
HAL Id: hal-03749337
https://hal.science/hal-03749337

Submitted on 10 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On PB Encodings for Constraint Problems
Thibault Falque, Romain Wallon

To cite this version:
Thibault Falque, Romain Wallon. On PB Encodings for Constraint Problems. Doctoral Program of
the 28th International Conference on Principles and Practice of Constraint Programming (DPCP’22),
Aug 2022, Haïfa, Israel. �hal-03749337�

https://hal.science/hal-03749337
https://hal.archives-ouvertes.fr

On PB Encodings for Constraint Problems
Thibault Falque � �

Exakis Nelite
CRIL, Univ Artois & CNRS

Romain Wallon ��

CRIL, Univ Artois & CNRS

Abstract
One of the possible approaches for solving a CSP is to encode the input problem into a CNF formula,
and then use a SAT solver to solve it. The main advantage of this technique is that it allows to benefit
from the practical efficiency of modern SAT solvers, based on the CDCL architecture. However, the
reasoning power of SAT solvers is somehow “weak”, as it is limited by that of the resolution proof
system they use internally. This observation led to the development of so called pseudo-Boolean
(PB) solvers, that implement the stronger cutting planes proof system, along with many of the
solving techniques inherited from SAT solvers. Additionally, PB solvers can natively reason on PB
constraints, i.e., linear equalities or inequalities over Boolean variables. These constraints are more
succinct than clauses, so that a single PB constraint can represent exponentially many clauses. In
this paper, we leverage both this succinctness and the reasoning power of PB solvers to solve CSPs
by designing PB encodings for different common constraints, and feeding them into PB solvers to
compare their performance with that of existing CP solvers.

2012 ACM Subject Classification Artificial intelligence

Keywords and phrases constraint programming, PB solving, SAT encodings

Digital Object Identifier 10.4230/LIPIcs.DPCP.2022.

1 Introduction

The Constraint Satisfaction Problem (CSP) aims at determining whether a set of constraints
is consistent and, when it is, finding a solution that satisfies all the constraints. To solve
such problems, several approaches have been proposed [17]. One of these is to natively
deal with the constraints of the problem, using efficient data structures to represent both
the constraints and the structure of the problem, as it is done for instance in Choco [22],
Nacre [10] and ACE1. Another possible approach is to leverage the practical efficiency of
modern SAT solvers, based on the CDCL architecture [19, 20, 7], to solve CSPs. As these
solvers take as input a propositional formula in Conjunctive Normal Form (CNF), one needs
to encode the variables (especially their domains) and the constraints of the original problem
into clauses to use them. In this context, many encodings have been proposed, as those
described in [24, 9, 5, 2, 23], which often provide good empirical results.

However, the main weakness of SAT solvers is the resolution proof system they use during
conflict analysis. This proof system has a weak inference power, and some apparently simple
problems cannot be solved efficiently. In particular, SAT solvers are known to perform poorly
on instances requiring the ability to “count”. This is for example the case for the well-known
pigeonhole principle problem, which requires an exponential number of resolution steps to
derive the unsatifiability of the input [12]. This observation led to the development of a
different kind of solvers, called pseudo-Boolean (PB) solvers [6, 15, 8]. These solvers inherit
many features of modern SAT solvers, and implement a proof system that is stronger than the

1 https://github.com/xcsp3team/ace

© Thibault Falque, Romain Wallon;
licensed under Creative Commons License CC-BY 4.0

Doctoral Program of the 28th International Conference on Principles and Practice of Constraint Programming.
Editor: Hélène Verhaeghe; Article No. ; pp. :1–:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:falque@cril.univ-artois.fr
mailto:wallon@cril.univ-artois.fr
https://doi.org/10.4230/LIPIcs.DPCP.2022.
https://github.com/xcsp3team/ace
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 On PB Encodings for Constraint Problems

resolution proof system, and which is known as the cutting planes proof system [11, 13, 21].
These solvers can natively deal with PB constraints, i.e., linear equations or inequations over
Boolean variables. This is an interesting observation, as among existing SAT encodings of
CSPs, many of them actually use intermediate PB representations of the constraints before
encoding them into clauses. This step is necessary to use a SAT solver, but it requires both
to introduce additional variables and to increase the number of constraints to give to the
solver (a single PB constraints can represent exponentially many clauses [1]).

