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NON-AUTONOMOUS Lq(Lp) MAXIMAL REGULARITY
FOR COMPLEX SYSTEMS UNDER MIXED REGULARITY

IN SPACE AND TIME

SEBASTIAN BECHTEL AND FABIAN GABEL

Abstract. We show non-autonomous Lq(Lp) maximal regularity for families of com-
plex second-order systems in divergence form under a mixed Hölder regularity condition
in space and time. To be more precise, we let p, q ∈ (1, ∞) and we consider coefficient
functions in Cβ+ε

t with values in Cα+ε
x subject to the parabolic relation 2β + α = 1. To

this end, we provide a weak (p, q)-solution theory with uniform constants and establish
a priori higher spatial regularity. Furthermore, we show p-bounds for semigroups and
square roots generated by complex elliptic systems under a minimal regularity assump-
tion for the coefficients.

1. Introduction

In this article, we investigate the non-autonomous parabolic problem

∂tu(t, x) − divxA(t, x)∇xu(t, x) = f(t, x), u(0) = 0.(CP)

The precise setting will be discussed in Section 1.1 below. Our interest lies in the Lqt (L
p
x)

maximal regularity property, where p, q ∈ (1,∞). Roughly spoken, this means that, for a
right-hand side f in Lqt (L

p
x), there is a unique solution u of the equation1, and that one has

that ∂tu(t, x) and divxA(t, x)∇xu(t, x) lie again in the space Lqt (L
p
x), with corresponding

estimate against the data f .

Maximal regularity is a classical problem in mathematical analysis that has been studied
for decades. One reason for this massive interest is that maximal regularity estimates allow
the treatment of highly non-linear problems using powerful linearization techniques [4,36].
Meanwhile, the autonomous case, that is to say, when the family of elliptic operators does
not depend on t, is well understood. In the Hilbertian case, this is due to de Simon [39],
whereas the case of UMD Banach spaces is characterized by the seminal work of Weis [42].
The non-autonomous case is much harder; thus this question is still widely open till this
day.

Let us take a step back and consider a generalization of Problem (CP). To this end, note
that (CP) remains meaningful if we replace, for fixed t, the elliptic operator in divergence
form − divxA(t, x)∇x by a sesquilinear form at : V × V → C, where V ⊆ H is the form
domain and does not depend on t. Lions showed in [32] that this generalized problem
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1We will explain our notion of a solution thoroughly in Definition 2.4.
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2 SEBASTIAN BECHTEL AND FABIAN GABEL

has maximal regularity for right-hand sides f in the space L2
t (V ∗), where V ∗ is the anti-

dual space of V . We emphasize that this result only assumes that the forms at depend
measurably on t. Motivated by this, the question of maximal regularity with right-hand
sides in the space L2

t (H) became known as Lions’ non-autonomous maximal regularity
problem. We will only review some contributions to this problem in the sequel. For a
thorough background, we refer the reader to the survey [5].

By a counterexample of Fackler [21], it is known that, even for a family of forms that
depends C1/2 on t, non-autonomous maximal regularity can fail. On the other hand,
Acquistapace and Terreni [2] introduced already in the ’80s a condition to show non-
autonomous maximal regularity in Hölder spaces. Owing to progress in the theory of
pseudo-differential operators, this condition was later rediscovered by Hieber and Monni-
aux [27] to show L2

t (H) maximal regularity in a fairly abstract setting. Using a Hörmander
criterion, this approach furthermore gives Lqt (H) maximal regularity. Still relying on the
Acquistapace–Terreni condition, Portal and Željko [35] used techniques from vector-valued
harmonic analysis to replace the Hilbert space H by a UMD Banach space X. The condi-
tion of Acquistapace and Terreni is hard to grasp, but was verified under more accessible
regularity conditions in several works: Using a C1/2+ε dependence on t, Ouhabaz and
Spina [34] showed maximal regularity in Lqt (H) for a general family of forms, where as
Fackler [20] treated Lqt (L

p
x) maximal regularity in the case of complex elliptic operators in

divergence form. Concerning Lqt (H) maximal regularity for a family of forms, the C1/2+ε

condition was further relaxed by Haak and Ouhabaz [25] to a Dini-condition. Also, Fack-
ler [22] was able to show the Lqt (L

p
x) maximal regularity for operators in divergence form

under the weaker time regularity W1/2+ε,p
x , when p ≥ 2. At this place, we would also

like to mention a result by Achache and Ouhabaz [1], which imposes a W1/2,2
x regularity

condition in conjunction with an additional very weak Dini-condition.

