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Abstract

The main goal of this work is to develop and test several methods for aberration cor-
rection with using adaptive optics in Florescence Correlation Spectroscopy. Here the
quantification of the influence of the aberrations in single photon FCS is used for the
correction metric of the adaptive optics. The main idea of this thesis was based on the
previous work [2] of C.E.Leroux, I.Wang, J.Derouard and A.Delon that suggest that the
count rate per molecule,CRM(or molecular brightness) can be used as an optimization
metric when applying Adaptive Optics to biological media.Morover, the first simulations
of such a system have been initiated in the work [1] of Tudor-Bogdan Airimitoaie. Testing
of the methods is performed first on the generated simulation data and after performed
on the real system.



List of abbreviations

• λ laser’s wavelength

• CRM Count rate per molecule

• N Mean number of molecules

• CR Count rate

• n Number of photons

• aabi Aberration of Zi, Zernike mode i

• aci Corrected aberration of Zi, Zernike mode i

• Φ(r, θ) Input aberration

• Ψ(r, θ) Corrected aberration

• Jr Jacobean

• σ2
wf Root Mean Square(RMS) of the aberrations

• β Unknown parameters for identification

• S, S1, S2, S3 Cost functions used for optimization

• yi Measurement in point i

• ri Measurement error in point i
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Chapter 1

Description of the system

1.1 Introduction

Recent breakthroughs in scientific instrumentation significantly have improved the res-
olution of (scanning) optical microscopy and related imaging systems. One emerging
technology is Adaptive Optics (AO). Based on micromechanical deformable mirrors, AO
enables to compensate for aberrations in the imaging system and to improve overall res-
olution.
Here mechatronic system design and modern control engineering also indicate huge in-
novation potential to enhance system performance in terms of speed and resolution.
This research in mechatronics of imaging systems will address the development of novel
optimization methods for wave front correction, as well as improved operation of optical
microscopes, particularly scanning of confocal microscopes for bio-medical research. The
work is based on the work on the research in the interdisciplinary laboratory for physics
LIPhy, UJF Grenoble.
The control of the shape of the adaptive mirror in adaptive optics is performed to correct
the aberrations from the measurement. In an imaging system, aberrations occur when
light from one point of an object does not converge into a single point after transmis-
sion through the system. Deformable mirrors (DM) are mirrors whose surface can be
deformed, in order to achieve wavefront control and correction of optical aberrations.
The sample in the microscope is illuminated by the beam from the laser. The light goes
to the sample and gets out aberrated. This signal goes to the detector of fluorescence
that is used for measurement of photons. In the system build in LIPhy, the estimation of
the aberration should be done by the detector of fluorescence, by the number of measured
photons in a period of time. In this case the wavefront sensor is not used for the detection
of the aberration, because of lack of optical sectioning capability. The main research is
based on finding the appropriate methods and their implementation for the wave front
sensor-less adaptive optics problem based on the research and equations developed in
LIPhy.
This work will present several phases in adaptive optics :

• Defining the system and the metrics, modeling the aberrations and the strategies
for the controling the shape of the adaptive optics.

• Describing the methods that are used for the controlling the shape of the deformable
mirror.

• Implementation, testing and comparing the performances of the methods performed
on the AO
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Figure 1.1: Adaptive optics systems use a deformable mirror to correct wavefront distor-
tions

Figure 1.2: 97 element ALPAO Deformable Mirror,(left) Structure of the mirror,(right)
Actuator geometry of the deformable mirror

1.2 Experimental setup and materials

The optical system of our experiment is based on an Olympus X71 platform using a C-
Apochromat 63X/1.2 W Korr water objective manufactured by Zeiss and a fluorescence
cube with a dichroic mirror and an emission filter. The system also consists of Shack-
Hartmann Wavefront Sensor(SHWFS) for calibration of the deformable mirror. The
using of SHWFS for aberration measurements is not possible in this case because of lack
of optical sectioning capability. The laser beam at 633 nm (HeNe, from Thorlabs) has
an uniform intensity profile in the pupil plane of the objective, which is required to have
an uniform signal to noise ratio on the Shack-HartmannWavefront Sensor (SHWFS)
when performing the calibration of the DM. For the correction of the aberrations, 97
actuators Hi-speed deformable mirror(manufactured by ALPAO) is used. The control of
the shape of the mirror is made by sending separately control signal to each actuator of
the mirror(Fig. 1.2). The used DM has ability to generate with good precision Zernike
aberrations of large amplitudes. The system is presented in Fig. 1.3.