In this paper, we introduce new encodings for CSPs leveraging both the succinctness of
PB constraints and the inference power of PB solvers. The proposed encodings are based
on well-known representations of variable domains using Boolean variables, such as the
direct-encoding, the log-encoding or the order-encoding, to encode popular CSP constraints
into PB constraints. To this end, we first introduce some preliminaries about CSP and PB
solving. We then formally describe the proposed encodings for different constraints, and
empirically evaluate them on different sets of instances.

2 Preliminaries

2.1 Constraint Programming
A constraint network (CN) is composed of a finite set of variables and a finite set of constraints.
Each variable X takes its value in a finite set called domain of X, denoted dom(X). Each
constraint defines a relation on a set of variables. A solution of a CN is an assignment of
values to all its variables such that all the constraints of the CN are satisfied. A CN is said
to be consistent if it has at least one solution, and the corresponding decision problem, called
Constraint Satisfaction Problem (CSP), is to determine whether a CN is consistent.

2.2 SAT Solvers and CSPs
A variable x is Boolean when dom(X) = {0, 1}. We call a literal ` a Boolean variable x or its
negation x̄ = 1− x. A literal ` is satisfied when ` is assigned to 1, and falsified otherwise.
A clause is a disjunction of literals, requiring at least one of its literals to be satisified. A
problem is in Conjunctive Normal Form (CNF) when it is a conjunction of clauses. The
SATisfiability problem (SAT) is to determine whether such a conjunction is consistent.

The SAT problem is the first problem that has been proven to be NP-complete [4]. It is
thus possible to use SAT solvers to solve CSPs, using different encodings. In particular, to
represent the domain of a CSP variable X, one can use the so-called direct-encoding (see,
e.g., [24]). It defines a Boolean variable xv for each value v ∈ dom(X). In this case, the value
assigned to X may be retrieved by identifying the (only) Boolean variable xv to be satisfied.

This representation is particulary useful in the case where the domain of a variable is
an enumerated set of values. When it is a range of values, another option is to represent
the variable using the log-encoding (see, e.g., [24]), which uses the binary representation
of the variable X using Boolean variables bi representing the bits of X, so that X =
min(dom(X)) +

∑dlog2(X)e
i=0 2ibi. Observe here the use of min(dom(X)), which guarantees that

the binary decomposition always starts at 0.
Finally, another approach is that based on the order-encoding [23], which defines a

Boolean variable x≥v for each value v ∈ dom(X) \ {min(dom(X))}. This variable is satisfied
if and only if X ≥ v. In this case, the value assigned to X can be retrieved by identifying
two variables x≥v and x≥v+1 such that the former is satisfied and the latter is falsified, in
which case X is assigned to v.

T. Falque, R. Wallon XX:3

2.3 Pseudo-Boolean (PB) Constraints
A pseudo-Boolean (PB) constraint is a constraint of the form

∑n
i=1 αi`i M δ, where n is

a positive integer, the weights (or coefficients) αi and the degree δ are integers, `i are
literals and M∈ {<,≤,=,≥, >}. A PB constraint is said to be normalized when all the
coefficients and the degree of this constraint are positive, and M is ≥. It is well known that
any PB constraint may be rewritten as a conjunction of normalized PB constraints, which is
particularly useful for the encodings we present later on. A PB cardinality constraint is a
normalized PB constraint in which all the coefficients are equal to 1, and a clause is a PB
cardinality constraint with its degree equal to 1. This definition is equivalent to the definition
of clauses as disjunctions of literals, and shows that PB solvers generalize SAT solvers.

3 Purely PB Encodings

In this section, we use the direct-encoding, log-encoding and order-encoding to represent
the domains of the variables from a CN, and use these representations to encode different
common CSP constraints into PB constraints. In particular, we focus on counting constraints
and on constraints allowed for the mini-solvers track of the XCSP competition.

3.1 (De)activating PB constraints
To encode both the domain of the variables and the constraints of a CSP into PB constraints,
it is often needed to activate (or deactivate) a constraint. To do so, a common practice is
to introduce selectors, i.e., a fresh variables s such that its satisfaction entails that of the
considered constraint. In the case of PB constraints, such a selector s could have the following
semantics, using ⇒ to denote material implication: s⇒

∑n
i=1 αi`i ≥ δ. The particular form

of PB constraints allows to concisely represent such an implication with the (single) PB
constraint δs̄+

∑n
i=1 αi`i ≥ δ.