Besides the approaches based on the work of Acquistapace and Terreni, another successful
strategy to attack Lions’ maximal regularity problem emerged. As we have mentioned
earlier, Lions showed maximal regularity for right-hand sides in L2

t (V ∗), which does not
require any regularity in t except measurability. Dier and Zacher improved this result,
to allow, on the one hand, an even larger space of right-hand sides, and, on the other
hand, they deduced furthermore that the fractional derivative of order 1/2 has optimal
regularity, that is to say, the unique solution u of (CP) moreover satisfies ∂

1
2
t u ∈ L2

t (V ∗).
This, combined with a commutator argument, leads to the regularity condition W1/2+ε,2

t

by Dier and Zacher [14], and a BMO1/2 condition by Auscher and Egert [7]. We emphasize
that these results highly rely on the Hilbertian structure. For instance, they use Fourier
techniques and the Lax–Milgram lemma. Therefore, Lqt (L

p
x) maximal regularity cannot

be expected from this approach.

In all what we have considered so far, we supposed that form domains are constant, but the
associated operators in L2

x or Lpx might have varying domains. If we assume that also the
domains of the operators are constant, there are results requiring only very weak regularity
in time. For instance, using perturbation techniques, Prüss and Schnaubelt [37] showed
non-autonomous Lqt (X) maximal regularity for families with continuous dependence on
time. Under further structural assumptions, Gallarati and Veraar [23, 24] even showed
maximal regularity under measurable dependence on t. We observe that, in the case of
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elliptic operators in divergence form, independence of the domains on t can be enforced
by spatial regularity of the coefficients, for instance using Lipschitz regularity.

If we write β for the regularity in t, and α for the regularity in x, then the presented
regularity requirements all lead to the relation 2β + α = 1. Dier and Zacher employed
this relation in [14]. To be more precise, they showed L2

t (L2
x) maximal regularity for prob-

lem (CP) with the regularity condition Wβ+ε,1/β
t (Wα+ε,d/α

x ) for the real and scalar-valued
coefficient function A(t, x). The Hilbertian setting is indispensable for their approach, as
well as the whole-space constellation in x.

The goal of this article is to pick up the mixed regularity relation 2β + α = 1 used by
Dier and Zacher, but to show Lqt (L

p
x) maximal regularity in Theorem 1.1. Furthermore,

we also treat complex systems, which seems to be completely new in the literature. This
is based on improvements in the elliptic theory, notably Theorems 2.9 and 2.11. Finally,
we show existence and uniqueness of so-called weak (p, q)-solutions for (CP), with explicit
dependence of the implicit constants on the coefficients, in Theorem 3.1. This is our
substitute for the weak solutions provided by Lions.

1.1. Precise setting and main result. Fix a finite time T > 0 and a dimension d ≥ 2.
We are going to consider non-autonomous parabolic problems in (0, T ) × Rd. In all what
follows, the symbols t and x are supposed to be quantified over (0, T ) and Rd, and t∗ is
one such fixed time. Start with a bounded coefficient function

A : (0, T ) × Rd → Cdm×dm satisfying |A(t, x)| ≤ Λ,(1)
describing a non-autonomous complex system of size m ≥ 1. We define for each fixed
t∗ ∈ (0, T ) an elliptic operator in divergence form in the following way: Consider the
bounded sesquilinear form2

at∗ : W1,2
x × W1,2

x → C, at∗(u, v) =
∫
Rd
A(t∗, x)∇xu(x) · ∇xv(x) dx.

To ensure its (uniform) ellipticity, we suppose that there exists λ > 0 such that
m∑

k,ℓ=1
Re(A(t, x)kℓξk | ξℓ) ≥ λ|ξ|2 (ξ ∈ Cdm).(2)

Note that we have implicitly identified Cdm ∼= (Cd)m. Using the form at∗ , we define the
operator

Lt∗ : W1,2
x → W−1,2

x via ⟨Lt∗u, v⟩W−1,2
x ,W1,2

x
= at∗(u, v) (u, v ∈ W1,2

x ).

Here, W−1,2
x is the space of conjugate-linear functionals on W1,2

x .

