that disregard this het-
erogeneity are prone to systematic errors, which can lead to severe long-branch attraction artifacts. State-of-the-art
models accounting for across-site compositional heterogeneity include the CAT model, which is computationally expen-
sive, and empirical distribution mixture models estimated via maximum likelihood (C10-C60 models). Here, we present
a new, scalable method EDCluster for finding empirical distribution mixture models involving a simple cluster analysis.
The cluster analysis utilizes specific coordinate transformations which allow the detection of specialized amino acid
distributions either from curated databases or from the alignment at hand. We apply EDCluster to the HOGENOM and
HSSP databases in order to provide universal distribution mixture (UDM) models comprising up to 4,096 components.
Detailed analyses of the UDM models demonstrate the removal of various long-branch attraction artifacts and improved
performance compared with the C10-C60 models. Ready-to-use implementations of the UDM models are provided for
three established software packages (IQ-TREE, Phylobayes, and RevBayes).

Key words: phylogenetics, long-branch attraction, empirical distribution mixture models, empirical profile mixture

models, microsporidia.

Introduction

Statistical uncertainty of phylogenetic analyses can be arbi-
trarily reduced by including more sequence data, which is
today readily available given modern sequencing technolo-
gies. As a result, phylogenomic analyses based on complete
genomes routinely provide very strong statistical support
even for deep phylogenetic relationships. Statistical support,
however, measures uncertainty in estimates assuming a spe-
cific evolutionary model and not accuracy of inferred phylo-
genetic inferences. Analyzing more sequence data alone
cannot mitigate systematic biases that result from model
misspecification or model inadequacy. In fact, more data
can lead to arbitrary strong support for erroneous relation-
ships under the wrong model (Philippe et al. 2011).
Long-branch attraction (LBA) is a systematic bias in phy-
logenetic inference where branches are estimated to be
shorter than they actually are (Felsenstein 1978; Philippe
and Laurent 1998). LBA may result in topological errors,
and distantly related species may appear to be closer related.
LBA artifacts are especially abundant, when inferring

phylogenies using maximum parsimony, where multiple char-
acter changes are disregarded. The development of substitu-
tion models (Jukes and Cantor 1969) accounting for the
possibility of multiple character changes has decreased the
severity of LBA artifacts, especially when accounting for rate
heterogeneity, for example, with a discrete Gamma probabil-
ity distribution (Yang 1994b). In the following, the term dis-
tribution is used to refer to probability distributions.
Classical substitution models assume that sites in the
sequence alignment of interest evolve according to a
continuous-time Markov process with a transition rate
matrix describing the rates of change between different
pairs of characters. As the number of characters is finite,
and all characters are connected (i.e., the Markov process
is irreducible and has only one communicating class), the
transition rate matrix can be parametrized by a set of
exchangeabilities between the characters and a stationary
distribution of the characters. Additionally, the most-
used transition rate matrices are reversible in that they
are agnostic to the direction of evolution in time.
Reversible transition rate matrices are also used in this
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study, although the presented method is not limited to
the use of reversible transition rate matrices.

In a typical phylogenetic analysis, a single transition rate
matrix is used for the entire alignment; and hence, the
exchangeabilities and the stationary distribution are shared
across all sites. Most often, the stationary distribution is set to
the distribution of observed characters in the analyzed align-
ment. For alignments of amino acid sequences of real-life
proteins, however, a shared stationary distribution across sites
is clearly not adequate, because biochemical constraints limit
the range of amino acids acceptable at specific sites reducing
amino acid diversity in a site-specific manner (Pal et al. 2006;
Franzosa and Xia 2008; Goldstein 2008). For example, at a
specific site, an amino acid with a specific hydrophobicity, size,
or mass may be required.

Phylogenetic inferences with models that disregard hetero-
geneity in the stationary distribution across sites (across-site
compositional heterogeneity) have led to strongly supported
LBA artifacts (Williams et al. 2013; Feuda et al. 2017; Simion
et al. 2017). One reason for the underestimation of the
lengths of long branches is that when only a reduced set of
amino acids is used, the substitution process becomes satu-
rated earlier than when the full set of amino acids is
employed. This happens because the probability of observing
the same amino acid increases if the stationary distribution is
constrained to a strict subset of all amino acids. Models that
ignore a variation in the stationary distribution across sites,
and instead use an averaged stationary distribution, will sys-
tematically underestimate the probability of observing the
same amino acid and consequently underestimate the
branch length between two evolutionary distant observa-
tions. In phylogenetic terms, this corresponds to a systematic
underestimation of the probability of homoplasy (indepen-
dent substitution events leading to the same amino acid)
which can result in long branches being attracted because
identical amino acid characters are erroneously interpreted as
synapomorphies (i.e, resulting from a single substitution on
an ancestral branch).

Across-site compositional heterogeneity has been mod-
eled using partition models (Lanfear et al. 2017), and mixture
models, the focal point of this contribution. In addition, mix-
ture models of full transition rate matrices have been exam-
ined (Le et al. 2008, 2012; Le and Gascuel 2010). Mixtures of
full transition rate matrices allow different sites not only to
exhibit specific amino acid compositions but also to evolve
with different exchangeabilities according to solvent expo-
sure, protein structure or protein function.

In contrast to the above, the CAT model (Lartillot and
Philippe 2004) uses one set of exchangeabilities for all mixture
model components and a Dirichlet process prior over the
stationary distributions and their weights in a Bayesian
Markov chain Monte Carlo framework. The CAT model is
widely used and greatly improves model fit. However, com-
putational requirements are high, such that convergence
times are long, and convergence may be beyond reach, espe-
cially for larger data sets (Whelan and Halanych 2016).

Inspired by the CAT model, and consistent with the der-
ivation of widely used empirical transition rate matrices from

curated databases, empirical stationary distribution mixture
(EDM) models, which use a fixed set of stationary distribu-
tions, have been developed. The rationale is that site-specific
amino acid constraints may be caused by universal biochem-
ical constraints (Jimenez et al. 2018). In particular, composi-
tion heterogeneity and site-specific amino acid constraints
have already been used to estimate protein structure
(Goldman et al. 1996) and the association of protein structure
with evolution (Goldman et al. 1998).

Previously, Quang et al. (2008) used an expectation—max-
imization algorithm to find EDM models with 10, 20, up to 60
components, which we collectively call CXX models, from
alignments of the HSSP database (Schneider et al. 1997).
Each mixture model component is defined by the used sta-
tionary distribution and weight. Accordingly, we use the term
component to refer to a stationary distribution with corre-
sponding weight. For computational reasons, the Poisson
model (Felsenstein 1981), which exhibits uniform exchange-
abilities, was used when searching for the components. The
phylogeny for each alignment was estimated beforehand us-
ing the WAG (Whelan and Goldman) model. In contrast,
Wang et al. (2008) use principal component analysis to detect
four stationary distributions of amino acids from alignments
of the Pfam database (Sonnhammer et al. 1997). Inferences
with EDM models such as the CXX models are much less
computationally expansive than with the CAT model because
they can be used in a maximum likelihood framework, where
they exhibit good statistical fit.

Recently, a composite likelihood approach was developed
that estimates stationary distributions of amino acids directly
from the data at hand (Susko et al. 2018). Special strategies to
estimate the stationary distributions need to be used, because
if species are closely related, the observed amino acids are
expected to be more similar. These strategies include 1)
restricting the analysis to sites with high rate, 2) penalizing
low frequencies of amino acids, 3) down-weighing contribu-
tions from species-rich clades, and 4) phylogeny-based
estimation.

Here, we describe EDCluster, a new method for obtaining
stationary distributions that can be used to construct EDM
models. EDCluster can be used on any set of alignments
ranging from large databases of homologous genes to more
specific data sets. We employ the CAT model implemented in
Phylobayes (Lartillot et al. 2013) to estimate site-specific pos-
terior distributions of the stationary distributions of amino
acids. In this way, specialized treatment of the expected var-
iation in the divergence between the sequences is not re-
quired. The site distributions are analyzed as is or
transformed using linear transformations developed specifi-
cally for compositional data. The transformations aid the
clustering method in finding stationary distributions of amino
acids with different specialized features. The use of a cluster-
ing algorithm seemed natural because clustering is a simple
machine learning approach for feature discovery. Although
EDCluster does not directly use biochemical information, the
inferred components are found to correspond to specific
biochemical traits of amino acids, such as hydrophobicity,
size, or mass.
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Using EDCluster, we provide sets of 4,8,16,...,4,096
components estimated from subsets of the HOGENOM data-
base (Dufayard et al. 2005), the HSSP database, and the union
of both. We present extensive analyses of EDM models based
on these sets of components which we collectively call uni-
versal distribution mixture (UDM) models. For the same
number of components, we demonstrate that the UDM
models outperform the CXX models not only in terms of
likelihood but also in parametric bootstrap analyses, where
they exhibit improved amino acid compositions and branch
lengths. Moreover, EDCluster allows construction of EDM
models with a large number of components. In particular,
the UDM models with more components show even further
increases in accuracy. However, the number of components is
still limited by the associated linear increase of computational
requirements during inference. In conclusion, the UDM mod-
els minimize systematic errors caused by constraints in amino
acid usage in a fraction of the run time of CAT. We provide
ready-to-use implementations for several established phylo-
genetic software packages, such as IQ-TREE (Nguyen et al.
2015), Phylobayes, or RevBayes (Hohna et al. 2016). Further,
we provide user-friendly scripts implementing EDCluster to
construct EDM models specific to the data set at hand.
Finally, we employ a simulation study to reproduce a well-
known LBA artifact of classical substitution models, and show
that application of EDM models successfully recovers the
correct topology.