Recall that, in this case, the satisfaction of the constraint does not guarantee the
satisfaction of s. If such a guarantee is needed, we must add the reciprocal implication, i.e.,
s⇐

∑n
i=1 αi`i ≥ δ, which can be represented using single PB constraint (

∑n
i=1 αi − δ + 1) s+∑n

i=1 αi
¯̀
i ≥

∑n
i=1 αi − δ + 1.

From now on, we denote by s a selector for which only one implication is defined, and by
S a selector for which both implications are defined (when needed, indices may be added to
these selectors).

To illustrate the use of selectors, let us consider the constraint
∑n

i=1 αi`i 6= δ. This
constraint cannot be normalized directly, as 6= is not an allowed operator for a PB constraint.
However, we can oberve that this constraint is equivalent to the disjunction of the two
constraints (

∑n
i=1 αi`i ≤ δ − 1) and (

∑n
i=1 αi`i ≥ δ + 1). Let us define two selectors s≤ and

s≥, such that s≤ ⇒
∑n

i=1 αi`i ≤ δ − 1 and s≥ ⇒
∑n

i=1 αi`i ≥ δ + 1. These two constraints,
combined with the disjunction s≤ ∨ s≥, allow to represent the constraint above using PB
constraints.

3.2 Variables and Domains
In order to make sure that the encodings of the variables presented in the previous section
effectively encode the variables of the original problems, some constraints must be added. In
the case of the direct-encoding, one simply needs to add the constraint

∑
v∈dom(X) xv = 1 to

make sure that the variable X is assigned exactly one value. It is then possible to represent
the variable X using the equality X =

∑
v∈dom(X) vxv.

DPCP 2022

XX:4 On PB Encodings for Constraint Problems

In the case of the log-encoding, the value of X is given by the equality X = min(dom(X))+∑dlog2(X)e
i=0 2ibi. To make sure that the domain of X is correct, one can use the constraint∑dlog2(X)e
i=0 2ibi ≤ max(dom(X)) − min(dom(X)) (recall that we only use this encoding to

encode domains that are intervals).
Finally, in the case of the order-encoding, the constraints to add are exactly the same

clauses as those used in [23]. Thus, for each value v ∈ dom(X)\{min(dom(X))}, the implication
x≥v ⇒ x≥v−1 is added to the solver. When the domain of X is not an interval, it is possible
to forbid a value v by adding the implication x≥v ⇒ x≥v+1. Additionally, it is possible to
represent the value of X using the equality X = min(dom(X)) +

∑
v∈dom(X)\{min(dom(X))} x≥v.

As for the log-encoding, let us remark the use of min(dom(X)) to make sure that the encoding
starts at 0. Without loss of generality, we can thus always represent a CSP variable X using
a weighted sum of literals, to which a constant µ may be added, giving X = µ+

∑n
i=1 αi`i.

Additionally, encoding CSP constraints often requires to determine whether a variable X
is assigned to a given value v. In the case of the direct-encoding, one only needs to check the
value of xv. To obtain such a value with the order-encoding, note first that X is assigned to
v if and only if the conjunction x≥v ∧ x≥v+1 is satisfied. To obtain a variable xv equivalent
to that used in the direct-encoding, one just needs to use the constraint xv ⇔ x≥v ∧ x≥v+1,
which can be encoded using PB constraints, as shown in the previous section. Obtaining
such a value is a little bit harder with the log-encoding, as one needs to check the assignment
of all the Boolean variables used in the representation of the variable to know the value of
X. In this case, we thus propose to use a lazy form of the direct-encoding, where X is first
encoded using the log-encoding, and the direct-encoding is used only when xv is required.
The constraint

∑
v∈dom(X) vxv = min(dom(X)) +

∑dlog2(X)e
i=0 2ibi may be used to make sure

that both encodings encode the same value. It is thus possible to obtain, for each variable X
and for each value v ∈ dom(X), a unique Boolean variable xv representing the assignement
X = v.

3.3 Constraint cardinality

As mentioned before, one of the main advantages of PB solvers compared to SAT solvers is
their ability to count efficiently. To benefit from this advantage, we first propose to encode
cardinality constraints.