1.3 Modeling

The optical aberrations depend on the optical alignment, reflective index, observation
depth and other factors. This means, that if we want to perform correction of the
aberrations , we need to perform the correction in similar or exact conditions like the
experiment that we are interested in. There are several metrics that are important when
the Florescence Correlation Spectroscopy is performed. The mean number of molecules
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Figure 1.3: The optical system with the control

in the FCS observation volume, N is one of this measured metrics. There are several
other parameters connected to N, the molecular brightness, defined as the Count Rate
per Molecule, CRM, and the total Count Rate, CR. The measurements of this metrics
is directly connected with the intensity of the aberrations of the observed experimental
sample. The main idea of performing the aberration correction in this system is to use
the measurement of one of this metrics to measure the intensity of the aberrations on it.
For this aim, the most important thing is to provide the mathematical relations that
connect this metrics with the amount of the aberrations in the measured sample. The
parameter CRM can be well approximated with the following expression:

CRM
ab

= CRM
opt · e−2(

2πσwf
λ )2 (1.1)

where the σ is presented by:

σ2
wf =

∑
i

(aabi − aci )2 (1.2)

σwf presents the Root Mean Square(RMS) of the aberrations (of both illumination and
detection beam) and λ is the mean value of the excitation and fluorescence wavelengths.
The value of wavelengths is λ = 580nm in this case. In practice, the amplitudes,aabi
of Zernike aberrations introduced by the sample can be estimated,by assuming that the
aberrations are perfectly corrected by the DM. For each Zernike mode i, the notation ai
is for the amplitude of that mode i. The aberration of the input can be presented as a
series of Zernike polynomials, each denotes as Zi(r, θ):

Φ(r, θ) =
∑
i

aabi Zi(r, θ) (1.3)

and the corrected aberrations from the deformable mirror can be presented as a similar
series, but parameterized by aci :
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Figure 1.4: Plot of CRM in function of σwf

Ψ(r, θ) =
∑
i

aciZi(r, θ) (1.4)

The other metric that can be presented in relation to the aberrations in the system is
the mean number of molecules, N measurement. The equation is obtained by fitting a
curve on the measured data (presented on Fig. 1.5). The equation for calculating N is
different for each single mode that is examined. In our case the relation for the modes
a13 and a25 is presented:

N
ab

= N
opt

(1 + ασβwf ) (1.5)

where:

• for a13: α = 321 and β = 2.140

• for a25: α = 2847 and β = 2.89

The measured number of photons in the experiment can be presented according to the
CRM and N as:

nab = CRM
ab ·Nab · δ t, (1.6)

where δt presents the sampling time in our system. In this system its value is δt = 1µsec
The total Count Rate, CR can be calculated as:

CR
ab

=
nab

δ t
(1.7)

and the relation between CRM , CR and N can be presented as:

CRM
ab

=
CR

ab

N
ab

(1.8)

We can notice that the CRM in our system is a good metric to be used for the identifi-
cation and the correction of the aberrations. With the Equation 1.1 the relation between
the aberrations and the CRM is well presented for all of the modes and it can be used
for the identification of the aberrations. In this system the values of the parameters vary
in the ranges:

• CRM in range of 1÷ 30kHz

• N in range of 1÷ 150 molecules.
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Figure 1.5: measurements and estimation of N in function of σwf

1.4 Estimation of CRM

The detector of fluorescence that is used in our system gives the number of the measured
photons as the output of its measurements. The main parameter that is going to be
used for the optimization of the deformable mirror is the CRM . This means that we
need to use the estimated number on photons and with the knowledge of the sampling
time of the system δt we should estimate the CRM that will be used for the aberration
correction.
The estimated CR is calculated according to:

ĈR =
n

δ t
(1.9)

The number of molecules, N can be estimate using this two formulas:

N̂ =
n2

n(t)n(t+ δ t)− n2
(1.10)

N̂ =
n2

var(n)− n
(1.11)

After testing these equations on the simulation, the second equation(1.11) proved to be
more accurate for estimation of N. The results of the simulation are presented in the
Third Appendix.
Using the estimated values of the CR and N , the estimated CRM can be calculated as:

ĈRM =
ĈR

N̂
(1.12)

6



1.5 Creating the simulation data

Before we test the proposed methods on the real system, testing should be performed
on data obtained by simulation of the system. On the simulation data the aberration
is presented by using the equations: 1.1 and 1.5. The measurement of the photons is
simulated by using 1.6. To present the real system and the measurement noise that is
presented, noise is added using the Poisson distribution. The density probability function
is calculated by:

P (k) = P (X = k) =
λke−k

k!
(1.13)

the mean value and the variance:
X̂ = λ (1.14)

var(X) = λ (1.15)

The measurement noise that is added is 2000 photons per second.
After the measured number of photons are simulated, CRM is estimated using the equa-
tions: 1.9, 1.11 and 1.12.

