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Splitwesterlies over Europe in the early Little
Ice Age

Hsun-Ming Hu 1,2, Chuan-Chou Shen 1,2 , John C. H. Chiang 3,4,
Valerie Trouet 5, Véronique Michel6,7, Hsien-Chen Tsai1,2, Patricia Valensi8,9,
Christoph Spötl 10, Elisabetta Starnini 11,12, Marta Zunino13, Wei-Yi Chien1,2,
Wen-Hui Sung1,2, Yu-Tang Chien 14, Ping Chang 15 & Robert Korty15

The Little Ice Age (LIA; ca. 1450–1850 C.E.) is the best documented cold period
of the past millennium, characterized by high-frequency volcanism, low solar
activity, and high variability of Arctic sea-ice cover. Past studies of LIA Atlantic
circulation changes have referenced the North Atlantic Oscillation (NAO), but
recent studies have noted that LIA climate patterns appear to possess com-
plexity not captured by an NAO analogue. Here, we present a new
precipitation-sensitive stalagmite record from northern Italy that covers the
past 800 years. We show that in the early LIA (1470–1610 C.E.), increased
atmospheric ridging over northern Europe split the climatological westerlies
away from central and northern Europe, possibly caused by concurrent Artic
sea-ice reduction. With ongoing ice melting in the northern high latitudes and
decreasing solar irradiance in the coming years, the early LIA may potentially
serve as an analogue for European hydroclimatic conditions in the coming
decades.

Thewesterlies over the North Atlantic sector are the primary source of
moisture transport to Europe, especially in winter half-year (October-
March). A well-known influence on their path and strength is the
pressure difference between the Icelandic Low and the Azores High;
variations in this pressure difference give rise to the North Atlantic
Oscillation (NAO; Supplementary Fig. 1A)1 and affect the precipitation
patterns in Europe (Supplementary Fig. 1B). Another feature that gives
rise to variation in the westerlies are atmospheric blocking events, i.e.,
persistent and stationary high-pressure systems that block the regular
westerly flow for several days to weeks2. Atmospheric blocking over
the North Atlantic sector and in particular Scandinavia plays an

important role in extreme winter weather over Europe by modulating
the trajectory of the westerlies and associated storm tracks (Supple-
mentary Text 1)3–6. Their presence prevents the transport of warm and
moist air masses, leading to cold spells in northern and central Europe
such as the winter of 2010 C.E7–9. To better understand the variability
of the westerlies and the occurrence of atmospheric blockings on
different timescales, natural archives that extend back beyond the
instrumental era are needed.

Several proxy records have recorded variability in the North
Atlantic westerlies over the past millennia10,11 and especially during the
Little IceAge (LIA; ca. 1450–1850C.E.)12. Thiswas the coldest episodeof
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the pastmillenniumand featured low solar irradiance13, high variability
in sea ice extent14,15, and frequent volcanic eruptions16. An early
reconstruction of the NAO over the last millennium suggested a per-
sistent positive NAO during the Medieval Climate Anomaly prior to a
shift to negative NAO conditions during the LIA10, but this conclusion
has since been questioned byother NAO reconstructions of the LIA17,18.
A more recent multiproxy reconstruction suggests instead that the
NAO was neutral to weak positive during the LIA11. There have been
attempts to reconcile differing proxy reconstructions within the NAO
framework17–19, but another possibility is that diverse patterns of large-
scale atmospheric circulation may instead be at play.

Here, we present a new autumn-winter precipitation-sensitive
stalagmite-based record from northern Italy that spans the past 800
years. Our record documents enhanced atmospheric ridging (antic-
yclone) over northern Europe accompanied by a split in the climato-
logical westerlies, with the main branch extending towards the
Mediterranean and a weaker branch northward towards Greenland.
This circulation is characteristic of a pronounced positive phase of the
Scandinavian teleconnection pattern, amode ofwintertime large-scale
atmospheric circulation variability over the North Atlantic and Europe
that is dynamically distinct from the NAO20–25.