A first variant of this constraint is to force bounds on the number of variables among
{X1, . . . , XN} that are assigned a given value v. Let m and M be the minimum and
maximum number of variables Xi that can be assigned to v, respectively, and let xi

v be
the Boolean variable representing the assignment Xi = v. Clearly, the number of satisfied
xi

v must be between m and M . Thus, this cardinality constraint can be represented
with m ≤

∑N
i=1 x

i
v ≤M , which can easily be decomposed into two PB constraints. Let us

remark that, depending on the values of m and M , these two constraints may represent an
exponential number of clauses without requiring the use of auxiliary variables [1], as SAT
solvers would.

Another variant of the cardinality constraint is to make sure that a variable C is assigned
to the number of variables Xi that are assigned to a given value v. Let µ+

∑n
i=1 αi`i be the

representation of the variable C. This variable must be equal to the number of satisfied xi
v.

So, if we use the same notations as before, this can be encoded using the equality
∑N

i=1 x
i
v =

µ+
∑n

i=1 αi`i, which is equivalent to the PB constraint
∑N

i=1 x
i
v − µ−

∑n
i=1 αi`i = 0.

There exists other variants of the constraints described here, where the values are variables
Z instead of constants. To encode them, one simply needs to replace the variables xi

v by

T. Falque, R. Wallon XX:5

variables xi
Z , such that xi

Z ⇔ (Xi−Z = 0). By representing Xi and Z into weighted sums of
literals, this constraint may be normalized following the procedure described in Section 3.1.

Let us note that, as for cardinality constraints, PB encodings may also be used to
represent other counting constraints, such as count or nValues. They are omitted in this
paper for space reasons, and also because we did not find any XCSP instance that uses these
constraints, and we thus cannot make any conclusion on these encodings for the moment.

3.4 Constraints from the Mini-Solvers Track
There exist many different types of constraints, but not all of them are supported by our
approach, as encodings remain to be found. In order to still solve a wide variety of problems,
we now focus on the constraints allowed for the mini-solvers track of the XCSP’19 competition,
which are often sufficient for that purpose.

3.4.1 Constraint sum

A sum constraint is a constraint of the form
∑N

i=1 AiXi � k, where � ∈ {<,≤,=, 6=,≥, <}.
It is clear that such a constraint can easily be represented using PB constraints. Indeed, if
each Xi may be written as Xi = µi +

∑ni

j=1 α
i
jx

i
j , where xi

j are Boolean variables, then the
constraint above is equivalent to

∑N
i=1 Ai

(
µi +

∑ni

j=1 α
i
jx

i
j

)
� k. which can be developed as

a PB constraint (the case of the operator 6= is treated as in Section 3.1).

3.4.2 Constraint allDifferent

The global constraint allDifferent enforces that a set of variables are all assigned to
different values We illustrate its encoding following the example allDifferent(X1, . . . , Xn).

Let D =
⋃N

i=1 dom(Xi). The semantics of allDifferent enforces that each value v ∈ D
is used at most once among all variables Xi. Let v ∈ D, and let us note xi

v the Boolean
variable representing Xi = v (i ∈ 1..N). We can represent this constraint on v using the PB
constraint

∑N
i=1

v∈dom(Xi)
xi

v ≤ 1. This constraint has to be applied on all values v ∈ D. The

operation must thus be repeated on each possible value.
Let us observe that this encoding is similar to that of the pigeonhole-principle, which is

hard for SAT solvers based on resolution [12]. This encoding allows thus to benefit from the
reasoning power of PB solvers, at least on the subset of constraints encoding allDifferent.

3.4.3 Constraint extension with Supports
A support is a constraint that explicitly lists all the possible solutions for a constraint. To
encode supports, let us first remark that a PB constraint of the form

∑n
i=1 `i ≥ n represents

the conjunction of the literals `i, i.e.,
∧n

i=1 `i. Based on this observation, we can encode a
(unique) support of the form (Xi | 1 ≤ i ≤ N) = (vi | 1 ≤ i ≤ N) using the PB constraint∑N

i=1 x
i
vi
≥ N , where xi

vi
is the Boolean variable representing the assignment Xi = vi

(i ∈ 1..N). When several tuples t are allowed in a support, we need to add a selector st

to each constraint associated to a tuple, giving the PB constraint st ⇒
∑N

i=1 x
i
vi
≥ N .

Indeed, the set of allowed tuples is a disjunction, so one of the tuples must be assigned to
the associated variables: we thus add the clause

∨
st to encode the full support.

Finally, let us remark that, if the symbol * is used in one of the allowed tuples instead of
a value vi (to represent that the variable Xi can take any value), one just need to ignore the
literal corresponding to the variable Xi in the constraint above.