1.6 Strategy for the aberration correction

Detection of 
fluorescence 

Actuators

n Estimation of CRM Identification of 
 aberrations

CRM

u

Sample Laser 
fluorescence

Ψx

Фx+

-

+

Figure 1.6: Block representation of the system

There are several aspects that are important when the optimization and the identifi-
cation methods need to be applied. The biggest obstacle that should be avoided at the
beginning of the optimization is the coupling between the modes. When the measure-
ments are performed on the real system, there is coupling between some of the modes that
is not modeled with the theoretical model of the system. There are a lot of publications
concerning the control of the shape of deformable mirror applied in large telescopes and
in microscopes. All of this works have different approaches according to the particulari-
ties of the systems were they are implied. When it comes to the choice of the algorithms,
in our case there are some of the particularities that we need to keep on mind:

• There are coupling between the modes. The coupling in the equations for the
system are not modeled. This means that, at the beginning some robust, non-
gradient based method should be applied for the optimization.

• Before the optimization is performed, using the SHWFS sensor, the shape of the
mirror can be calibrated for each Zernike mode separately. The optimization in
this system can be performed by optimizing the amplitude for each Zernike mode
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instead of performing control of the shape by sending voltages to every actuator
in the mirror separately. This approach will reduce the calculation time and have
better convergence speed. Also, this method eliminates the local optimum problem
that can be present if the optimization is performed on the voltage of the actuators
separately.

• In this case, the measurements are performed on real biological materials and be-
cause of this, the measurement signal is with low intensity. This means that, the
measurement time is relatively longer comparing to the other similar works on
adaptive optics and the methods that are implied should be fast, with low number
of iterations required.

• We have some a priori knowledge about the modes that are most influential for
the aberration in our system and also we know the pairs of modes that are coupled.
This knowledge can be used for the optimization methods to correct the modes
with the highest impact in order to reduce the optimization time. In our system
the modes a13 and a25 are coupled modes and they are the ones that are corrected
first. Other modes that should be corrected are: a4(defocus), a6(astigmatism), a7
and a8 (coma), a9and a10 (trefoil).

• After most of the dominant modes are corrected, coupling in the system can be
neglected and we can use the developed model of the system as correct. When the
coupling is neglected, relation between the measured CRM and the aberrations in
the system(σwf ) is good modeled. This formula can be used for the estimation of
the aberrations in our measurements. Gradient based methods can be developed
for the optimization based on this relations.

Non-gradient method 
implementation

Gradient based 
method 

implementation

Calibrating the shape 
of the mirror for each
Zernike mode

Figure 1.7: Execution order of the implied methods

The correction of the aberrations consist of three main phases. First, before the
optimization is performed, the shape of the mirror is calibrated for each Zernike mode.
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After the shapes are obtained, the optimization can be performed. The first methods that
are going to be performed are the non-gradient methods. After the optimal solution is
found by this methods, the gradient based methods are implemented for the identification
of the aberrations.
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Chapter 2

Description of the methods

2.1 Non-gradient based methods

In order to avoid the non-modeled coupling between the modes, first we implemented
the Non-gradient based methods for optimization. Different optimization methods were
performed. Because the measurement time for one iteration in our system is relatively
long, the main goal for choosing the appropriate algorithm was to find the algorithm that
can be executed in small number of steps and that should be robust to the coupling and
the noise that it present in the measurements. For this aim this main algorithms were
performed:

• Hill-climbing algorithm

• 3N-interpolation algorithm

• Combination of multivariable interpolation and single mode interpolation

2.1.1 Hill-climbing algorithm

Hill-climbing algorithm is optimization technique that tries to find the solution using a
local search. This method starts from some initial point and tries to find the optimal
solution by moving around that point. This method is excellent for finding optimal
solution by optimizing convex surfaces , because in this functions the global maximum can
be found. The equation that presents CRM in function of the amplitude of the Zernike
modes has convex shape, this means that this method is adequate to be implemented for
finding the optimal solution in our system.

Similar Hill-climbing(for discrete systems) approach was used in the work [4] where
it was performed on every actuator separately and it took around 300 iterations for the
optimization. Later, the same method was used performed on optimization of Zernike
modes and was presented on [5] . The optimization performed on Zernike modes was
faster and more accurate because the global maximum is easier to be obtained. When
the optimization is performed on the Zernike modes the function is convex and there is
only one global maximum. This optimization will be performed only on several modes
separetely. First, the optimization is performed once for every mode separately and
after that it is repeated several times. During the testing some of the parameters that
should be defined in the algorithm like the Step size and the acceleration should be
defined and tested on the simulation data and after on the real system. The value of this
parameters is very important for the optimization performances. The acceleration has
initial, fixed value and the Stepsize changes its initial value, according to the convergence
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or divergence from the optimal point.
In our case the Continuous Space Hill Climbing Algorithm that is different to the discrete
one used in previous works [5].The method is implemented for 4 seconds measurement
and one iteration for single mode needs 5 measurement points. This optimization will
be performed only on the most dominant modes. First, the optimization is performed
once for every mode separately and after that, it is repeated several times in cycles in
the same order until the optimization reaches some steady state. The pseudo-code for
the Continuous Space Hill Climbing Algorithm is presented on the second Appendix.