New Approaches

EDM models assume that evolution occurs along a phylogeny
according to a mixture of N amino acid substitution models.
The transition rate matrices of the different components
share a single set of exchangeabilities. In this contribution,
Poisson exchangeabilities were used exclusively although
the method could in principle be generalized directly to
any other set of exchangeabilities. In contrast, the stationary
distributions (or equilibrium frequencies over the 20 amino
acids) differ between each component of the mixture model.
Here, the stationary distributions are inferred from align-
ments obtained from curated databases. Each alignment
was analyzed with Phylobayes under the CAT model with
Poisson exchangeabilities. For each alignment and each site,
the expectation of the posterior distribution of the stationary
distribution of amino acids (site distribution) was calculated.
Each site distribution is a point in 20D space with elements
summing up to 1.0. For each database, the site distributions of
all sites were used as is or transformed before further analysis.
Application of linear transformations is a standard procedure
in analyses of compositional data. The two employed trans-
formations were 1) the centered log-ratio transformation
(CLR; Aitchison 1982) and 2) the log centered log-ratio trans-
formation (LCLR; Godichon-Baggioni et al. 2019). In our case,
the transformations ensure that site distributions exhibiting
specific different features are moved further apart from each
other, so that they fall into different groups in the subsequent
analysis. K-means clustering was used to group the prepared
site distributions into N € {4,8,16,...,4,096} clusters.
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The stationary distributions and weights of the different com-
ponents to be used in the UDM models were set to the
determined cluster centers and their relative weights,
respectively.

We combine the components obtained from a subset of
the HOGENOM database with Poisson exchangeabilities and
refer to the mixture model resulting from a specific set of
components as UDM-XXX-Trans, where XXX is the number
of components, and Trans is the used transformation (None,
CLR, or LCLR). The usage of Poisson exchangeabilities is im-
plicitly assumed and not mentioned specifically. For example,
the UDM model with four components obtained from the
LCLR-transformed site distributions is referred to as UDM-
004-LCLR model. Although the presented analyses exclusively
focus on components estimated from the HOGENOM data-
base, components estimated from the HSSP database and the
union of both databases are provided for further reference.

Results

Analysis of UDM Model Components

EDM models differ by their used set of stationary distributions
and weights (components). The effective number of amino
acids (K. see Materials and Methods) measures the diversity
of discrete distributions. For stationary distributions of amino
acids, Keg values range from 1 for highly constrained station-
ary distributions with only one used amino acid to 20 for the
uniform stationary distribution of amino acids which is used
by the Poisson model. Most often, the empirical distribution
of amino acids observed in the analyzed alignment is used for
inference. Usually, these empirical stationary distributions ex-
hibit a high effective number of amino acids of
15 < Ke < 20. In particular, the default stationary distri-
bution of the LG model (Le and Gascuel 2008) has
Ker = 18.04.

The performance of an EDM model is strongly character-
ized by the composition of effective number of amino acids of
the used stationary distributions together with their weights.
In general, UDM models with more components employ
more specialized, constrained stationary distributions with
lower Keg values, and also put more weight on these con-
strained distributions (fig. 1). Accordingly, the mean K¢ value
decreases with the number of components. In particular, a
general, “catch-all” stationary distribution exhibiting K
~ 17 is retained. The weight of the most general stationary
distribution decreases with the number of components.
Additional components exhibit stationary distributions with
Keg values usually well below 10. UDM models with more
than 128 components tend to include more than one general
stationary distribution with K¢ > 10. The results for the sta-
tionary distributions obtained from untransformed and CLR-
transformed site distributions are almost identical (supple-
mentary figs. S1 and S3, Supplementary Material online).

Further, the distribution of K¢ values of the site distribu-
tions inferred from the HOGENOM database using the CAT
model with Poisson exchangeabilities and the corresponding
mean value are shown. As expected, the more components
are used, the closer the distribution of K. values of the
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Fic. 1. Distributions of effective number of amino acids of the stationary distributions used by UDM models with different numbers of
components. Violin plots of the effective number of amino acids of the stationary distributions obtained from the LCLR-transformed site
distributions (Godichon-Baggioni et al. 2019) of the HOGENOM database (Dufayard et al. 2005) are shown. On the far right, the distribution
of the effective number of amino acids of the site distributions obtained with the CAT model (Lartillot and Philippe 2004) using Poisson
exchangeabilities (Felsenstein 1981) is displayed. The width of the violin plots was normalized such that all areas are equal. Horizontal bars

display the means of the distributions.

stationary distributions of the UDM components to the dis-
tribution estimated directly from the HOGENOM database
(see also supplementary figs. S2, S4, and S5, Supplementary
Material online). The mean K. values exhibit the same ten-
dency. Exact K¢ values for UDM models up to 16 compo-
nents including all three transformations are available in
supplementary section S3, Supplementary Material online.
Strikingly, in most cases components with higher weight
also have higher K values.

Further, the K. values of the site distributions associated
with the components with the most general stationary dis-
tributions are usually much lower than the K value of the
stationary distribution of the respective component. In par-
ticular, the first component sorted by weight of the UDM-
016-LCLR model exhibits a stationary distribution with
K = 17.1, but the median of the K values of the associ-
ated site distributions is 12.2 (fig. 2, left; see supplementary fig,
S6, Supplementary Material online, for more details). Even for
the UDM-256-LCLR model the first components exhibit a
striking discrepancy between K values (supplementary
figs. S7 and S8, Supplementary Material online). The substan-
tial difference between the K¢ values of the site distributions
and the stationary distribution of the corresponding compo-
nent is only apparent for the first few components when
sorting them according to weight. For example, the K¢ value
of the stationary distribution of the fourth component (pur-
ple in fig. 2) is already very close to the median of the K¢
values of the site distributions. The components with lower
weight show even higher agreement between the median K¢
value and the K¢ value of the cluster center. A more detailed
analysis shows that the mean of the differences between the

K¢ values of the site distributions and their associated cluster
centers, which represents the loss in amino acid specificity
resulting from using a finite mixture of a given number of
components, decreases monotonically with the number of
components (supplementary fig. S9, Supplementary Material
online).

Observe that the stationary distribution of the component
with highest weight is very general (fig. 2), the second com-
ponent is enriched for neutral amino acids with hydropho-
bicity indices close to zero, and the third and fourth
components select for hydrophobic and hydrophilic amino
acids, respectively. Also note that the weight of the first com-
ponent differs significantly from the weight of the other five
shown components. Altogether, the stationary distributions
of the different first components of the UDM-016-LCLR
model exhibit limited overlap and no apparent redundancy.

Performance of UDM Models

The performance of the UDM models was assayed on three
empirical data sets that exhibit well-characterized LBA arti-
facts when applying classical substitution models such as the
LG model. The first data set encompasses eukaryotes includ-
ing the fast-evolving microsporidia and a distant archaeal
outgroup. Microsporidia are a group of spore-forming unicel-
lular parasites, which notably lack mitochondria (Cavalier-
Smith 1987). The lack of mitochondria and phylogenetic
placement as the first emerging eukaryotic group
(Vossbrinck et al. 1987; Kamaishi et al. 1996) marked them
as a candidate for an ancient eukaryotic lineage predating the
acquisition of mitochondria. However, more sophisticated
phylogenetic analyses have recovered microsporidia being
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Fic. 2. Analysis of the components of a UDM model. (Left) Violin plot of the effective number of amino acids of the site distributions associated
with the first six components sorted by weight of the UDM model with a total number of 16 components obtained from clustering the LCLR
(Godichon-Baggioni et al. 2019)-transformed site distributions (UDM-016-LCLR model). The effective numbers of amino acids of the stationary
distribution of the components themselves are shown by vertical lines. The respective differences to the medians of the associated site
distributions are also given (A values). (Right) Customized WebLogos (Crooks 2004) visualize general features of the amino acid distributions
of the components. The heights of the amino acid letter codes correspond to their probabilities; the total height of each logo is 0.5. The amino acids
are colored according to their hydrophobicity. Hydrophilic amino acids D, E, H, K, N, Q, and R with hydrophobicity indices below -1.9 are colored in
red. Hydrophobicamino acids G, F, I, L, M, and V with hydrophobicity indices above 1.9 are colored in blue. Finally,amino acids A, G, P,S, T, W,and Y
with hydrophobicity indices between -1.9 and 1.9 are colored in green. The weights of the components are shown to the right of the logos.

relatives of fungi, rather than being basal eukaryotes (Hirt
et al. 1999; Keeling et al. 2000; Van de Peer et al. 2000;
Keeling and Fast 2002) and subsequently remnants of mito-
chondria were found experimentally (Williams et al. 2002).
Here, as an illustration, we consider the data set of Brinkmann
et al. (2005, referred to as microsporidia data set), which spans
40 sequences and comprises 133 genes corresponding to
24,294 amino acid sites. We show analyses of the
concatenated alignment, as well as of the separate genes.
For the concatenated alignment of the microsporidia data
set, site-homogeneous substitution models such as the LG
model favor the former topology in terms of likelihood.
Models accounting for across-site compositional heterogene-
ity such as the CAT model exhibit higher posterior probabil-
ities for the latter topology, which is now widely accepted.
Note that we use the term topology when referring to the
order of branching events, and the term phylogeny when
referring to the topology together with branch lengths.
Further two data sets involving the positioning of nemat-
odes and platyhelminths were analyzed (referred to as the
nematode data set and the platyhelminth data set, respec-
tively; Philippe et al. 2005). These data sets contain a total of
37 and 32 taxa with 35,371 amino acid sites, respectively. The
LBA artifacts, observed when using classical substitution mod-
els such as the LG model, are nematodes and platyhelminths
branching with a clade containing both deuterostomes and
arthropodes. Current phylogenetic consensus has nematodes
and platyhelminths branching with arthropodes—a result
strongly supported by the CAT model. In the following, we
refer to the three topologies most likely exhibiting LBA

3620

artifacts as T1, and to the topologies in agreement with cur-
rent phylogenetic consensus as T2 (fig. 3).