DPCP 2022

XX:6 On PB Encodings for Constraint Problems

4 Experimental results

This section presents some experimental results of the PB encodings presented in the
previous section on different sets of (decision) instances. To evaluate the performance of
our approach, we implemented the encodings in the solver Sat4j2 [15], and we executed
different variants of this solver, denoted Sat4j + S in the rest of this section, where S is
the name of the considered variant. Unless otherwise specified, the combination of the
direct-encoding and log-encoding is used to represent the domain of the variables. The solver
Sat4j+OrderEncodingBothPOS2020 uses the order-encoding for this purpose, while Sat4j+
OrderEncodingPrimitiveBothPOS2020 also exploits this encoding for representing more
efficiently primitive constraints (as in [23]). We also executed the PB solver RoundingSat [8]
on the PB encoding built by our implementation in Sat4j.

We compare these solvers with different state-of-the-art CP solvers, namely ACE3 – the new
name of AbsCon – Choco [22] and sCOP [23]. We also executed the previous implementation
of a CP solver provided with the Sat4j library, denoted Sat4j + SAT [5].

All solvers have been run on a cluster of computers equipped with 32 GB of RAM and
two quadcore Intel Xeon X5550 (2.66 GHz). The time limit was set to 1200 seconds.

In the context of our experiments, we used two benchmarks composed of decision
problems from the XCSP library [3, 18]. The first one, denoted Icard, is composed of 5
families of problems, and contains 145 instances. These instances are those with cardinality
constraints taken from the XCSP website4. To obtain this set, we had to remove some
instances containing constraints that are not yet encoded in our implementation (in particular,
lex constraints). The second benchmark, denoted IXCSP18-19, is the set of instances that were
used for the mini-solvers tracks of the XCSP18 and XCSP19 competitions. It is made of 32
families of problems, and contains 371 instances.

Below is presented the experimental analysis of our approach on these two benchmarks.
These analyses have been made using Metrics5, a tool for analyzing experiments which
guarantees the reproducibility of the results.

4.1 Benchmark Icard

Figure 1 shows an overview of the performance of the different solvers executed on Icard.
This figure is a so-called cactus-plot. Each line corresponds to a solver, and shows the number
of instances solved within a given time limit by this solver. Here, we can see that the solver
RoundingSat solves more instances than the other solvers. For instance, it solves 16 more
instances than ACE within 1200 seconds. We can also observe that the solvers based on SAT,
in this case Sat4j + SAT and sCOP, which respectively implement the direct-encoding and the
order-encoding, do not perform well on these instances requiring the ability to count (recall
that they contain cardinality constraints).

To compare more precisely the two first solvers of this cactus-plot, Figure 2 shows a
scatter-plot comparing ACE and RoundingSat. In this plot, each point represents an instance,
and its color the family of problems to which it belongs. The x coordinate shows the runtime
of RoundingSat on this instance, while its y coordinate shows that of ACE on this same
instance. This figure clearly shows that RoundingSat solves very efficiently instances from

2 https://gitlab.ow2.org/sat4j/sat4j-csp-pb
3 https://github.com/xcsp3team/ace
4 https://xcsp.org
5 https://github.com/crillab/metrics

https://gitlab.ow2.org/sat4j/sat4j-csp-pb
https://github.com/xcsp3team/ace
https://xcsp.org
https://github.com/crillab/metrics

T. Falque, R. Wallon XX:7

0 20 40 60 80 100 120 140
Number of solved instances

0

200

400

600

800

1000

1200

Ru
nt

im
e

(s
)

RoundingSat
ACE
Sat4j+ BothPOS2020
Sat4j+ Both
Sat4j+ OrderEncodingPrimitiveBothPOS2020
Sat4j+ OrderEncodingBothPOS2020
Choco
sCOP
Sat4j+ SAT

Figure 1 Cactus-plot of different solvers on Icard.

101 102 103

RoundingSat

101

102

103

AC
E

Basic
CarSequencing
DeBruijnSequence
MagicSequence
SportsScheduling

Figure 2 Scatter-plot comparing the runtime (in seconds) of ACE and RoundingSat on Icard.

the CarSequencing family. In this family, there are mostly cardinality and sum constraints,
which can be encoded into “pure” PB constraints, while constraints in the other families
often require to use clauses, which limit the inference power of PB solvers. We observed the
same behaviour for the different PB solvers we considered in this study, even though the
different variants Sat4j that use PB constraints are not as efficient as RoundingSat.