2.1.2 Multivariable interpolation

Because some of the most dominant modes a13 and a25 are coupled in reality and the
optimization on this mode will be better if it is performed on the both modes at the same
time. For this aim, multivariable interpolation can be performed on this modes and in
all the modes that are considered as coupled. With the multivariable interpolation, the
representation of CRM can be presented as function of two variables that can take in
account the relation of the measured metric in function of the two coupled modes.
To perform a multivariable interpolation, N ×N measurements should be performed on
the both modes, where N is the number of measurements per one mode. The measure-
ments are taken by changing the values of ac13 and ac25 in this case that are in range of
±0.05µm. If we take N = 5 for better precision of the optimization, the total number of
measurement per one iteration is 52 = 25 measurements.
Because the system runs on MATLAB based platform, the build-in MATLAB functions
can be used for the Multivariable interpolation implementation. The ”interpn” function
is used for the multivariable interpolation. There are several methods that can be used
for interpolation by using this function:

• Nearest neighbor interpolation

• ’linear’- Linear interpolation (default)

• ’spline’- Cubic spline interpolation

• ’cubic’ -Cubic interpolation, as long as data is uniformly-spaced. Otherwise, this
method is the same as ’spline’.

After the multivariable interpolation is done for the coupled modes, the maximum of the
interpolated function can be found. The points of a13 and a25, where the interpolated
function receives its maximum are taken as the optimal point, and their value is sent as
the control signal for the deformable mirror. If the measurements are on the boundaries
of the measured aberrations for some mode on the interpolated curve, the measurement
point for this mode are shifted for the next optimization iteration.

2.1.3 N-points single mode interpolation

The optimization process can be done on every mode separately by taking measurements
for each different mode. By changing the ac for each mode in the range of ±0.05µm
the points for the measurements for CRM are obtained. After the measurements are
taken the interpolation curve is obtained and the maximum point is calculated in the
interpolated curve for the single mode. The point for ac where the maximum is estimated
is taken as the identified value for the aberration intensity for that particular mode. The
Lagrangian interpolation performed in three point ac = −0.05, 0, 0.05µm can be noted
as 3N algorithm for optimization.
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Figure 2.1: Five points measurement interpolation for CRM

2.2 Gradient based methods

After the Non-gradient methods are implemented, for better control results, some gra-
dient based methods like Gauss-Newton algorithm and Levenberg-Marquardt algorithm
can be applied for the identification of the aberrations. As all the dominant modes have
been optimized to the some point, we can consider that the coupling between the modes
is small and the equations modeled for CRM can be taken as the model that can be used
for identification of the aberrations.

2.2.1 Gauss-Newton algorithm

Gauss-Newton algorithm is used to solve non-linear least square problems. This method
can be used for the identification of the unknown parameters in our estimattion that can
be presented as:

βT = [CRM
opt
, aab1 , a

ab
2 , ..., a

ab
i ] (2.1)

The unknown parameters in this case are the amplitudes for each mode separately and
the optimal value of CRM that should be obtained after the optimization. In this case we
are going to use the method to minimize the cost function(i.e, the non aberrated CRM
value):

min
β
S (2.2)

S =

m∑
j=1

r2j (2.3)

where rj presents the error between the estimated value of CRM and yj , the measure-
ments obtained from the real system:

rj = yj − CRM
ab

j (CRM
opt
, aab1 , a

ab
2 , ..., a

ab
i ), j = 1, 2, ..., n (2.4)

12



and the measurement matrix of the measurements yj , taken at some points xj , can be
presented as:

y =


y1(x1)
y2(x2)
y3(x3)

...
ym(xm)

 (2.5)

To find the optimal solution, the error should be minimized:

∂S

∂βi
= 2

m∑
j=1

rj
∂rj
∂βi

= 0 (2.6)

If we develop the Equation 2.6 to calculate the unknown parameters in β:

JTr · Jr ·∆β = JTr · r (2.7)

βn+1 = βn + (JTr · Jr)−1 · JTr · r (2.8)

∆βT = [∆CRM
opt

∆aab1 ∆aab2 . . . ∆aabi ], (2.9)

where, Jr is the Jacobean. Here, the inversion of the matrix (JTr · Jr) for small number
of measurement points can give problem by inverting with the MATLAB, inv() function.
For this aim the pseudo-inversion using the SVD-Singular Value Decomposition can be
performed. The code is presented on the Fourth Appendix. For this case we have:

Jr =
∂y

∂βxj
(2.10)

Jr =



∂CRM
ab

∂CRM
opt

x1

∂CRM
ab

∂aab1 x1

. . . ∂CRM
ab

∂aabi x1

∂CRM
ab

∂CRM
opt

x2

∂CRM
ab

∂aab1 x2

. . . ∂CRM
ab

∂aabi x2

...
...