Maximum likelihood analyses were performed with 1Q-
TREE using UDM and CXX models with Poisson exchange-
abilities, as well as the WAG and the LG model (fig. 3). Indeed,
traditional substitution models favor the topologies T1 exhib-
iting the discussed LBA artifacts, whereas sufficiently
component-rich UDM maodels reject T1 in favor of the cur-
rently accepted topologies T2 (supplementary figs. S10, S18,
and S20, Supplementary Material online). In general, the
results agree very well across the three data sets. In terms
of maximum log-likelihood, the WAG model performs
slightly worse than the LG model. When using the same
number of components, the maximum log-likelihood under
the UDM and CXX models are similar. Eight and 16 compo-
nents are needed to approximately achieve maximum log-
likelihood values equivalent to the ones of the WAG and LG
models, respectively. Usage of more components further
improves the maximum log-likelihood of the UDM and
CXX models to the extent that they outperform classical
substitution models, even though they use Poisson exchange-
abilities. The UDM models outperform the CXX models when
using 64 components or more, because CXX models are not
available with more than 60 components. Bayesian informa-
tion criterion (BIGC; Schwarz 1978) scores are monotonically
decreasing with the number of components, and
component-rich models are clearly favored (supplementary
figs. S11, S19, and S21, Supplementary Material online).

For the UDM and CXX models, the total branch length of
the maximume-likelihood phylogenies increases with the
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Fic. 3. Performance of UDM models (blue), and CXX models (orange; Quang et al. 2008) for an increasing number of components for the three
empirical data sets. Results for UDM models are shown for the untransformed (None), CLR-transformed (Aitchison 1982), and LCLR-transformed
(Godichon-Baggioni et al. 2019) site distributions. Results for WAG (purple; Whelan and Goldman 2001) and LG (red; Le et al. 2008) models are
indicated by dashed horizontal lines. The rows from top to bottom show: 1) the maximum log-likelihoods, 2) the sum of all branch lengths (total
branch length) of the maximum-likelihood phylogenies measured in average number of substitutions, 3) the log-likelihood differences between
the two topologies presented below with a positive value indicating support for topology T2, 4) historical topology T1 affected by LBA artifacts, and
5) currently accepted topology T2. In the topologies, outgroup, clade of interest, and ingroups are colored gray, red, and in shades of blue,

respectively.

number of used components. When increasing the number
of components, the total branch lengths do not approach a
limit but exhibit logarithmic increase. The total branch
lengths of the maximume-likelihood phylogenies of the
WAG model are lower than the ones of the UDM model
with four components. The total branch lengths of the phy-
logenies obtained by the LG model are surpassed when using
8-16 components, approximately. The total branch lengths
of the maximum-likelihood phylogenies of the UDM models
tend to be larger than the ones of the CXX models. The

transformation affects total branch lengths more than the
other presented results. Components obtained from the
LCLR-transformed site distributions exhibit highest total
branch lengths.

Next, the power to discriminate between topologies T1
and T2 was examined. To this end, the maximum log-
likelihoods of analyses constrained to the two different topol-
ogies T1 and T2 were compared. The topologies were fixed
during the analyses, but the branch lengths and other model
parameters were inferred. The difference of the maximum
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log-likelihood values acquired from topologies T2 and T1
indicates whether the LBA artifacts are supported (negative
values) or rejected (positive values). The WAG and LG models
both strongly support the topology exhibiting the LBA arti-
facts in all three cases with large differences in maximum log-
likelihood. In contrast, the UDM (CXX) models reject the
topology exhibiting the LBA artifacts in the microsporidia,
nematode, and platyhelminth data sets when at least 64
(50), 8 (10), or 16 (20) components are used, respectively.
For the data set involving microsporidia, the UDM models
require a higher number of components to reject the topol-
ogy with LBA artifacts compared with the CXX models. For
the data sets involving nematodes and platyhelminths, the
situation is reversed in that the differences of the maximum
log-likelihoods of the UDM models are more positive than
the ones of the CXX models. Also, the difference in maximum
log-likelihood does not increase substantially for the CXX
models when applied to the data set involving nematodes.

The performance of the UDM models on shorter align-
ments compared with the LG model and the CAT model
with Poisson exchangeabilities was tested on the separate
genes of the microsporidia data set. The inferred trees were
compared with the historical topology T1 (supplementary
figs. S12-514, Supplementary Material online) and the more
recent topology T2 (supplementary figs. S15-S17,
Supplementary Material online). The lengths of the align-
ments range from 40 to 600 amino acid columns.
Consequently, we observe high variance between the results
from different genes. The means of the symmetric (Robinson
and Foulds 1981) and branch score (Kuhner and Felsenstein
1994) distances to the T1 topology do not improve when
using models accounting for across-site composition hetero-
geneity compared with the LG model. However, the means of
the symmetric and branch score distances do decrease with
the number of components for the T2 topology. The branch
score distance of the CAT model is larger than for the UDM-
128-LCLR. We stress that there is no strong consensus of the
current phylogenetic literature about the branch lengths of
the discussed tree. In general, the difference between the
results of the UDM models and the CAT model decreases
with the number of components. The results of the UDM-
128-LCLR model and the CAT model are nearly identical. The
incompatible split distance, which is a distance measure ac-
counting for the uncertainty in the inferred topology, shows a
consistent decrease of the distance with the number of
components.

Model Adequacy in Recovering Across-Site
Compositional Heterogeneity

Finally, we assayed the potential of the UDM, and CXX mod-
els, as well as of the WAG and the LG models to reproduce
the across-site compositional heterogeneity of empirical
alignments. For this reason, we preformed parametric boot-
strap in a manner similar to posterior predictive analyses in
Bayesian statistics. We estimated model parameters using
maximum likelihood for the microsporidia, nematode, and
platyhelminth data sets and used these to simulate align-
ments comprising 25,000 sites, which is a round number close
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to the length of the microsporidia data set which has 24,294
sites. Subsequently, summary statistics for the original align-
ments and the simulated alignments were compared. It is
desirable that the simulated alignments reproduce character-
istics of the original alignments.

Here, we compared the distribution of effective number of
amino acids observed at each site of the alignment. It is dif-
ficult to judge differences in the actual distributions of effec-
tive number of amino acids by eye (supplementary figs. 22—
S24, Supplementary Material online). Therefore, we present
the Wasserstein distance (also known as earth mover’s dis-
tance) between the distributions of effective number of
amino acids of the original and the simulated alignments.

For all three data sets, the WAG and LG models with a
single amino acid transition rate matrix produce alignments
with inflated diversity measured in effective number of amino
acids (fig. 4 for the microsporidia data set; supplementary figs.
S25 and S26, Supplementary Material online, for the nema-
tode and platyhelminth data sets, respectively). Numeric val-
ues of the average effective number of amino acids per site in
the alignment as well as the Wasserstein distances are given in
supplementary table S1, Supplementary Material online.
Component-rich UDM and CXX models typically exhibit
lower Wasserstein distances than UDM or CXX models
with fewer components. The UDM models consistently out-
perform the CXX models. The C50 model exhibits large devi-
ations in all three data sets. UDM models with 256
components sometimes exhibit higher Wasserstein distances
than their equivalents with 128 components. For example,
compare the UDM-256-LCLR model with the UDM-128-
LCLR model in the microsporidia data set (fig. 4). The reason
for the increase of the Wasserstein distance is that the average
number of used amino acids of the UDM-256-LCLR model is
actually lower than the one of the original data.

Phylogenetic Artifact Can Be Reproduced in
Simulation Study
The results presented above rely on assumptions about the
correct topology (Whelan and Halanych 2016). As an alter-
native, we can experiment with simulations, for which we
know the true phylogeny. Interestingly, the LBA artifact ob-
served in the microsporidia data set could be reproduced in a
simple simulation study. We used the 175,330 site distribu-
tions obtained from the HOGENOM database to simulate an
alignment along a phylogeny exhibiting the currently ac-
cepted topology T2 where microsporidia branch within fungi
(left phylogeny in fig. 5). Then, maximum-likelihood phylog-
enies were inferred with the Poisson model, and the LG
model, as well as the CXX models, and the UDM models
which account for across-site compositional heterogeneity.
The maximum-likelihood phylogenies of the Poisson and
LG models exhibit the incorrect topology T1 where micro-
sporidia are positioned at the eukaryotic root (fig. 5 and sup-
plementary fig. S27, Supplementary Material online). In
addition, the ciliates are also moved outside their clade. All
branches are supported with bootstrap values of 100%.