4.2 Benchmark IXCSP18-19

In order to see whether our approach is able to solve more general problems, we now evaluate
it on the instances of the benchmark IXCSP18-19, which contains a wide variety of problems
and constraints. For the constraints of the mini-solvers track, we use a combination of the

0 50 100 150 200
Number of solved instances

0

200

400

600

800

1000

1200

Ru
nt

im
e

(s
)

ACE
Choco
sCOP
Sat4j+ OrderEncodingPrimitiveBothPOS2020
Sat4j+ OrderEncodingBothPOS2020
RoundingSat
Sat4j+ BothPOS2020
Sat4j+ Both
Sat4j+ SAT

Figure 3 Cactus-plot of different solvers on IXCSP18-19.

DPCP 2022

XX:8 On PB Encodings for Constraint Problems

encodings presented in Section 3 and the classical representations of these constraints using
clauses when we do not provide a PB encoding for the constraint to encode. This allows
our implementation to deal with all the instances of the set IXCSP18-19. Figure 3 shows an
overview of the solvers we ran on this benchmark.

The faster solver is ACE, which solves much more instances than the others. Then follow
Choco and sCOP, respectively in second and third position. The first Sat4j solver is at the
fourth position. It is Sat4j + Resolution: this PB solver actually implements a conflict
analysis as classical SAT solvers do, by lazily infering a clause each time a PB constraint is
encountered during the analysis. The main advantage of this approach is that it allows to
combine the succinctness of PB constraints and the use of the efficient data structures of SAT
solvers. Yet, the efficiency of this solver is not enough to generalize the good performance
observed on the set Icard. This may be explained by the fact that (too) many constraints
have to be encoded using clauses in the considered problems, which does not allow to exploit
the full power of the proof system implemented in PB solvers.

Moreover, we can observe that the order of the PB solvers is not the same between the two
considered benchmarks. This may be explained by the complementarity of the approaches
implemented by the different solvers, as described in, e.g., [14, 16].

5 Conclusion

In this paper, we proposed to use different Boolean encodings for the domain of CSP variables
to define new encodings based on PB constraints. In particular, we considered constraints
recognized by the mini-solvers of the XCSP competition, as well as different variants of
the cardinality constraint. The main advantage of the proposed encodings is that they
allow to exploit the inference power of PB solvers, and especially their ability to count.
The experimental analysis showed that our encodings, combined with the use of PB solvers,
indeed allow to solve efficiently problems containing mainly sum and cardinality constraints.
However, this good performance does not generalize to problems containing other types of
constraints, in which native CP solvers and solvers based on SAT encodings remain faster.

Currently, our approach only allows to solve problems containing only a subset of all
existing constraints. Our first perspective is to define encodings for other types of constraints,
so as to submit our solver to the next XCSP competition. We also would like to investigate
the use of different encodings for the constraints we already have, so has to improve the
performance of PB solvers when solving CSPs, especially by favoring the use of pure PB
constraints rather than clauses. Another perspective is to exploit the complementarity
between the different solving paradigms for CSPs (either native, based on SAT or based on
PB) to leverage the best of all approaches.

References
1 Belaid Benhamou, Lakhdar Sais, and Pierre Siegel. Two proof procedures for a cardinality

based language in propositional calculus. In Patrice Enjalbert, Ernst W. Mayr, and Klaus W.
Wagner, editors, Proceedings of STACS 1994, pages 71–82. Springer, 1994. doi:10.1007/
3-540-57785-8_132.

2 Christian Bessiere, George Katsirelos, Nina Narodytska, Claude-Guy Quimper, and Toby
Walsh. Decompositions of all different, global cardinality and related constraints. In Craig
Boutilier, editor, Proceedings of IJCAI 2009, pages 419–424, 2009.

3 Frédéric Boussemart, Christophe Lecoutre, Gilles Audemard, and Cédric Piette. Xcsp3-core: A
format for representing constraint satisfaction/optimization problems. CoRR, abs/2009.00514,
2020. arXiv:2009.00514.

https://doi.org/10.1007/3-540-57785-8_132
https://doi.org/10.1007/3-540-57785-8_132
http://arxiv.org/abs/2009.00514

T. Falque, R. Wallon XX:9

4 Stephen A. Cook. The Complexity of Theorem-proving Procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New
York, NY, USA, 1971. ACM. doi:10.1145/800157.805047.