. . .
...

∂CRM
ab

∂CRM
opt

xm

∂CRM
ab

∂aab1 xm
. . . ∂CRM

ab

∂aabi xm

 (2.11)

The derivatives according to the CRM
ab

are calculated as following:

∂CRM
ab

∂CRM
opt = e−2(

2πσwf
λ )2 (2.12)

∂CRM
ab

∂aabi
= −16 · (aabi − aci ) · CRM

opt · π
2

λ2
· e−2(

2πσwf
λ )2 (2.13)

2.2.2 Levenberg - Marquardt algorithm

The Levenberg - Marquardt algorithm can be developed from the Gauss Newton algo-
rithm with adding the diagonal element, JTr J

T , and by adding a dumping factor, µ:

βn+1 = βn + (JTr · Jr + µ diag(JTr J
T ))−1 · JTr · r (2.14)

Here the dumping factor µ can be adjusted according to the reduction of S. If the re-
duction is fast like in our case, we can use small µ, and this method will be similar to
the previous Gauss-Newton method. If an iteration gives insufficient reduction in the
residual, can be increased, giving a step closer to the gradient descent direction.
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2.2.3 Single mode correction

After the most of the dominant modes are corrected by the Non-gradient used methods
before and most of the aberrations are corrected, the following assumption can be taken:

σ2
wf ≈ 0; leads to : e−2(

2πσwf
λ )2 ≈ 1, (2.15)

this means, if we want to correct one mode separately we can assume that the following
equation is correct:

CRM
ab

= CRM
opt
e−2(

2π
λ )2·

∑m
j=1(a

ab
j −a

c
j)

2

≈ CRMopt
e−2(

2π
λ (aabi −a

c
i ))

2(2.16)

Using the Equation. 2.16 we can perform correction on single mode using the following
Jacobean:

Jr =



∂CRM
ab

∂CRM
opt

x1

∂CRM
ab

∂aab x1

∂CRM
ab

∂CRM
opt

x2

∂CRM
ab

∂aab x2

...
...

∂CRM
ab

∂CRM
opt

xm

∂CRM
ab

∂aab xm

 (2.17)

Using this assumptions, we can do identification of the aberration on each Zernike
mode separately.
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Figure 2.2: Identification of the CRMab on the simulated data for the mode a13, for high
CRMopt = 15kHz and more noisy CRMopt = 4KHz and the aberration aab13 = 0.01µm
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Figure 2.3: Evolution of the identification of the parameters CRM=4kHz and aabi =
0.01µm with Levenberg - Marquardt method
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Chapter 3

Implementation and results

3.1 Non-gradient based methods implementation re-
sults

3.1.1 Results from the testing on the real system

When the code is implemented on the real system, the two parameters: acceleration and
the initial Step size should be adjusted according to the specific nature of the system
in order to get the best accuracy and good convergence. The Hill-climbing method is
presented in Chapter 2 and the pseudo-code is presented in the Second Chapter. For this
aim, two cases were tested on the real system. In the first case, acceleration = 1.2 and the
initial Stepsize = 0.015 has been taken and on the second experiment, acceleration = 1.5
and the initial Step size = 0.05.
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Figure 3.1: Hill-climbing method for different Step sizes

The test results are presented in Fig. 3.1.After the running of the two algorithms with
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different parameters, we can see that the plots for the two cases presented in one graph.
From the plot, we can easily conclude that the smaller step size will present better
optimization and that the bigger steps size found difficulty to determine the optimal
points and presented more oscillation during the optimization. According to this for the
future examination we are going to use the acceleration = 1.2 and Step size = 0.015 for
the optimization with the Hill-Climbing method.

3.2 3N-algorithm for optimization

The 3N-algorithm is based on the interpolation of the CRM for single mode, using in-
terpolation with measurement in three points. After the three measurements are taken,
the maximum of the interpolating function is calculated and the point with the highest
value of the interpolated metric is taken for optimal point.
In our case, because of the our previous knowledge about the interval where most prob-
ably the amplitudes of the aberrations, we are taking three measurements for every
aberration for ±0.05 and 0. If the aberration is out of this boundaries we shift the mea-
surement for the next iteration to higher or lower interval according to the value of the
amplitude of the aberration.