The maximum-likelihood phylogenies inferred by UDM
models with 4, 8, and 16 components still exhibit the LBA
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Fic. 4. Across-site compositional heterogeneity of classical substitution models and empirical distribution mixture models. Similarity between the
across-site compositional heterogeneity of the microsporidia data set (Brinkmann et al. 2005) and simulated alignments for the maximum
likelihood parameter estimates of the WAG (Whelan and Goldman 2001), LG (Le and Gascuel 2008), CXX (Quang et al. 2008), and UDM models.
Results of UDM models obtained from untransformed (None), CLR-transformed (Aitchison 1982), and LCLR-transformed (Godichon-Baggioni
etal.2019) site distributions are shown. Similarity is measured by the Wasserstein distance between the distributions of effective number of amino
acids per site between empirical data and the sequences simulated using parametric bootstrap.

artifact involving microsporidia (supplementary fig. S28,
Supplementary Material online). In contrast, the UDM-032-
LCLR model correctly supports microsporidia branching from
within fungi. The correct phylogeny has much higher statis-
tical support with an improvement in BIC score of 2,591,445
units compared with the results of the Poisson model. The
position of microsporidia, holozoa, and conosa still has poor
branch support in form of a bootstrap value of 50%. However,
when using the UDM-064-LCLR model, the mentioned boot-
strap values rise to 100% (see Supplementary Material online).
Also, the C10, C20, to C50 models infer the incorrect topology
T1, albeit with decreasing branch support values. Only the
maximum likelihood topology of the C60 model is in agree-
ment with the original topology used for simulating the align-
ment (supplementary fig. S28, Supplementary Material
online) and has high branch support with bootstrap values
of 100% (see Supplementary Material online).

The improvement in model fit with increasing number of
components can also be seen when examining the branch
lengths. First, the sum of all branch lengths (total branch
length) of the original phylogeny used for the simulation is
15.6 average number of substitutions per site. The total
branch lengths of the phylogenies estimated by the Poisson,
the LG, the UDM-032-LCLR, and the UDM-064-LCLR models
are 11.98, 14.14, 14.38, and 14.72 units, respectively. Second,
the branch score distance between the original phylogeny
used to simulate the alignment and the inferred phylogenies
was calculated (supplementary fig. S29, Supplementary
Material online). The branch score distances of the Poisson
and LG models are highest, and the branch score distances of

the EDM models decrease with the number of components.
For the same number of components, the UDM models ex-
hibit lower branch score distances than the CXX models.
Ignoring across-site compositional heterogeneity, therefore,
leads to a substantial underestimation of branch lengths be-
cause multiple substitution events occurring among a re-
stricted subset of amino acids are missed by site-
homogeneous models.

Also for the simulated data, performance of the UDM
models on individual genes was assayed and compared
with results of the Poisson and LG models. To this aim, trees
were inferred from simulated alignments ranging from 100 to
1,000 amino acid columns (see Materials and Methods). In
general, we observe a decrease of symmetric as well as branch
score distance with alignment length (supplementary figs. S30
and S31, Supplementary Material online). For short align-
ments with 100-200 columns, an increase of the number
of components does not improve the symmetric distance.
However, the branch score distance decreases with the num-
ber of components, even for such short alignments. For lon-
ger alignments, the UDM models with many components
consistently outperform the Poisson and LG models, as well
as UDM models with fewer components. This trend contin-
ues even for UDM models with as many as 1,024 compo-
nents. The reason is that the component weights obtained
during the clustering procedure were used for this part of the
analysis (see Materials and Methods). Consequently,
component-rich models are closer to the model used for
simulation which employs the stationary distributions
obtained from the HOGENOM database. Interestingly, the

3623

2z0z ¥snbny g uo Jasn gSNI 33NI SYNO-LSINI Ad €290065/919€/2 L/L€/a101B/aqW/W0D"dno*oiWwapede//:SdRy Wolj papeojumoq



Schrempf et al. - doi:10.1093/molbev/msaa145

MBE

Candida
Saccharomyces

I .

il

Neurospora
Schizosaccharomyces
Cryptococcus Fungi
Ustilago
Glomus
Neocallimastix

Ciona
Homo
Drosophila
Hydra
Monosiga

Dictyostelium
'I: Mastigamoeba Conosa

Archaeoglobus
Methanococcus
Pyrococcus
Pyrobaculum
Aeropyrum
Sulfolobus

Holozoa

Archaea

]

Fic. 5. Reproduction of microsporidia LBA artifact in simulation study. (Left) Phylogeny used for simulation using Poisson exchangeabilities
(Felsenstein 1981) and stationary distributions of amino acids obtained from analyses of the HOGENOM database (Dufayard et al. 2005). (Middle)
Maximum-likelihood phylogeny of the Poisson model. (Right) Maximum-likelihood phylogeny of the UDM model with 32 components obtained
from LCLR-transformed (Godichon-Baggioni et al. 2019) site distributions (UDM-032-LCLR model). For both inferred phylogenies, bootstrap

values below 100% are shown.

log-likelihood values for models with 1,024 components are
slightly lower than the corresponding log-likelihood values for
models with 512 components (supplementary table S2,
Supplementary Material online) suggesting that the LCLR
transformation is overfavoring specialized stationary distribu-
tions when so many components are used.

Discussion

The importance of accounting for across-site compositional
heterogeneity has been demonstrated by a series of phyloge-
netic studies where models accounting for across-site com-
positional heterogeneity, such as the CAT model, were able to
overcome artifacts caused by LBA (Brinkmann et al. 2005;
Philippe et al. 2005; Lartillot et al. 2007; Pisani et al. 2015).
The reproduction of an LBA artifact and its resolution in a
simulation study (fig. 5) provides further evidence for the
claim that across-site compositional heterogeneity is a fun-
damental cause of the phylogenetic artifact observed in the
microsporidia data set, and potentially many others.

The simulation study on the microsporidia phylogeny
demonstrates that accounting for across-site compositional
heterogeneity affects not only the topology (fig. 5 and
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supplementary fig. S28, Supplementary Material online) but
also the branch lengths of the inferred phylogeny. In the
simulation study, we observe a remarkable downward bias
of the total branch length of the phylogeny estimated by the
classical Poisson and LG models. The length of long branches,
in particular, is severely underestimated. Additionally, the
branch score distance between the inferred phylogenies
and the original phylogeny used for simulating the alignments
improves significantly with the number of EDM model com-
ponents (supplementary fig. 529, Supplementary Material on-
line). Also, we observe superior branch score distances for the
UDM models obtained from LCLR-transformed site distribu-
tions when comparing them with the CXX models. This effect
of inadequate modeling of across-site compositional hetero-
geneity has been overlooked in most previous analyses. With
respect to the simulation study, the downward bias of the
branch lengths estimated by the Poisson model causes a
wrong topology to have higher likelihood than the original
topology. This classic LBA attraction artifact is eliminated
when accounting for across-site compositional heterogeneity.

In order to provide robust and accurate models that ac-
count for across-site compositional heterogeneity, we
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developed a new method EDCluster to find empirical station-
ary distributions of amino acids with corresponding weights.
EDCluster was used to not only provide universal stationary
distributions estimated from curated databases but also allow
construction of EDM models with a large number of compo-
nents directly from the data set at hand. The CAT model is
employed to infer site distributions, that is, the expectations
of the posterior distributions of the stationary distributions of
amino acids per site. Subsequently, we use a clustering algo-
rithm to explore the structure of the hundred thousands of
site distributions. The choice of using a cluster algorithm
seemed natural because clustering is a simple machine learn-
ing approach for feature discovery. Additionally, to enhance
the ability to resolve specialized site distributions we employ
coordinate transformations developed specifically for analysis
of compositional data. The inference of site distributions with
CAT enables our method to deal with the fact that the amino
acids of closely related species are expected to be more similar
than the ones of distantly related species. Hence, when using
our method on an alignment of closely related species the
inferred stationary distributions will not necessarily have a
low effective number of amino acids. In contrast, methods
inferring stationary distributions and weights directly from
the alignment (Susko et al. 2018) require other means to
compensate for the expected variation of divergence between
the sequences.