5 Ines Lynce Daniel Le Berre. Csp2sat4j: A simple csp to sat translator. In Proceedings of the
second CSP Competition, 2008.

6 Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for a pseudo-boolean satisfiability
solver. In AAAI’02, pages 635–640, 2002.

7 Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Theory and Applications of
Satisfiability Testing, pages 502–518, 2004.

8 Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-boolean solving.
In Proceedings of IJCAI 2018, pages 1291–1299, 2018.

9 Marco Gavanelli. The log-support encoding of CSP into SAT. In Christian Bessiere, editor,
CP 2007, pages 815–822. Springer, 2007. doi:10.1007/978-3-540-74970-7_59.

10 Gaël Glorian. Nacre. In Solver Descriptions of XCSP3 Competition 2018, 2018.
11 Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin

of the American Mathematical Society, pages 275–278, 1958.
12 Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297 – 308,

1985. Third Conference on Foundations of Software Technology and Theoretical Computer
Science. doi:http://dx.doi.org/10.1016/0304-3975(85)90144-6.

13 J. N. Hooker. Generalized resolution and cutting planes. Annals of Operations Research,
12(1):217–239, 1988. doi:10.1007/BF02186368.

14 Daniel Le Berre, Pierre Marquis, and Romain Wallon. On weakening strategies for PB
solvers. In Luca Pulina and Martina Seidl, editors, SAT 2020, pages 322–331. Springer, 2020.
doi:10.1007/978-3-030-51825-7_23.

15 Daniel Le Berre and Anne Parrain. The SAT4J library, Release 2.2, System Description.
Journal on Satisfiability, Boolean Modeling and Computation, 7:59–64, 2010.

16 Daniel Le Berre and Romain Wallon. On dedicated cdcl strategies for pb solvers. In Proceedings
of SAT 2021, pages 315–331, 2021.

17 C. Lecoutre. Constraint Networks: Techniques and Algorithms. ISTE/Wiley, 2009.
18 Christophe Lecoutre and Nicolas Szczepanski. PYCSP3: modeling combinatorial constrained

problems in python. CoRR, abs/2009.00326, 2020. arXiv:2009.00326.
19 Joao Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm for propositional

satisfiability. IEEE Trans. Computers, pages 220–227, 1999.
20 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.

Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th Annual Design
Automation Conference, DAC ’01, pages 530–535, New York, NY, USA, 2001. ACM. doi:
10.1145/378239.379017.

21 Jakob Nordström. On the Interplay Between Proof Complexity and SAT Solving. ACM
SIGLOG News, 2(3):19–44, August 2015. doi:10.1145/2815493.2815497.

22 Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco solver documentation.
TASC, INRIA Rennes, LINA CNRS UMR, 6241, 2016.

23 Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Compiling fi-
nite linear CSP into SAT. Constraints An Int. J., 14(2):254–272, 2009. doi:10.1007/
s10601-008-9061-0.

24 Toby Walsh. SAT v CSP. In Rina Dechter, editor, Proceedings of CP 2000, volume 1894 of Lec-
ture Notes in Computer Science, pages 441–456. Springer, 2000. doi:10.1007/3-540-45349-0\
_32.

DPCP 2022

https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-540-74970-7_59
https://doi.org/http://dx.doi.org/10.1016/0304-3975(85)90144-6
https://doi.org/10.1007/BF02186368
https://doi.org/10.1007/978-3-030-51825-7_23
http://arxiv.org/abs/2009.00326
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/2815493.2815497
https://doi.org/10.1007/s10601-008-9061-0
https://doi.org/10.1007/s10601-008-9061-0
https://doi.org/10.1007/3-540-45349-0_32
https://doi.org/10.1007/3-540-45349-0_32

	1 Introduction
	2 Preliminaries
	2.1 Constraint Programming
	2.2 SAT Solvers and CSPs
	2.3 Pseudo-Boolean (PB) Constraints

	3 Purely PB Encodings
	3.1 (De)activating PB constraints
	3.2 Variables and Domains
	3.3 Constraint cardinality
	3.4 Constraints from the Mini-Solvers Track
	3.4.1 Constraint sum
	3.4.2 Constraint allDifferent
	3.4.3 Constraint extension with Supports

	4 Experimental results
	4.1 Benchmark \mathcal{I}_{\texttt{card}}
	4.2 Benchmark \mathcal{I}_{\texttt{XCSP18-19}}

	5 Conclusion