3.2.1 Comparison of the two algorithms

After we implemented the 3N algorithm and the Hill-climbing algorithm, we are going
to do some comparison between the two methods for optimization. The two algorithms
were performed on the same measurement and were performed two iteration cycles for
all the concerning modes. The order of execution of the optimization for the modes was
following: a13, a25, a13, a25, a4, a6, a8, a9 and the results of the optimization performed on
the real system are presented on Fig.3.2
For the first comparison we used measurement in 4 second and high intensity to the laser
light. When we see the plots for the outposts of the two methods, we can notice that
the 3N method is faster than the HC method, this is due to the fact that this algorithm
uses 3 measurements comparing to the 5 measurements that HC method uses for one
iteration. On the other hand, we can notice that in this case the HC algorithm will
reach higher value for measurement of CRM, that means that the optimization is more
effective with this method but slower.

Comparison of the two algorithms with higher noise measurements

Because when the experiment is performed on the real biological material, the intensity
of the light of the laser is decreased in order to prevent the biological material from
damaging with high laser intensity. This means that in this case we are going to have
smaller number of measured photon per one measurement cycle, so the noise level will
increase and the accuracy of the measurement will decrease. The aim of this experiment
is to compare the two algorithms when they are performed during the examination of
tissues. In this comparison were performed two cycles iterations with the two methods
and one measurement was performed on time duration of four seconds.
According to the results presented on Fig. 3.3 , the 3-N algorithm proved to be more
robust than HC for the increased measurement noise during this measurements.

3.2.2 Multivariable interpolation results

The multivariable interpolation was performed on the coupled modes a13 and a25 and on
the Fig. 3.4 is presented the comparison of the theoretical distribution of CRM and the
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Figure 3.2: Comparison of the two methods

measured interpolated plot. The time for one measurement was taken to be 4s and other
modes were previously corrected. We can notice that if the other dominant modes are
corrected, the coupling between these two modes is small, that it can be neglected. This
means that if the aberration is corrected for the most dominant modes, the aberrations
for single mode can be presented with the equation 2.16.

3.3 Gradient based method implementation

After the Non-gradient methods were performed for the optimization on the deformable
mirror, the optimization result obtained with this optimization method can be used like
a basis for implementation of the model based methods for the optimization.
After the correction performed using the non-gradient based methods, most of the aber-
rations are corrected and the coupling between the modes is low. This means that we
can use the theoretical model for the estimation of CRM depending on the aberration
level for improving the estimation of the amplitudes of the Zernike modes.
For the testing of the gradient-based methods we used the created computer simulation
generated data that simulates the estimation of CRM . With adding noise to the sim-
ulation data we are going to replicate the noisy environment during measurement. The
main aim of using the simulation data is for the testing the efficiency and the accuracy
of the optimization methods.

3.4 Levenberg- Marquardt algorithm

The first method that was implemented was the NLLS method that was explained on the
previous chapter. This means that for the optimization method in this case, the Hessian
will be provided to the optimization method by using the exact Jacobean calculated
directly from the equation expressing the CRM . The testing was performed after
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Figure 3.3: Comparison of the two methods with more measurement noise

measurement points were obtained by setting different values for ac for separate Zernike
modes. The algorithm was tested for different values of the molecular brightness and
for the number of measurement points. For every evaluation point the measurement
experiment was performed 50 times. To compare the performance of each method, the
Root Mean Square of the errors, and also the Maximal Absolute Value of estimated error
for the measurement with highest noise is presented in order to test the methods for
different measurements and their robustness to the different measurement noise. The
plots are presented on Fig. 3.5.

As we can see from the results presented on Fig. 3.5, the efficiency of the optimization
with this method highly depends from the level of the molecular brightness, CRM.

3.5 Optimization with fminunc and fminsearch

Because the acquisition card NI PCle-6321 that is used in the system for generating the
data is compatible with MATLAB Data Acquisition Toolbox, we can use the functions
that are provided for nonlinear unconstrained optimization techniques in MATLAB. For
this aim the two functions fminunc (Medium scale algorithm) and fminsearch can be
used for optimization.
The fminunc function for medium scale optimization uses the BFGS Quasi-Newton
method with a mixed quadratic and cubic line search procedure and fminsearch uses
the simplex search method that does not use numerical or analytic gradients
For the optimization, we tested the data with several cost functions:

(Norm 1) S1(β) =

N∑
k=1

(CRMmes
k − CRMab

k (β))2 (3.1)