From the perspective of potential phylogenetic artifacts
caused by inadequate modeling of across-site heterogeneity,
the effective number of amino acids K and its distribution
provide useful summary statistics for analyzing different mod-
els and their stationary distributions. The lower K is, the
higher the potential to underestimate the frequency of mul-
tiple substitutions and the probability of homoplasy, with
corresponding negative effects on phylogenetic inferences,
in terms of recovering accurate branch lengths and avoiding
LBA. Consequently, a clustering preceded by a transformation
separating stationary distributions with low K such as the
LCLR transformation, can be expected to lead to mixture
models less prone to biases in branch length estimation
and LBA artifacts. In order to provide sets of universal sta-
tionary distributions and weights available for general use we
have applied our method, which implements the transforma-
tion and clustering to subsets of databases spanning the
whole tree of life. Analysis of the distributions of K. for these
universal stationary distributions indicates that a large num-
ber of stationary distributions is necessary to adequately
model the diversity of site distributions present in empirical
alignments. For example, a set of 16 stationary distributions of
amino acids is by far not sufficient to describe the observed
variety of site distributions (fig. 1). When the number of
clusters is too low, we notice that many site distributions
are assigned to overly general stationary distributions, because
they do not fit in any particular stationary distribution, and
not because they are general themselves (fig. 2).

In spite of the apparent need for many stationary distri-
butions, analysis of the WebLogos of the sets of stationary
distributions with more than 64 elements reveals an unex-
pected level of redundancy (see supplementary section S4,

Supplementary Material online). It seems reasonable that the
number of needed stationary distributions could be reduced
by conglomerating stationary distributions exhibiting a cer-
tain level of similarity. We attempted to reduce the redun-
dancy within sets comprising many stationary distributions
by employing different clustering methods. For example, we
tried a form of divisive clustering, where the cluster with the
center exhibiting the highest effective number of amino acids
is repeatedly divided (supplementary figs. S32 and S33,
Supplementary Material online), and also density-based clus-
tering with DBSCAN (Ester et al. 1996). Both clustering meth-
ods failed to improve the redundancy compared with
standard K-means clustering. However, sets of stationary dis-
tributions with a moderate number of elements do not ex-
hibit significant redundancy. For example, the first six
elements of the set of 16 stationary distributions obtained
from the LCLR-transformed site distributions exhibit very lit-
tle, if any, overlap (fig. 2). Finally, stationary distributions with
similar WebLogos may still exhibit specialized features that
are not apparent by visual inspection.

A set of stationary distributions and weights together with
Poisson exchangeabilities composes an EDM model. We refer
to the models composed of the universal stationary distribu-
tions and weights discussed above as UDM models. Using the
UDM models, we demonstrate the removal of several known
LBA-associated phylogenetic artifacts from three example
analyses: 1) the branching of microsporidia from within fungi
and 2) the branching of nematodes and (3) flatworms with
arthropodes (fig. 3). For the analysis of the microsporidia data
set, the performance of the UDM models was comparable to
that of CXX models when using the same number of com-
ponents. The UDM models outperformed the CXX models in
analyses of the data sets including nematodes and platyhel-
minths. Assaying the ability of different EDM models to ad-
equately recover across-site heterogeneity, we found that
UDM models outperform CXX models. In fact, the maximum
number of components of the CXX models is currently lim-
ited to 60 due to the computational cost of the expectation—
maximization algorithm. In contrast, our method allows for
mixture models with many more components. As a proof of
concept, we show results for UDM models with 128 and 256
components. All presented analyses support that these
component-rich UDM models outperform the C60 model.
Another issue with the CXX models is the lack of reproduc-
ibility of the expectation—maximization estimations in a con-
text characterized by a rugged likelihood surface with a very
large number of local maxima (Quang et al. 2008). In partic-
ular, the large deviations in the parametric bootstrap results
of the C50 model (fig. 4) reiterate that there may be a prob-
lem with respect to local maxima during estimation of the
components. The EDCluster approach presented here, how-
ever, returns reproducible results, even for rich mixtures.

When examining the total branch lengths of the
maximum-likelihood phylogenies, we observe that the
UDM models obtained from LCLR-transformed site distribu-
tions exhibit highest total branch lengths. As discussed above,
the LCLR transformation facilitates the discovery of more
specialized stationary distributions that exhibit lower effective
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numbers of amino acids. In turn, the lower effective numbers
of amino acids lead to inferences exhibiting longer branches.
The logarithmic increase of the total branch length with the
number of components is striking because it demonstrates
that a high number of components may be required. In con-
trast, the results of the parametric bootstrap analysis indicate
that inferences with the UDM-256-LCLR model already over-
shoot in terms of effective number of amino acids (fig. 4). This
observation can be attributed to the LCLR transformation
which favors low K¢ values. In this sense, the LCLR transfor-
mation is more eager to catch specific site distributions for
moderate numbers of components than the other two trans-
formations but may be too eager for large mixtures of 256
components or more.

The optimal number of components can be determined
by established statistical tests, for example, using the AIC
(Akaike information criterion) or BIC (Bayesian information
criterion) scores. In fact, the maximum log-likelihood as well
as the difference in log-likelihood between the tested hypoth-
eses still seem to be far from saturation (fig. 3) for all three
transformations. Accordingly, the BIC or AIC scores favor
component-rich UDM models, because adding a component
only increases the number of model parameters by one (if the
weights are inferred). For example, UDM models with 256
components were favored when analyzing the three empirical
data sets. Furthermore, the analyses of the simulated align-
ments with 100 to 1,000 columns show reduced symmetric
and branch score distances for component-rich UDM models
(supplementary figs. S30 and S31, Supplementary Material
online). These results suggest that the complexity of the com-
position of site distributions exceeds what can be captured by
even the richest mixtures considered here. In fact, it seems
very plausible that hundreds of points (components) are re-
quired to adequately model 20D space. Consequently, espe-
cially for challenging cases, the alleviation of LBA due to site-
specific amino acid preferences may require richer mixtures
than the currently available ones such as the CXX models. In
summary, for long alignments with thousands of columns, we
recommend using UDM models with as many components
as permitted by the available computational resources. If the
tractable number of components is 256 or lower, we recom-
mend using stationary distributions obtained from the LCLR-
transformed data; otherwise, stationary distributions directly
obtained from the data without transformation.

For alignments with 1,000 columns or fewer, maximum
likelihood estimation of the component weights may be
unstable for component-rich mixture models, and we
recommend Bayesian estimation with UDM models having
up to 128 components (supplementary figs. S12-S17,
Supplementary Material online). If the distribution of com-
ponent weights is known—for example, from an analysis of
the concatenated alignment—maximum likelihood analyses
employing component-rich UDM models are recommended
as they showed high accuracy in our simulation study (sup-
plementary figs. $30 and S31, Supplementary Material online).

The results presented above use sets of stationary distri-
butions and weights estimated from a subset of the
HOGENOM database. A parallel analysis of a subset of the
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HSSP database was performed and corresponding compo-
nents were collected. However, the stationary distributions
obtained from the HSSP database were mostly outperformed
by the ones obtained from the HOGENOM database. Analysis
of the taxonomic composition of the databases (see Materials
and Methods) revealed that the taxonomic composition of
the subset of the HOGENOM database is enriched for eukar-
yotes with an approximate value of 70%, which is in agree-
ment with the taxonomic compositions of the three analyzed
data sets. For completeness, the stationary distributions
obtained from the HSSP database as well as universal station-
ary distributions obtained from the union of both databases
are also provided, and may exhibit better performance on
data sets enriched for bacteria or with a balanced distribution
of eukaryotes, archaea, and bacteria, respectively.

We used Poisson exchangeabilities for this first presenta-
tion of the UDM models in order to allow comparison with
existing models, in particular the CXX models, which were
also estimated using Poisson exchangeabilities. In practice, the
CXX models are now widely used together with nonuniform
exchangeabilities, for example, with the ones of the LG model
(a Google Scholar search for phylogenetics “LG+C60”
returned 59 results on August 22, 2019). However, the use
of different exchangeabilities for estimating stationary distri-
butions and for using these estimated stationary distributions
to infer a phylogeny may have unexpected, possibly adverse
effects. The reason for this is that the exchangeabilities may
capture effects originally caused by across-site compositional
heterogeneity, especially when they are estimated in a site-
homogeneous context, such as the exchangeabilities of the
LG model. Our method allows estimation of UDM models
suitable for any specific set of exchangeabilities, by using these
exchangeabilities during the inference of the site distributions
with the CAT model. A more principled alternative would be
to use the present clustering approach in the context of
mutation—selection models (Rodrigue et al. 2010) to estimate
universal mixtures of amino acid fitness profiles.

Although in this contribution we seek to provide a set of
models available for universal use, data set-specific stationary
distributions and weights can be estimated. First, the align-
ment has to be analyzed with CAT. For this purpose, it is
sufficient to fix the topology; a measure greatly reducing com-
putational requirements. If the alignment is still too compu-
tationally demanding, it is possibly to split the alignment, or
randomly subsample a given number of shorter alignments
which can be analyzed appropriately (jackknifing). Overall,
the computational requirements are much less than a com-
plete analysis with CAT. Second, the site distributions can be
analyzed using the provided script (supplementary section S2,
Supplementary Material online). Finally, phylogenetic infer-
ence can be performed using an EDM model specific to the
data set. We tested this procedure on the three discussed
data sets and the LBA artifacts were removed in all three cases
(see Supplementary Material online).

Before closing the discussion, we would like to examine the
relation of EDM models with other available methods. For
example, transition rate matrix recoding methods split the
amino acids into separate groups representing different
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physicochemical properties (Kosiol et al. 2004; Susko and
Roger 2007). Amino acids within the same group are fre-
quently exchanged, whereas there is hardly any exchange
between amino acids of different groups. In our opinion,
EDM models are very similar in that they differentiate be-
tween amino acids exhibiting frequent exchange and amino
acids exhibiting no or very limited exchange. However, EDM
models seem to be more flexible, because they allow specific
amino acids to be member of more than one group, such that
the final estimations are superpositions of the individual
groupings.