The aim of this paper is to study the regularity theory of solutions to the non-autonomous
parabolic problem associated with {Lt}0<t<T given by

∂tu(t) + Ltu(t) = f(t), u(0) = 0.(P)
The solution concept for (P) will be made precise in Definition 2.4. The main result of
this article is the following.

2Here, ∇x denotes the gradient in the variable x. For the sake of readability, let us agree to omit the
underlying sets (0, T ) and Rd in the notation of function space; instead, we will indicate the underlying
set by the indices t and x. For instance, we will simply write W1,2

x instead of W1,2
x (Rd) and so on.
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Theorem 1.1. Let α, β, ε > 0 such that 2β + α = 1, and assume that the coefficient
function A is in the class Cβ+ε

t (Cα+ε
x ). Then, given f ∈ Lqt (L

p
x), there is a unique

weak (p, q)-solution u of (P) such that Ltu(t) ∈ Lqt (L
p
x) in conjunction with the estimate

∥Ltu(t)∥Lqt (Lpx) ≲ ∥f∥Lqt (Lpx), that is to say, problem (P) admits maximal regularity.

Agreement 1. Throughout this article, we consider the numbers Λ and λ from (1)
and (2), as well as the numbers α, β, and ε from Theorem 1.1, as fixed. Moreover, we
reserve the symbol M for the Cβ+ε

t (Cα+ε
x )-norm of A. We refer to the numbers d and m

as dimensions, and they are also considered fixed, likewise the integrability parameters p
and q.

1.2. Roadmap. Our proof follows the classical approach due to Acquistapace and Ter-
reni, but incorporates an a priori improvement of weak solutions in the spatial variable.
In this roadmap, we intend to give the reader an overview of our strategy.

The starting point is a weak solution theory for the generalized problem (P’). This gen-
eralization permits us to use an approximation argument later on. Classically, this is due
to Lions in the Hilbertian situation. Fackler used the result of Prüss and Schnaubelt [37]
to have a (p, q)-version of Lions’ result at hand. We cannot do this, as [37] does not yield
implied constants that are uniform in the coefficients. However, we will need such a con-
trol for the a priori improvement of weak solutions in the spatial variable. We will come
back to this at the very end of this roadmap. Hence, instead, we employ a framework of
Dong and Kim [18] to treat complex systems in divergence form over spaces of the type
Lqt (W

−1,p
x ). This will be done in Section 3, and consists of relating their notions with

ours, as well as verifying an oscillation condition.

As is classical in the Acquistapace–Terreni approach, we derive a representation formula
for weak (p, q)-solution in Section 4.1. The formula reads

u(t∗) =
∫ t∗

0
e−(t∗−s)(Bt∗ +κ)(Bt∗ − Bs

)
u(s) ds+

∫ t∗

0
e−(t∗−s)(Bt∗ +κ)f(s) ds.

Note that the operator Bt∗ + κ replaces the operator Lt∗ when passing from (P) to (P’).
For maximal regularity, we have to estimate the term (Bt∗ +κ)u(t∗). Formally, this leads
to the operators

S1(u)(t∗) 7→
∫ t∗

0
(Bt∗ + κ)e−(t∗−s)(Bt∗ +κ)(Bt∗ − Bs)u(s) ds,

S2(f)(t∗) 7→(Bt∗ + κ)
∫ t∗

0
e−(t∗−s)(Bt∗ +κ)f(s) ds.

The commutation between (Bt∗ +κ) and the integral in S1 will be justified during the proof
of our main result. Consequently, to establish maximal regularity, we have to bound the
operators S1 and S2. This is the topic of Section 4. Observe, however, that the operator
S2 acts on the data f , but S1 acts on the weak (p, q)-solution u. This has the following
effect: For S2, we plainly desire to show Lqt (L

p
x)-bounds. These will follow from the theory

of operator-valued pseudo-differential operators. However, for S1, the target space is still
Lqt (L

p
x), but higher regularity of weak solutions lets us vary the norm of the data space.

To be more precise, in the classical approach as employed by Fackler [22], the data space
is Lqt (W

1,p
x ). The fundamental gain in our approach is that we will replace that data space
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by the space Lqt (W
1+α,p
x ). This has the effect that less restrictive kernel bounds for S1

compared to [22] suffice. We give more details on this in a moment.