(Norm 2) S2(β) =

N∑
k=1

∣∣∣CRMmes
k − CRMab

k (β)
∣∣∣ (3.2)
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Figure 3.4: Multivariable interpolaton of the coupling modes a13 and a25, theoretical and
measured

(Norm 3) S3(β) = max
k

∣∣∣CRMmes
k − CRMab

k (β)
∣∣∣ (3.3)

All of this cost function was tested with the different methods for optimization in order
to compare the different optimization method performances . For each test, the same
starting point was taken to compare the final values for the aberration obtained after the
optimization. Each method performed on different cost functions was evaluated according
to the accuracy of the identification of the generated aberration and the numbers of
iterations that are required for finding the solution. The algorithms were tested for
simulation data with presented aberration on single mode aci = 0.01µm and for different
values of CRM = 4kHz and CRM = 15kHz.The testing was performed for different
number of measurement points and one measurement was taken to be 4 seconds. To
compare the performance of each method, the Root Mean Square of the errors, and also
the Maximal Absolute Value of estimated error for the measurement with highest noise
is presented. The testings for each point were repeated 50 times.

As it is expected, if we compare the plots from the testing with Levenberg-Marquardt
method Fig.3.5 and the plots presented with the comparison of the fminunc and fmin-
search on Fig.3.7 and 3.6, the results obtained with the Levenberg-Marquardt method
have best performance. The main reason for this results is due to the fact that the Hes-
sian was provided by using the exact formula for CRM and the other methods are using
numerical approach to obtain the gradient. Also, we can see that the both optimization
functions fminunc and fminsearch are giving good optimization results using the Norm 1
for the optimization. The optimization performance is lower if the CRM is small, because
of higher measurement noise impact in this case. The fminunch optimization for Norm 2
and Norm 3 was not effective and didn’t find the optimal solution for low level of CRM,
and the results are not presented on the plots presented in 3.7.
If we compare the speed of iterations needed for the optimization methods, the Levenberg-
Marquardt method also gives superior results. In the testing presented on the previous
chapter the Levenberg-Marquardt, was able to reach the optimal solution with only 4-15
iterrations. On the other hand, the fminunch needed about 10-20 iterrations when it
was performed on the higher CRM data and fminsearch needed about 48-90 iterations
for the optimization. When the optimization was performed on the higher measurement
data the number of iterations with fminunc and fminsearch sometimes exceeded over 200
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Figure 3.5: Levenberg- Marquardt algorithm optimization results for different number of
measurement points for CRM=15kHz and CRM=4kHz and aberration aab13 = 0.01µm
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Figure 3.6: Optimization results for estimating the aberration with CRMopt = 15kHz
and 4 seconds measurements

iterations for this two methods, that was the limit number given to the solver.

3.6 Implementation of the model-based methods on
the real systems data

After the testing of all of the methods for the different cost functions, the real data
measurements were obtained from the system and the code was tested on this data. Two
kind of measurement data were obtained:

• High precision data taken with long measurement

• Low precision data taken with short 4s measurements around the optimization
point

In this case the testing of the results with 4 seconds measurement taken around the
optimization point that was found before using the non-gradient methods was performed
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Figure 3.7: Optimization results for estimating the aberration with CRMopt = 4kHz
and 4 seconds measurements

to simulate the online algorithm of gradient based method. The short time measurements
have more measurement noise than the theoretical ones.
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Figure 3.8: Implementation of the Levenberg-Marquardtmethod on measurements taken
from the real system performed on longer measurement time, with low noise level for the
modes a4 and a8
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Figure 3.9: Implementation of the Levenberg-Marquardtmethod on measurements taken
from the real system performed on 4 seconds measurement time, with higher noise level
for the modes a13 and a25
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Chapter 4

Conclusions and future
improvements

In this work was presented the aberration correction using the measured molecular bright-
ness, CRM. The relation between CRM and the aberrations in the measurements can be
good estimated with exact mathematical expression 1.1, especially for low amplitude of
the aberrations. The model-based methods proved to be effective for the optimization
and robust to the high measurement noise especially for simulations where the molec-
ular brightness was small. Despite of the good model of CRM, the measurement time
for the estimation of the aberrations is very high. Because in reality the experiments
are performed on real biological materials and the optimization should be performed as
fast as possible. This means that some new approach should be experimented. After
providing the new model for the number of molecules presented with Equation.1.5, the
Count Rate,CR can be well evaluated theoretically by its relation with CRM and N.
The Count Rate has also convex shape and reaches it maximum as the aberrations are
corrected. The CR is proportional with the number of measured photons. This means
that the evaluation of the measured value of CR can be estimated with shorter period of
measurement. In this case, for the optimization some non-gradient optimization methods
can be performed, similar like using the CRM but with significant faster optimization
time. This can leads to faster optimization and possible implementation of new, more
complex optimization methods.
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Figure 4.1: Representation of CR for a13 with CRM = 4kHz and N=4
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Chapter 5