Results
Bàsura cave (44.13 ˚N, 8.2 ˚E, 200m above sea level [a.s.l.]), featuring a
Mediterranean climate with dry summers and humid winters, is loca-
ted in Toirano, northern Italy (Supplementary Fig. 2). Instrumental
data from Genoa meteorological station (44.41 ˚N, 8.93 ˚E, 55m a.s.l.,
70 km northeast of Bàsura cave; 1950–2008 C.E.) show that more than
70% of the annual precipitation of 1269 ± 331mm (1-sigma) falls during
the rainy season from September to February (Sep–Feb). The interior
of the 1 km-long cave is characterized by 97–100% relative humidity
and a stable annual temperature of 15.6 ˚C. Stalagmite BA18-4 (Sup-
plementary Fig. 3A) was collected in a narrow chamber 350m from the
main entrance in 2018 C.E for Mg/Ca, Sr/Ca and Ba/Ca analysis and
U-Th dating (Methods). X-ray diffraction analysis shows that this sta-
lagmite is composed of calcite.

Over the past 800 years, Bàsura Mg/Ca, Sr/Ca, and Ba/Ca vary
between 20–30mmol/mol, 0.035–0.055mmol/mol, and 4.0–8.0
μmol/mol, respectively (Supplementary Fig. 4). The trace element/
calcium (TE/Ca) ratio in stalagmites is a proxy of hydroclimate above
the cave modulated by prior carbonate precipitation (PCP)26–31. PCP,
i.e., precipitation of carbonate in the karst aquifer before the dripwater
reaches the stalagmite, is enhanced during dry climate conditions due
to reduced recharge, long residence time, and low CO2 concentration
in the cave air. Covariation of Mg/Ca, Sr/Ca, and Ba/Ca ratios in drip-
water and in the stalagmite suggests a strong PCP effect when the
partition coefficients (DMe = (TE/Ca)calcite/(TE/Ca)dripwater) of these
elements are less than one29–31. In the Bàsura stalagmite BA18-4, Ba/Ca
and Sr/Ca ratios are strongly positively correlated (r2 = 0.90, n = 230,
p <0.01, Supplementary Fig. 5A), indicating a strong PCP effect26–31. A
lower correlation coefficient (r2 = 0.59, n = 232, p <0.01) for Mg/Ca
versus Sr/Ca (Supplementary Fig. 5b) suggests additional controls on
Mg/Ca (Supplementary Text 2).

This inconsistency between Mg/Ca and Sr/Ca can be potentially
attributed to a temperature effect on Mg/Ca26–31. For example,
Northern Hemisphere temperature records (Supplementary
Fig. 4a)32 and Bàsura Mg/Ca (Supplementary Fig. 4b) show a clear
decreasing multidecadal trend from 1500 to 1600 C.E. and an
increasing trend from 1850 C.E. onwards, suggesting a temperature
effect on stalagmite Mg/Ca, with high Mg/Ca corresponding to high
temperature. Stalagmite Mg/Ca variations were also proposed to be
affected by the source effect in the Mediterranean region33. Strong
westerly winds could lead to the deposition of Mg-enriched particles
(derived fromdolomite-dominated coastal regions) in the catchment
of the cave, which results in high Mg/Ca ratio in the speleothem33.

Compared to Mg/Ca, Sr/Ca and Ba/Ca are less influenced by
temperature26–29 and thus are more suitable for reconstructing
paleohydrology. Bàsura Sr/Ca is significantly negatively correlated
(r = – 0.63, n = 36, p < 0.05) with instrumental Sep–Feb (rainy sea-
sons) precipitation records from the weather stations of Genoa (G;
44.41 ˚N, 8.93 ˚E, 55m a.s.l.), Milan (M; 45.47 ˚N, 9.19 ˚E, 150m a.s.l.),
and Nice (N; 43.65 ˚N, 7.21 ˚E, 2m a.s.l.) for 1855-1965 C.E. within
dating uncertainties (Supplementary Fig. 6; Supplementary Text 2).
This linkage is supported by in situ dripwater monitoring results,
which show deceasing of dripwater Sr/Ca and Ba/Ca corresponding
to intervals with high rainfall (Supplementary Text 2). We therefore
use the Bàsura stalagmite Sr/Ca record to represent Toirano autumn-
winter (Sep–Feb) precipitation history.