Let us come back to the operator S2. The classical approach is to rewrite this operator
as a pseudo-differential operator. This will be presented in Section 4.4. To do so, we
have to restrict to a class of more regular right-hand sides f . This is, however, not a
restriction, since we can use a standard approximation argument for the equation. This
will be explained in Step 1 in the proof of Theorem 1.1 in Section 6. We emphasize
that this approximation argument does not rely, yet, on the explicit control of implicit
constants for weak (p, q)-solutions. Eventually, [29] leads to boundedness of S2 provided
we can verify that (τ, s) 7→ 2πiτ(2πiτ + (Bs + κ))−1 in an R-Yamazaki symbol. The
definition of an R-Yamazaki symbol and the verification of this condition are presented in
Lemma 4.5. This uses two ingredients. First, that the coefficients are Cε

t (L∞
x ). Second,

that the operators (Bt∗ + κ) are uniformly R-sectorial, that is to say, their resolvents are
R-bounded on a common sector, and the implied constants are independent of time.

Uniform R-sectoriality is treated in Section 2.5. On the one hand, we have to carefully
trace the constants in well-known results on R-boundedness (more precisely, the approach
based on off-diagonal bounds from [31]). On the other hand, we combine the elliptic
solvability theory of Dong and Kim (see Proposition 2.6) with recent advances for the Kato
square root property [10] to eventually prove Lpx-boundedness for the semigroup generated
by −(Bt∗ + κ) with uniform constants in Theorem 2.9. This result is complemented by
further insights on elliptic operators with minimal spatial regularity in Section 2. In
contrast to [22], we are able to also treat complex systems. This is because we do not
rely on the Gaussian bounds from [9] anymore.

We come back to the operator S1. As already mentioned, the plan is to show Lqt (W
1+α,p
x ) →

Lqt (L
p
x) boundedness. This will turn out to be sufficient owing to the a priori estimate

∥u∥Lqt (W1+α,p
x ) ≲ ∥f∥Lqt (Lpx) for weak solutions – this is the higher spatial regularity that

was already alluded before. The boundedness for S1 follows from a bound for its integral
kernel and Young’s convolution inequality. The kernel bounds are established in Lem-
mas 4.2 and 4.3. Lemma 4.2 is in some sense the central ingredient of this paper, as it
is the only result that uses the full mixed regularity in time and space. There, we use
the spatial regularity of our coefficients to have Wα,p

x -multipliers at our disposal, which
eventually leads to estimates against W1+α,p

x .

The missing piece is the higher spatial regularity of weak solutions, the subject of Sec-
tion 5. Recall for this that the W1+α,p

x -norm can be given by ∥ · ∥Lpx + ∥∂αx · ∥W1,p
x

, where
∂αx is the fractional derivative of order α in x. Our plan is to control the latter term
by showing that ∂αxu(t, x) is a weak (p, q)-solution for some admissible right-hand side.
Formally, one has

∂t(∂αxu) − divxB(t, x)∇x(∂αxu) + κ(∂αxu) = ∂αx f − divx[B(t, ·), ∂αx ]∇xu.(3)

Then, the right-hand side is in Lqt (W
−1,p
x ) if the commutator [B(t, ·), ∂αx ] is Lqt (L

p
x)-

bounded. Owing to the spatial regularity of the coefficients, the latter fact is true accord-
ing to Lemma 5.2. Nevertheless, there remains a technical difficulty. In the first place, u
is only in Lqt (W

1,p
x ), so neither can we plug ∂αxu into the equation, nor can we justify the

necessary calculations to show (3). The way out is an approximation argument in which
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we use regularized coefficients and the difference quotient method (see Steps 1 and 2 in
the proof of Proposition 5.3). Afterwards, when we want to take the limit in order to get
back to our original equation, it is crucial to have control over the implied constants in
the weak (p, q)-solution theory from Theorem 3.1 in terms of the coefficients.

Acknowledgments

The first-named author was partially supported by the ANR project RAGE: ANR-18-
CE-0012-01. The first-named author thanks Moritz Egert for hospitality and valuable
discussions on the topic during a stay in Orsay in 2019. The authors thank Hannes
Meinlschmidt for discussions on the topic.

2. Uniform estimates for elliptic operators

In Section 1.1, we have introduced the elliptic operators {Lt}0<t<T . We will associate
parts in L2

x with these operators, and show uniform bounds for their associated semigroups
and square roots. We will also transfer semigroup bounds to the space W−1,p

x . The
cornerstone for the results in this section is a well-posedness result for parabolic systems
in divergence form due to Dong and Kim [18].