The First Appendix, Zernike
polynomials

In mathematics, the Zernike polynomials are a sequence of polynomials that are orthogo-
nal on the unit disk.These polynomials are a complete set in two variables, r and Θ, that
are orthogonal in a continuous fashion over the unit circle. θ is the azimuthal angle, and
r is the radial distance The first few Zernike modes ordered by Noll index are presented
on Tab.5.1 and two-dimensional representation of the first Zernike Modes on Fig.5.1
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i n m Zi(r, θ) Aberration term
1 0 0 1 Piston
2 1 1 2rcos(θ) Tip
3 1 -1 2rsin(θ) Tilt

4 2 0
√

3(2r2 − 1) Defocus

5 2 2 2
√

3r2cos(2θ) Astigmatism

6 2 -2 2
√

3r2sin(2θ) Astigmatism

7 3 1 2
√

2(3r3 − 2r)cos(θ) Coma

8 3 -1 2
√

2(3r3 − 2r)sin(θ) Coma

9 3 3 2
√

2r3cos(3θ)

10 3 -3 2
√

2r3sin(3θ)

11 4 0
√

5(6r4 − 6r2 + 1) Spherical (1st)

12 4 2
√

10(4r4 − 3r2)cos(2θ)

13 4 -2
√

10(4r4 − 3r2)sin(2θ)

14 4 4
√

10r4cos(4θ)

15 4 -4
√

10r4sin(4θ)

16 5 1 2
√

3(10r5)− 12r3 + 3r)cos(θ)

17 5 -1 2
√

3(10r5)− 12r3 + 3r)sin(θ)

18 5 3 2
√

3(5r5 − 4r3)cos(3θ)

19 5 -3 2
√

3(5r5 − 4r3)sin(3θ)

20 5 5 2
√

3r5cos(5θ)

21 5 -5 2
√

3r5sin(5θ)

22 6 0
√

7(20r6 − 30r4 + 12r2 − 1) Spherical (2nd)

Table 5.1: The first few Zernike modes ordered by Noll index
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Figure 5.1: two-dimensional representation of the first Zernike Modes
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Chapter 6

The Second Appendix,
Pseudocode for the HC
algorithm

The algorithm used for the implementing the HC algorithm was programmed for Con-
tinuous Space Hill Climbing Algorithm problem. The pseudocode is given like following:

stepSize = initialStepSizes; // a vector of all 1’s is common
acceleration = someAcceleration; // a value such as 1.2 is common
candidate[0] = -acceleration;
candidate[1] = -1 / acceleration;
candidate[2] = 0;
candidate[3] = 1 / acceleration;
candidate[4] = acceleration;
while (EVAL(currentPoint) - before) < epsilon do

for each element i in currentPoint do
best = -1;
bestScore = -INF;
for j from 0 to 4 do

currentPoint[i] = currentPoint[i] + stepSize[i] * candidate[j];
temp = EVAL(currentPoint);
currentPoint[i] = currentPoint[i] - stepSize[i] * candidate[j];
if temp > bestScore then

bestScore = temp;
best = j;

end
if candidate[best] is not 0 then

currentPoint[i] = currentPoint[i] + stepSize[i] * candidate[best];
stepSize[i] = stepSize[i] * candidate[best]; // accelerate

end

end

end

end
Algorithm 1: The pseudocode for the Hill-climbing algorithm
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Chapter 7

The Third Appendix,
Estimation of N

N̂ =
n2

n(t)n(t+ δ t)− n2
(1) (7.1)

N̂ =
n2

var(n)− n
(2) (7.2)

CRM real N real N estimated with (1) N estimated with (2)
10 5 2.0284 3.8402
20 5 3.2333 4.2377
30 5 3.8081 4.3009
1 50 3.3314 13.7979
3 50 15.4128 30.2752
5 50 51.9205 36.4039
10 50 -64.4876 43.6743
1 150 16.3551 51.2684
2 150 -282.1378 85.1997
3 150 -35.6562 112.8373
4 150 -29.1586 124.0409

Table 7.1: Estimation of N with Eq.1 and 2
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Chapter 8

The Fourt Appendix, Inversion
with SVD

Code for pseudo-inversion in MATLAB using singular value decomposition. Matrix of a
matrix A(mxn), use svd(),... A=U*S*V:

[m,n] = size(A);
[U, S, V ] = svd(A);
r = rank(S);
SR = S(1 : r, 1 : r);
SRc = [SR−1zeros(r,m− r); zeros(n− r, r)zeros(n− r,m− r)];
Apseu = V ∗ SRc ∗ U.′;
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