Next, phylogenetic mixture models require a significant
amount of computational resources, in particular computer
memory. For this reason, the posterior mean site frequency
(PMSF, Wang et al. 2018) method has been developed. For
each site in the alignment, the PMSF method condenses the
stationary distributions of the mixture model components
into a single stationary distribution. The single stationary dis-
tribution is a weighted superposition of the stationary distri-
butions of all mixture model components. The weights are
the posterior probabilities of the site belonging to the respec-
tive mixture model components. These posterior probabili-
ties are calculated using a so-called guide tree, which has to be
given. The PMSF method speeds up calculations with EDM
models and, as such, can be perfectly used with the UDM
models.

Similarly, EDM models can be combined with partition
models. Although there might be significant evidence justify-
ing the use of specific phylogenetic models for different par-
titions of the data, this is not in general the case. A canonical
way of performing phylogenetic analysis could be: the same
EDM model is used across all partitions of the data but a
separate set of parameters is inferred for each partition. When
using CXX or UDM models, one could only infer a separate
set of mixture weights per partition, whereas all other param-
eters are shared across all partitions.

Finally, usage of an additional mixture model component
representing invariable sites (usually +1 flag) is possible but
not recommended. First, we did not analyze the effect of this
measure. Second, highly constrained stationary distributions
with an effective number of amino acids close to 1.0 may
already imitate this feature because a very limited availability
of amino acids increases the probability of a constant site in
the alignment when compared with more general stationary
distributions. Additionally, slowly evolving sites are modeled
when accounting for across-site rate heterogeneity, for exam-
ple, by a discrete Gamma distribution, which is highly
recommended.

Finally, the EDM models may help resolve open phyloge-
netic problems involving large data sets and distantly related
species (Simion et al. 2017; Philippe et al. 2019). Further,
dissimilarities in compositional heterogeneity may be
detected by applying EDCluster to specific species groups.
Also, the ideal number of EDM model components is still
an open question. Statistical tests may not be the best guid-
ance in developing appropriate methods because they favor
component-rich EDM models. Albeit, parametric bootstrap
analyses and posterior predictive analyses with Bayesian

methods can be used. For EDCluster, automatic clustering
algorithms could be used. In conclusion, the presented
UDM models constitute a valuable alternative to the widely
used CXX models and can be used for comparisons against
the CAT or the CXX models. EDCluster allows estimation of
stationary distributions that are specific to the data set at
hand and suitable for use with nonuniform exchangeabilities.

Materials and Methods

Empirical Distribution Mixture Models

Evolution of hereditary characters is assumed to occur
according to a mixture of N stationary, irreducible, time-
continuous Markov processes along a phylogeny 7". We solely
use the state space of amino acids, but the concept of EDM
models can be applied to arbitrary state spaces of finite car-
dinality. Let Q" be the 20 x 20 transition rate matrix of com-
ponent n with weight w". Nondiagonal entries q:-j“-
(1 <i,j <20,i#j) of Q" can be decomposed into
gj = rijm. The r; are the exchangeabilities which are shared
across all components, and 7" is the stationary distribution of
component n. In this contribution, the Poisson model
(Felsenstein 1981) which exhibits uniform exchangeabilities
was used exclusively. The stationary distributions, which differ
between each component, are obtained from curated data-
bases (see below). The diagonal entries gi] are set such that
the row sums are zero. The transition rate matrices are nor-
malized to ensure that one transition of the Markov process is
expected to happen per unit length. Additionally, across-site
rate heterogeneity can be modeled, for example, by using a
discretized Gamma distribution (Yang 1994a) with parameter
o. Then, the complete set of EDM model parameters is
(7,w",a). Excluding the phylogeny, EDM models with N
components have N parameters, because ) -, w" = 1.0.

HOGENOM and HSSP Databases

Subsets of the HOGENOM (Dufayard et al. 2005) and HSSP
(Schneider et al. 1997) databases consisting of 1,005 and 1,236
randomly selected alignments were obtained (Quang et al.
2008). For the HOGENOM database, the 1,005 alignments
contain 15-50 sequences and a total number of 175,330
amino acid sites. For the HSSP database, the 1,236 alignments
contain 10-100 sequences and a total number of 260,961
amino acid sites. Table 1 shows summary statistics of both
databases. The summary statistics include the number of
sequences and the number sites of the complete databases,
and of the analyzed subsets. Further, the percentage of ana-
lyzed sites falling into each domain of life provides a rough
idea about the taxonomic composition of the analyzed data.
First, the analyzed number of sites is slightly larger in the HSSP
database compared with the HOGENOM database. Second,
and more importantly, the proportion of eukaryotes and bac-
teria differs largely. The analyzed subset of the HOGENOM
database contains a substantially higher proportion of eukar-
yotes compared with the HSSP database, which comprises a
higher proportion of bacteria.
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Table 1. Size of the HOGENOM and HSSP Databases and the
Analyzed Subsets.

HOGENOM HSSP
Number of sequences 153,818 42,999
Number of sites 40,835,577 9,305,643

Number of analyzed sequences 1,005 1,236

Number of analyzed sites 175,330 260,961
Distribution across domains in analyzed subsets

Archaea 1.6% 1.8%
Bacteria 27.4% 59.3%
Eukaryotes 71.0% 35.1%
Viridiae 0.0% 3.8%

A rough measure of the taxonomic composition is given in the form of the per-
centage of analyzed sites falling into each domain of life.

Site Distributions

For each alignment, a separate Bayesian analysis was conducted
using the CAT model (Lartillot and Philippe 2004) with Poisson
exchangeabilities. Phylobayes (Lartillot et al. 2013) was used for
the Bayesian analyses. The phylogenies were fixed to the ones
estimated by Quang et al. (2008) who had used the WAG
model (Whelan and Goldman 2001) and PhyML (Guindon
et al. 2010). Command lines are stated in supplementary sec-
tion S1, Supplementary Material online. For each alignment
and each site, the posterior distribution of the stationary dis-
tribution of amino acids is a mapping from the 20D simplex to
the unit interval p : $*° — [0, 1]. The corresponding site dis-
tribution, which is the expectation E(p), is a point on the 20D
simplex $*°. The site distributions of all sites were collected and
used as a basis for all further analysis.

Transformations of Site Distributions

The site distributions were analyzed as is, or after transforma-
tion from the Aitchison (1982) simplex to real space, which is
a standard procedure when analyzing compositional data.
First, the well-characterized centered log-ratio transformation
CLR: §¢ — R? (Aitchison 1982) was used. The CLR trans-
formation of a point x = (x1, ..., Xy) is defined as

Xi

CLR(x;)) =In{ — |, 1
0 =(575) o
where g(x) : R‘i — R is the geometric mean. Basically,
the coordinates of x are fanned out from [0, 1]¢ to
(=00, 00)%  with __the origin (0,...,0) being
CLR g(g(x), ey g(x))) Recently, Godichon-Baggioni et al.
(2019) reported a novellog centered log-ratio transformation
LCLR : $¢ — R derived from the CLR transformation

‘LCLR(x;) = { —In[1—In <g)(<—;))]}2if g?;) <1,

Gl

The LCLR transformation moves points that are close to
the boundary of the simplex even further away from points
that are more in the interior than the CLR transformation.

otherwise. (2)
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Hence, after the LCLR transformation, points with a low ef-
fective number of amino acids (see below) have high
Euclidean distances to points with high effective number of
amino acids, which is a desired feature.

Clustering Procedure

K-means clustering with K € {4,8,16,...,256} was per-
formed on untransformed, CLR-transformed, and LCLR-
transformed site distributions with scikit-learn (Pedregosa
et al. 2011). A maximum number of 500 iterations and a
tolerance of 5e-5 were used. The stationary distributions of
the components of the UDM models are assigned to the
obtained cluster centers. The weight of each component is
set to the proportion of sites belonging to the respective
cluster. During phylogenetic inference, the proposed mixture
model weights can be employed without change or estimated
during maximization of the likelihood. In fact, all analyses
presented in this manuscript use variable weights estimated
during maximization of the likelihood. For details on the
EDCluster script used for transforming and clustering the
site distributions, please refer to supplementary section S2,
Supplementary Material online. In total, we distinguish UDM
models with seven different numbers of components, three
different types of transformations, and three different data-
bases (HOGENOM, HSSP, and their union). EDCluster, and
the obtained stationary distributions and weights are avail-
able at s://github.com/dschrempf/edcluster (last accessed July
8, 2020). Supplementary sections S3 and S4, Supplementary
Material online, present additional analyses of the stationary
distributions and weights, and usage instructions for IQ-TREE
(Nguyen et al. 2015), Phylobayes, and RevBayes (Hohna et al.
2016), respectively.