Southern European precipitation pattern
Toirano autumn-winter precipitation is strongly related to variability
in autumn-winter North Atlantic sea-level pressure. Instrumental
autumn-winter precipitation data averaged for the G/M/N stations
(1950–2008 C.E.) show a strong positive correlation with sea-level
pressure (SLP) anomalies, with a ridge over Scandinavia and a trough
over western Europe (Fig. 1a, shades). The correlation pattern closely
resembles the SLP pattern associated with the Scandinavian tele-
connection (SCAND; Fig. 1a, contours)6, and is distinguished from
NAO-correlation pattern (Supplementary Fig. 1a and c). Indeed,
G/M/N Sep–Febprecipitation is strongly positively correlatedwith an
index of the Scandinavian pattern (SCAND index; https://www.cpc.
ncep.noaa.gov/data/teledoc/scand.shtml) averaged over Sep–Feb
(r = 0.63, n = 70, p < 0.05, 1950–2020C.E.), suggesting that SCAND
exerts a strong control on autumn-winter precipitation in Toirano.
Positive winter SCAND phases are associated with synoptic high-
pressure anomalies over eastern Scandinavia and low-pressure
anomalies over western Europe. Wind field analysis (Fig. 1b; vec-
tors) shows that a positive SCAND index is associated with a split
configuration of the climatological westerlies, with the northern
branch extending towards Greenland and the southern branch
flowing into the Mediterranean. The altered moisture transport by
the changing westerlies affects the hydroclimate in Greenland and
the Mediterranean region (Fig. 1b, shades), with increasing pre-
cipitation in the northern Mediterranean and SE Greenland.

In the observed wintertime synoptic circulation over the Euro-
Atlantic sector, Scandinavia is a preferred location for atmospheric
blocking and the associated blocking high structure produce a bifur-
cation in the storm track leading to increased precipitation over the
southernmost Europe, northernmost of Norway, and SE Greenland
(Supplementary Fig. 1d)20. An increase in the frequency of atmospheric
blocking events over Scandinavia would thus lead on climate time-
scales to atmospheric ridging, split climatological westerlies and
associated rainfall changes as expressed by the positive SCAND pat-
tern. Given the demonstrated modern-day relationship between Toir-
ano rainfall and the SCAND pattern (Fig. 1b), we thus argue that Bàsura
stalagmite Sr/Ca and Ba/Ca record the frequency of wintertime
atmospheric blocking events over Scandinavia, with more rainfall
indicating an increased occurrence of blocking and split westerlies
over the Europe.

Little Ice Age
During the LIA, the climate in the North Atlantic/European realm was
mostly cold12, but proxy records show considerable variability on
multi-decadal to centennial time-scales within this period. On cen-
tennial time-scales, the Bàsura record reveals a distinct wet interval in
northern Italy during the early LIA (1470–1610 C.E.), suggesting pos-
sible strong and persistent positive SCAND-like conditions. Within this
period, however, the Bàsura record (Fig. 2f) shows strong multi-
decadal variability: precipitation increased at the beginning of the LIA,
peaked in ~1550C.E., and then decreased until 1620 C.E. Precipitation
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reached a second peak in the late 1700 s, followed by a decreasing
trend until the end of the LIA.