2.1. Elliptic coefficients. We stay slightly more general here, which will become handy
for technical reasons later on in Section 5, for instance. That being said, we introduce
the following class of regular elliptic coefficients, which includes the coefficients of the
non-autonomous problems studied in this article.

Definition 2.1. Let γ > 0 and N ≥ 0. Denote by E(Λ, λ, γ,N) the class of elliptic
coefficients with coefficient bounds Λ and λ that are Cγ with norm at most N . More
precisely, this class consists of all functions B : Rd → Cdm×dm which satisfy

|B(x)| ≤ Λ &
m∑

k,ℓ=1
Re(B(x)kℓξk | ξℓ) ≥ λ|ξ|2 (ξ ∈ Cdm),

and the regularity condition
|B(x+ h) −B(x)|

|h|γ
≤ N (h ∈ Rd \ {0}).

Remark 2.2. Note that A(t∗, ·) ∈ E(Λ, λ, α+ ε,M).

2.2. Elliptic systems and weak (p, q)-solutions. As in Section 1.1, we associate with
a coefficient function B a form and an operator W1,2

x → W−1,2
x .

Definition 2.3. Let B ∈ E(Λ, λ, γ,N). Define the form

b : W1,2
x × W1,2

x → C, b(u, v) =
∫
Rd
B(x)∇xu(x) · ∇xv(x) dx,

and associate with it the operator

B : W1,2
x → W−1,2

x via ⟨Bu, v⟩W−1,2
x ,W1,2

x
= b(u, v) (u, v ∈ W1,2

x ).
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Given a family {Bt}0<t<T induced by coefficients B(t, ·) ∈ E(Λ, λ, γ,N) and a parameter
κ ∈ R, associate with them the non-autonomous evolution problem

∂tu(t) + Btu(t) + κu(t) = f(t), u(0) = 0.(P’)

The following definition makes precise what we understand under a solution to (P’). With
the choices Bt = Lt and κ = 0, this clarifies in particular the solution concept for the
problem (P) from the introduction.

Definition 2.4. Given f ∈ Lqt (W
−1,p
x ), p, q ∈ (1,∞), and κ ∈ R, call a function u ∈

Lqt (W
1,p
x ) a weak (p, q)-solution of (P’), if u(0) = 0, and if the integral equation∫ T

0
−φ′(s)(u(s) | g) + φ(s)bs(u(s), g) + κφ(s)(u(s) | g) ds

=
∫ T

0
φ(s)⟨f(s), g⟩W−1,p

x ,W1,p′
x

ds
(IE)

holds for all φ ∈ C∞
0 (0, T ;C) and g ∈ C∞

0 (Rd;C).

Remark 2.5. (i) It follows from duality that a weak (p, q)-solution u of (P’) has a
weak derivative ∂tu(t) in Lqt (W

−1,p
x ) that coincides with f(t) − B(t)u(t) − κu(t)

for almost all t.

(ii) A weak (p, q)-solution is continuous at 0 with values in W−1,p
x according to [13,

p. 483, Prop. 9], which renders the initial condition meaningful.

(iii) Existence and uniqueness of weak (p, q)-solutions are independent of the parame-
ter κ. Indeed, if u is a weak (p, q)-solution to the parameter κ, then v(t) = eκtu(t)
is a weak (p, q)-solution to the right-hand side eκsf with κ = 0, and vice versa.

(iv) The integral equation (IE) extends to g ∈ W1,p′

x by continuity.

The parameter κ is supposed to be taken sufficiently large. This is quantified by the
results in [18]. In particular, we can ensure ellipticity in this way. We emphasize that the
choice of κ can be made uniform in the quantities mentioned in Agreement 1.

Let us agree for the rest of this section that B denotes any fixed coefficient function from
the class E(Λ, λ, ε,M) ⊆ E(Λ, λ, α + ε,M). Implicit constants are allowed to depend on
p, Λ, λ, ε, M , and dimensions.

As a consequence of ellipticity, there is some ω ∈ [0, π/2) depending on Λ, λ, and κ such
that the numerical range of b+κ(· | ·)2 is contained in the closed sector Sω of opening angle
2ω. Furthermore, using Definition 2.1 and the Lax–Milgram lemma, B+κ+ρ is invertible
for all ρ ≥ 0. In particular, B + κ is itself invertible as an operator W1,2

x → W−1,2
x .