Effective Number of Amino Acids

Metaphorically speaking, entropy is a measure of disorder of a
probability distribution. The entropy of a given site distribu-
tion 7 is defined as

S(n) = — 7; log ;. (3)

1<i<20

Here, we use the entropy to measure the diversity of a site
distribution in the following way:

Keg (1) = ™ € [1,20]. (4)

For readability, the explicit dependency on 7 is mostly
omitted. We term K the effective number of amino acids,
and stationary distributions with high (low) K.t general (con-
strained). An effective number of amino acids of Kz = 1
corresponds to a highly constrained stationary distribution
where a single amino acid has probability 1.0, whereas all
other amino acids have zero probability. The uniform station-
ary distribution with K¢ = 20 is the most general.

Analyses of Data Sets

The alignments of the microsporidia, nematode and platyhel-
minth data sets were obtained from Brinkmann et al. (2005)
and Philippe et al. (2005), respectively. The microsporidia data
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set contains 40 sequences with a length of 24,294 sites. The
percentage of gaps is 24.1% and the average effective number
of amino acids is 2.569. The nematode data set contains 37
sequences with a length of 35371 sites. The percentage of
gaps is 28.7% and the average effective number of amino acids
is 2.116. The platyhelminth data set contains 32 sequences
with a length of 35,371 sites. The percentage of gaps is 30.7%
and the average effective number of amino acids is 2.069. The
IQ-TREE software package was used for all analyses of the
three data sets.

Phylogenetic inference was performed using the WAG,
and the LG (Le and Gascuel 2008) substitution models, the
C10-C60 models (collectively called CXX models; Quang
et al. 2008), and the UDM models with 4, 8, 16, A. .., 256
components. For all analyses, a discrete Gamma distribution
with four bins was used to deal with across-site rate hetero-
geneity (+G4 model string). For the WAG and LG models,
the stationary distribution of amino acids was set to the one
observed in the respective alignment. We refrained from add-
ing the stationary distribution of amino acids observed in the
data as an additional component to the CXX and UDM
models. The weights of the mixture model components of
the CXX and UDM models were inferred during maximiza-
tion of the likelihood. Detailed instruction about how to per-
form phylogenetic inference with UDM models in IQ-TREE is
given in supplementary section S4, Supplementary Material
online. For each data set and model, three maximum likeli-
hood analyses were conducted: first, a maximum likelihood
analysis inferring the model parameters as well as the topol-
ogy and the branch lengths of the phylogeny. Further, two
analyses with fixed topologies (T1, and T2, see fig. 3) were
conducted (-t option in IQ-TREE). The branch lengths were
inferred without exception.

The analyses of the separated microsporidia genes were
performed with Phylobayes. Results for the LG model, the
CAT model with Poisson exchangeabilities, and UDM models
with four, up to 128 components also with Poisson exchan-
geabilities were obtained. A burn-in of 100 steps and a total of
1,100 steps were used. Rate heterogeneity was accounted for
with a discrete gamma distribution with four categories. The
inferred trees were compared with two trees T1 and T2
(Brinkmann et al. 2005). If a gene only contained a subset
of all species, the trees T1 and T2 were pruned before com-
parison such that they contained the same set of species as
the respective gene. The symmetric distance (Robinson and
Foulds 1981), the branch score distance (Kuhner and
Felsenstein 1994), and the incompatible split distance were
computed. The incompatible split distance is similar to the
symmetric distance in that it only accounts for topological
differences. However, topological uncertainties do not con-
tribute to the incompatible split distance. Briefly, let us com-
pare two topologies P; and P,, and let B; be the only
bipartition induced by P; not induced by P,. Then, the
symmetric distance between P; and P, is strictly larger
than zero. For the incompatible split distance, however, ad-
ditionally all multifurcations of P, have to be examined. If a
multifurcation of PP, can be resolved such that the resolved

order of splits induces B,, the incompatible split distance is
zero.

Parametric Bootstrap Analyses

For each data set and phylogenetic model, the maximum-
likelihood phylogeny and model parameters were used to
simulate an alignment with 25,000 sites. For the CXX and
UDM models, the stationary distribution at each site is de-
termined randomly from the stationary distributions of the
mixture model components using the weights from the re-
spective maximum likelihood inferences. A custom simulator
written in Haskell (elynx; supplementary section S8,
Supplementary Material online) was used for this purpose.
Subsequently, the effective number of amino acids Ke; was
calculated per site in the alignment. The obtained distribution
of K¢ values was compared with the one of the original data
set using the Wasserstein distance as it is implemented in
SciPy (Jones et al. 2001).

Phylogenetic Artifact Can Be Reproduced in
Simulation Study

The phylogeny used to simulate the alignment was chosen
from an analysis of the microsporidia data set (Brinkmann
et al. 2005) with the UDM model with 64 components
obtained from clustering the LCLR-transformed site distribu-
tions. elynx (supplementary section S8, Supplementary
Material online) was used to simulate 25,000 sites using
Poisson exchangeabilities. Each site was randomly assigned
a stationary distribution sampled with replacement from
the site distributions of the HOGENOM database which
had been obtained by the Bayesian CAT analyses described
above. The simulated alignment was analyzed with IQ-TREE
using the Poisson model with the empirical distribution ob-
served in the alignment (Poisson—+F model string), and the
UDM models with four up to 64 components obtained from
clustering the LCLR-transformed site distributions. Ultrafast
bootstrap (Hoang et al. 2018) with 1,000 samples was used
with all models (-bb 1000 option).

The simulated alignment with 25,000 columns was used to
randomly subsample short alignments of length 100, 200, 400,
800, and 1,000 columns with replacement. For each length, 25
replicate alignments were subsampled. Trees were inferred
with IQ-TREE using the Poisson model, the LG model, and
UDM models with up to 256 components with fixed com-
ponent weights. Symmetric and the branch score distances
were calculated between the inferred trees and the original
tree used for the simulation.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments

D.S. and GS. received funding from the European Research
Council under the European Union’s Horizon 2020 Research
and Innovation Program (Grant Agreement No. 714774). DS.
was also supported by a stipend of excellency of the Austrian

3629

2z0z ¥snbny g uo Jasn gSNI 33NI SYNO-LSINI Ad €290065/919€/2 L/L€/a101B/aqW/W0D"dno*oiWwapede//:SdRy Wolj papeojumoq



Schrempf et al. - doi:10.1093/molbev/msaa145

MBE

government. G.S. was also supported by the Grant GINOP-
2.3.2.-15-2016-00057. Some computations were performed
on the LBBE/PRABI cluster and on the HPC resources of
CINES under the allocation A0040310449 made by GENCI.

References

Aitchison J. 1982. The statistical analysis of compositional data. J R Stat
Soc B. 44(2):139-177.

Brinkmann H, Van Der Giezen M, Zhou Y, De Raucourt GP, Philippe H.
2005. An empirical assessment of long-branch attraction artefacts in
deep eukaryotic phylogenomics. Syst Biol. 54(5):743-757.

Cavalier-Smith T. 1987. Eukaryotes with no mitochondria. Nature
326(6111):332-333.,

Crooks GE. 2004. WebLogo: a sequence logo generator. Genome Res.
14(6):1188-1190.

Dufayard J-F, Duret L, Penel S, Gouy M, Rechenmann F, Perriere G. 2005.
Tree pattern matching in phylogenetic trees: automatic search for
orthologs or paralogs in homologous gene sequence databases.
Bioinformatics 21(11):2596-2603.

Ester M, Kriegel H-P, Sander J, Xu X. 1996. A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Simoudis
E, Han J, Fayyad U, editors. Proceedings of 2nd International
Conference on Knowledge Discovery and Data Mining. Menlo
Park (CA): The AAAI Press. p. 226-231.

Felsenstein ). 1978. Cases in which parsimony or compatibility methods
will be positively misleading. Syst Biol. 27(4):401-410.

Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum
likelihood approach. | Mol Evol. 17(6):368—-376.

Feuda R, Dohrmann M, Pett W, Philippe H, Rota-Stabelli O, Lartillot N,
Worheide G, Pisani D. 2017. Improved modeling of compositional
heterogeneity supports sponges as sister to all other animals. Curr
Biol. 27(24):3864-3870.

Franzosa E, Xia Y. 2008. Structural perspectives on protein evolution. In:
Wheeler RA, Spellmeyer DC, editors. Annual reports in computa-
tional chemistry. New York: Elsevier. p. 3-21.

Godichon-Baggioni A, Maugis-Rabusseau C, Rau A. 2019. Clustering
transformed compositional data using k-means, with applications
in gene expression and bicycle sharing system data. /] Appl Stat.
46(1):47-65.

Goldman N, Thorne JL, Jones DT. 1996. Using evolutionary trees in
protein secondary structure prediction and other comparative se-
quence analyses. | Mol Biol. 263(2):196-208.

Goldman N, Thorne JL, Jones DT. 1998. Assessing the impact of second-
ary structure and solvent accessibility on protein evolution. Genetics
149(1):445—458.

Goldstein RA. 2008. The structure of protein evolution and the evolution
of protein structure. Curr Opin Struct Biol. 18(2):170-177.

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O.
2010. New algorithms and methods to estimate maximum-
likelihood phylogenies: assessing the performance of PhyML 3.0.
Syst Biol. 59(3):307-321.

Hirt RP, Logsdon JM, Healy B, Dorey MW, Doolittle WF, Embley TM.
1999. Microsporidia are related to fungi: evidence from the largest
subunit of RNA polymerase Il and other proteins. Proc Natl Acad Sci
U S A. 96(2):580-585.