The early LIA wet interval in northern Italy corresponds to a per-
iod of strong westerlies over the North Atlantic (1470–1610 C.E.), as
suggested by a sodium ion record in a Greenland ice core (Fig. 2a)34,
concurrent with a neutral-positive NAO mode as indicated by a com-
posite NAO reconstruction (Fig. 2a)11. The British Isles, however,
experienced a relatively dry and lesswindy climate during this interval,
as recorded in a stalagmite-based reconstruction of Roaring cave
(Fig. 2c, green)35 and the aeolian sediment Bromine record from
Scotland (Fig. 2c;mustard)36. Dry and cold conditions are also inferred
for Germany, based on stalagmite δ18O data from Bunker cave (Fig. 2d,
dark green)37,38 and Bleßberg cave (Fig. 2d, light green)39, and for high-
latitude Sweden (Supplementary Fig. 7a)40, based on stalagmite δ18O
data and lacustrine records41. The precipitation and wind minima in
these regions thus do not reflect a neutral-positive NAO mode35. Our
Sr/Ca record from Bàsura cave (Fig. 2f), on the other hand, suggests
that southern Europe experiencedwarmandhumid conditions, as also
documented by a stalagmite δ18O record from Spannagel cave, Austria
(Fig. 2e)42. Similarly, warm and wet conditions are registered by sta-
lagmite records from Portugal (Supplementary Fig. 7b)43, Spain (Sup-
plementary Fig. 7c)44, and Turkey (Supplementary Fig. 7d)45, whereas
stalagmite records from Morocco record a dry interval (Fig. 2g and
Supplementary Fig. 7f)46,47.

Atmospheric ridging over Scandinavia during 1470–1610 C.E.
The dry/cold climate in northern Europe during 1470–1610 C.E. can be
reconciled with a neutral-positive NAO phase during this period as
suggested by Ortega et al. (2015)11 through increased atmospheric
ridging and hence increased frequency of atmospheric blocking
events over Scandinavia. Comas-Bru and McDermott (2013)22 have
argued that the additional influence of the SCANDpattern on top of an
NAO can explain the nonstationarity in the relationship between Eur-
opean winter climate and the NAO. The combination of the Greenland
record and our Bàsura record suggests that such ridging split the

westerlies during the early LIA, with a northern branch directed
towards the Arctic, consistent with the windy/warm/humid climate
over southeastern Greenland, and a southern branch directed towards
the Mediterranean, consistent with increased rainfall at Bàsura cave
(Fig. 2h). This climatic setting is similar to the anomalously wet con-
ditions in southeastern Greenland and the northwestern Mediterra-
nean during positive SCAND phases (Fig. 1b and Supplementary
Fig. 1d)4,48. The positive SCAND phase does not explain the early LIA
drying over North Africa46,47, but this could be attributed to an
enhanced Azores High during a neutral-positive NAO phase (Fig. 2a)11,
which prevented moisture transport into Morocco (Fig. 2b).

Connections to reduced Arctic sea ice and solar forcing
Ice-rafted debris (IRD) records from the Fram Strait (Fig. 3b)49,
foraminiferal-inferred sea-ice records on the North Greenland shelf
(Fig. 3b)50, and diatom-based sea-ice reconstructions from the west
Greenland shelf (Fig. 3c)51 all show extensive sea-ice cover in the North
Atlantic during themiddle to late 1300 s. This extensive sea-ice cover in
the North Atlantic was presumably induced by intense volcanism16

(Fig. 3a) and low solar irradiance12 (Fig. 3g) in the late 1200 s to early
1300 s (refs. 14,52) and in turn it triggered a change inoceancirculation
and cooling in Europe starting around 1400C.E. (ref. 15,53). From the
1400 s C.E. onwards, sea ice extent decreased significantly (Fig. 3b, c)
due to an intrusion of warmAtlantic Water into the North Atlantic54, as
reflected by a positive phase of the Atlantic Multidecadal Variability
(Fig. 3g)55. Considering the dating uncertainties of major Bàsura Sr/Ca
decreases between 1466 ± 20 and 1559± 40C.E., the period with
Scandinavian ridging we inferred falls in the interval with Artic sea-ice
maximum at 1450C.E. to minimum at 1586C.E., as this interval was
identified as a “decreased sea ice extent” event56. Such Scandinavian
ridging can be triggered by sea ice loss in the Barent-Kara seas57,58.
While direct sea-ice proxy records from Barent-Kara seas are not
available, coupled model simulations constrained by the assimilation
of available global proxy data indicate a reduction of Barent-Kara sea
ice during 1470–1520C.E59. Reduced sea ice results in increased heat

Fig. 1 | Climate and Atlantic sea-level pressure (SLP) variability. a Correlation
between SLP and (i) average precipitation at Genoa, Milan and Nice stations
(G/M/N PP) (shades); (ii) Climate Prediction Center (CPC) Scandinavia index
(SCAND) (contours) during September–February in 1950–2008 C.E. b Vectors:
climatological winds at 200-mb level plus regression of 200-mb winds on SCAND

index multiplied by two standard deviations of SCAND index during September-
February in 1950–2008 C.E., indicating a positive SCAND condition. Shades: cor-
relation between SCAND and ground precipitation during September-February in
1950–2008 C.E. The shades and contours indicate the correlation coefficient(s)
above 90% confident level. Climate data are from 20th century reanalysis v3.
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fluxes into the atmosphere that, in turn, excite a stationary Rossby
wave propagating towards the southeast and can increase atmo-
spheric ridging over northern Europe60–62. This ocean-atmosphere
feedback could thus provide a mechanism for the link between
reduced sea-ice extent and the Scandinavian ridging during 1470–1610
C.E. suggested by our results (Fig. 2g).

The atmospheric ridging in the early LIA could have been further
amplified by low solar irradiation (Fig. 3g). Model simulations63,64 and
proxy records65 suggest that solar irradiation changes can have a sig-
nificant effect onozone chemistry in the stratosphere that disturbs the
polar vortex and thus influences the tropospheric jet stream and
atmospheric circulation63–67. Our Bàsura stalagmite Sr/Ca data,
decreasing from 0.055mmol/mol at 1460C.E. to 0.035mmol/mol at
1550C.E., suggest that Scandinavian ridging progressively strength-
ened during this interval (Fig. 3e). This 90-yr interval falls during the
Spörer Minimum (1388–1558 C.E., Fig. 3g)12, supporting this linkage
between atmospheric changes and solar variability68.

Complex climate patterns in the late LIA
During the second-half of the LIA, the Bàsura record shows a wetting
trend from 1610 to 1750 C.E., similar to records from Bunker cave
(Germany; Fig. 2d)37,38, Sofular cave (Turkey; Supplementary Fig. 7d)45,

and Chaara cave (Morocco; Supplementary Fig. 7f)46. However, records
fromRoaring cave (Scottland; Fig. 2c)35, Ifoulki cave (Morocco; Fig. 2g)34

andKaite cave (Spain; Supplementary Fig. 7c)43 show an opposite trend,
whereas there is no clear trend in the records from Spannagel cave
(Austria; Fig. 2e)42. The diverse climatic conditions during the second
half of the LIA suggest that this period could bemore complex than the
first half. The NAO reconstruction (Fig. 2b)11 also shows a neutral phase
for the late LIAwith trivial fluctuations, suggesting that the NAOdid not
play an important role in orchestrating European climate during this
period. The NAO, Scandinavian patterns, and/or other leading climate
modes (such as the East Atlantic pattern)6 could contribute equally (or
weakly) to late LIA European climate, which leads to complex regional
precipitation patterns over Europe.

The decreased sea ice extent from 1450–1620 C.E. arguably shows
a long duration over the past 1400 years and ismore pronounced than
that during the Medieval Climate Anomaly (ca. 800–1300C.E.)56. Our
results present proxy-based evidence of enhanced atmospheric rid-
ging over northern Europe during this multi-decadal interval at the
early LIA, possibly in response to the sea ice reduction and solar
minimum. Our results thus potentially provide an analogue for the
coming decades, when the sun could enter a grandminimum69 and the
Arctic is projected to be ice free by 2030C.E70.
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Methods
Chronologyof BA18-4wasestablishedusing StalAge71 basedon 15 230Th
dates, measured on a Thermo-Finnigan Neptune multi-collector
inductively coupled plasma mass spectrometer72 at National Taiwan
University, with a two-sigma dating uncertainty of ± 4 to 37 years
(Supplementary Fig. 3B). A total of 214 subsamplesweredrilled forMg,
Sr, and Ba and analyzed using external matrix-matched in-house
standards for every 4-5 samples on an inductively coupled plasma
sector-field mass spectrometer (ICP-SF-MS, Finnigan Element II)73

(Supplementary Data 1) at National Taiwan University, with a two-
sigma reproducibility of ± 0.5%.

Data availability
The trace element data generated in this study are provided in the
Source Data file.
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