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Le SV. 2018.
Ufboot2: improving the ultrafast bootstrap approximation. Mol
Biol Evol. 35(2):518-522.

Hohna S, Landis MJ, Heath TA, Boussau B, Lartillot N, Moore BR,
Huelsenbeck JP, Ronquist F. 2016. RevBayes: Bayesian phylogenetic
inference using graphical models and an interactive model-
specification language. Syst Biol. 65(4):726-736.

Jimenez M), Arenas M, Bastolla U. 2018. Substitution rates predicted by
stability-constrained models of protein evolution are not consistent
with empirical data. Mol Biol Evol. 35(3):743-755.

Jones E, Oliphant T, Peterson P. 2001. Scipy: open source scientific tools
for python.

3630

Jukes TH, Cantor CR. 1969. Evolution of protein molecules. In: Munro
HN, editor. Mammalian protein metabolism. p. 21-132.

Kamaishi T, Hashimoto T, Nakamura Y, Masuda Y, Nakamura F,
Okamoto K-I, Shimizu M, Hasegawa M. 1996. Complete nucleotide
sequences of the genes encoding translation elongation factors 1
and 2 from a microsporidian parasite, Glugea plecoglossi: implica-
tions for the deepest branching of eukaryotes. | Biochem.
120(6):1095—-1103.

Keeling PJ, Fast NM. 2002. Microsporidia: biology and evolution of highly
reduced intracellular parasites. Annu Rev Microbiol. 56(1):93-116.

Keeling P), Luker MA, Palmer JD. 2000. Evidence from beta-tubulin phy-
logeny that microsporidia evolved from within the fungi. Mol Biol
Evol. 17(1):23-31.

Kosiol C, Goldman N, Buttimore NH. 2004. A new criterion and method
for amino acid classification. | Theor Biol. 228(1):97-106.

Kuhner MK, Felsenstein J. 1994. A simulation comparison of phylogeny
algorithms under equal and unequal evolutionary rates. Mol Biol
Evol. 11(3):459-468.

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017.
PartitionFinder 2: new methods for selecting partitioned models
of evolution for molecular and morphological phylogenetic analyses.
Mol Biol Evol. 34(3):772-773.

Lartillot N, Philippe H. 2004. A Bayesian mixture model for across-site
heterogeneities in the amino-acid replacement process. Mol Biol
Evol. 21(6):1095-1109.

Lartillot N, Brinkmann H, Philippe H. 2007. Suppression of long-branch
attraction artefacts in the animal phylogeny using a site-
heterogeneous model. BMC Evol Biol. 7(Suppl 1):S4-S14.

Lartillot N, Rodrigue N, Stubbs D, Richer ). 2013. PhyloBayes MPI: phy-
logenetic reconstruction with infinite mixtures of profiles in a parallel
environment. Syst Biol. 62(4):611-615.

Le SQ, Gascuel O. 2008. An improved general amino acid replacement
matrix. Mol Biol Evol. 25(7):1307-1320.

Le SQ, Gascuel O. 2010. Accounting for solvent accessibility and second-
ary structure in protein phylogenetics is clearly beneficial. Syst Biol.
59(3):277-287.

Le SQ Dang CC, Gascuel O. 2012. Modeling protein evolution with
several amino acid replacement matrices depending on site rates.
Mol Biol Evol. 29(10):2921-2936.

Le SQ Lartillot N, Gascuel O. 2008. Phylogenetic mixture models for
proteins. Philos Trans R Soc Lond B Biol Sci. 363(1512):3965-3976.

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast
and effective stochastic algorithm for estimating maximum-
likelihood phylogenies. Mol Biol Evol. 32(1):268—274.

Pal C, Papp B, Lercher M. 2006. An integrated view of protein evolution.
Nat Rev Genet. 7(5):337-348.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. 2011. Scikit-
learn: machine learning in Python. ] Mach Learn Res. 12:2825-2830.

Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M,
Worheide G, Baurain D. 2011. Resolving difficult phylogenetic ques-
tions: why more sequences are not enough. PLoS Biol. 9(3):¢1000602.

Philippe H, Laurent ). 1998. How good are deep phylogenetic trees? Curr
Opin Genet Dev. 8(6):616-623.

Philippe H, Lartillot N, Brinkmann H. 2005. Multigene analyses of bilat-
erian animals corroborate the monophyly of Ecdysozoa,
Lophotrochozoa, and Protostomia. Mol Biol Evol. 22(5):1246-1253.

Philippe H, Poustka AJ, Chiodin M, Hoff K], Dessimoz C, Tomiczek B,
Schiffer PH, Mdiller S, Domman D, Horn M, et al. 2019. Mitigating
anticipated effects of systematic errors supports sister-group rela-
tionship between Xenacoelomorpha and Ambulacraria. Curr Biol.
29(11):1818-1826.€6.

Pisani D, Pett W, Dohrmann M, Feuda R, Rota-Stabelli O, Philippe H,
Lartillot N, Worheide G. 2015. Genomic data do not support comb
jellies as the sister group to all other animals. Proc Natl Acad Sci U S
A. 112(50):15402-15407.

Quang LS, Gascuel O, Lartillot N. 2008. Empirical profile mixture models
for phylogenetic reconstruction. Bioinformatics 24(20):2317-2323.

2z0z ¥snbny g uo Jasn gSNI 33NI SYNO-LSINI Ad €290065/919€/2 L/L€/a101B/aqW/W0D"dno*oiWwapede//:SdRy Wolj papeojumoq



Scalable Empirical Mixture Models - doi:10.1093/molbev/msaa145

MBE

Robinson DF, Foulds LR. 1981. Comparison of phylogenetic trees. Math
Biosci. 53(1-2):131-147.

Rodrigue N, Philippe H, Lartillot N. 2010. Mutation-selection
models of coding sequence evolution with site-heterogeneous
amino acid fitness profiles. Proc Natl Acad Sci U S A.
107(10):4629-4634.

Schneider R, de Daruvar A, Sander C. 1997. The HSSP database of protein
structure-sequence alignments. Nucleic Acids Res. 25(1):226-230.

Schwarz GE. 1978. Estimating the dimension of a model. Ann Stat.
6(2):461-464.

Simion P, Philippe H, Baurain D, Jager M, Richter D), Di Franco A, Roure
B, Satoh N, Quéinnec E, Ereskovsky A, et al. 2017. A large and con-
sistent phylogenomic dataset supports sponges as the sister group
to all other animals. Curr Biol. 27(7):958-967.

Sonnhammer EL, Eddy SR, Durbin R. 1997. Pfam: a comprehensive data-
base of protein domain families based on seed alignments. Proteins
28(3):405-420.

Susko E, Lincker L, Roger AJ. 2018. Accelerated estimation of frequency
classes in site-heterogeneous profile mixture models. Mol Biol Evol.
35(5):1266-1253.

Susko E, Roger AJ. 2007. On reduced amino acid alphabets for phyloge-
netic inference. Mol Biol Evol. 24(9):2139-2150.

Van de Peer Y, Ben Ali A Meyer A. 2000. Microsporidia:
accumulating molecular evidence that a group of amitochondriate
and suspectedly primitive eukaryotes are just curious fungi. Gene
246(1-2):1-8.

Vossbrinck CR, Maddox JV, Friedman S, Debrunner-Vossbrinck BA,
Woese CR. 1987. Ribosomal RNA sequence suggests microsporidia
are extremely ancient eukaryotes. Nature 326(6111):411-414.

Wang HC, Li K, Susko E, Roger AJ. 2008. A class frequency mixture model
that adjusts for site-specific amino acid frequencies and improves
inference of protein phylogeny. BMC Evol Biol. 8(1):331-313.

Wang HC, Minh BQ, Susko E, Roger AJ. 2018. Modeling site heteroge-
neity with posterior mean site frequency profiles accelerates accu-
rate phylogenomic estimation. Syst Biol. 67(2):216-235.

Whelan NV, Halanych KM. 2016. Who let the cat out of the bag?
Accurately dealing with substitutional heterogeneity in phyloge-
nomic analyses. Syst Biol. 66(2):232-255.

Whelan S, Goldman N. 2001. A general empirical model of protein
evolution derived from multiple protein families using a
maximum-likelihood approach. Mol Biol Evol. 18(5):691-699.

Williams BAP, Hirt RP, Lucocq JM, Embley TM. 2002. A mitochondrial
remnant in the microsporidian Trachipleistophora hominis. Nature
418(6900):865—869.

Williams TA, Foster PG, Cox CJ, Embley TM. 2013. An archaeal origin of
eukaryotes supports only two primary domains of life. Nature
504(7479):231-236.

Yang Z. 1994a. Estimating the pattern of nucleotide substitution. | Mol
Evol. 39(1):105-111.

Yang Z. 1994b. Maximum likelihood phylogenetic estimation from DNA
sequences with variable rates over sites: approximate methods. ] Mol
Evol. 39(3):306-314.

3631

2z0z ¥snbny g uo Jasn gSNI 33NI SYNO-LSINI Ad €290065/919€/2 L/L€/a101B/aqW/W0D"dno*oiWwapede//:SdRy Wolj papeojumoq