As a consequence of the Hölder regularity of the coefficients, B+κ extrapolates moreover to
an isomorphism W1,p

x → W−1,p
x for all p ∈ (1,∞). The argument divides into two steps.

First, the autonomous problem associated with B + κ is well-posed according to [18].
We will give further information on that result and its applicability in our context in
Section 3, see in particular Lemma 3.2. Second, the well-posedness of the original elliptic
problem together with an estimate for its solutions follow by applying a cutoff argument
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to a stationary solution [17, Proof of Thm. 2.2]. The result can then be summarized as
follows.

Proposition 2.6. Let p ∈ (1,∞). The operator B + κ extrapolates to an invertible
operator W1,p

x → W−1,p
x . Given f ∈ W−1,p

x , write u ∈ W1,p
x for the unique solution to the

equation (B + κ)u = f . Then, one has the estimate ∥u∥W1,p
x

≲ ∥f∥W−1,p
x

.

Remark 2.7. The solutions provided by Proposition 2.6 are compatible to Lax–Milgram
solutions in the following sense. Given f ∈ W−1,p

x ∩ W−1,2
x , let u be the solution in W1,p

x

provided by Proposition 2.6, and v be the solution in W1,2
x provided by the Lax–Milgram

lemma. Then u and v coincide. Indeed, this is a consequence of local compatibility in
complex interpolation scales [30, Thm. 8.1] and the fact that Proposition 2.6 provides a
solution for all p ∈ (1,∞).

Remark 2.8. The result in [18] only requires that κ is larger than a certain threshold
quantified by the parameters fixed in Agreement 1. Hence, to ensure that all results in
Section 2 remain true when κ is replaced by κ/2, we pick κ a bit larger for good measure.
We will exploit this observation in Section 4.

2.3. The elliptic operator on L2
x and mapping properties. In virtue of the em-

bedding L2
x ⊆ W−1,2

x , define the part of B in L2
x and denote it as an abuse of notation

also by the symbol B (it will be clear from the context if B denotes the coefficient func-
tion or the part in L2

x). Of course, the part of B + κ in L2
x coincides with B + κ. One

has that B + κ is a densely defined, invertible, and m-ω-sectorial operator in L2
x with

domain D(B + κ) = D(B). In particular, −(B + κ) generates a holomorphic semigroup
of contractions {e−z(B+κ)}z∈Sπ/2−ω on L2

x. We will tacitly employ some properties of the
sectorial functional calculus of B + κ. The reader can consult [26, Chap. 7] for further
background.

Owing to [10, Lem. 7.3], we deduce Lpx-bounds for the semigroup generated by −(B + κ)
as a consequence of Proposition 2.6 and Remark 2.7.

Theorem 2.9. Let p ∈ (1,∞) and φ ∈ (0, π/2 − ω). One has the estimate
∥e−z(B+κ)f∥Lpx ≲ ∥f∥Lpx (z ∈ Sφ, f ∈ Lpx ∩ L2

x).

Remark 2.10. In [10, Lem. 7.3], only the case p ≥ 2 is presented. The case p ≤ 2 either
follows by a duality argument with B∗ + κ, or by repeating the calculation in [10], but
changing the order in which H∞-calculus and (B + κ)−1 are applied.

2.4. Square roots and bounds on W−1,p
x . As an m-ω-sectorial operator, B + κ pos-

sesses a square root (B + κ)
1
2 . It acts as an isomorphism W1,2

x → L2
x according to the

solution of the Kato square root problem [8]. As a consequence of coefficient regularity,
(B+κ)

1
2 extrapolates to an isomorphism W1,p

x → Lpx for all p ∈ (1,∞). Similar ideas were
already employed in [22], but relying on the Gaussian property, which ties these results to
the scalar case and is notably more technical. Instead, we use recent results established
by the first-named author in [10, Thm. 1.1]. Indeed, in the case p ≤ 2, its application
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is justified by Theorem 2.9, whereas in the case p ≥ 2, we appeal to Proposition 2.6 in
conjunction with Remark 2.7.

Theorem 2.11. Let p ∈ (1,∞). Then (B + κ)
1
2 extrapolates to a (compatible) isomor-

phism W1,p
x → Lpx.

Theorem 2.11 allows us to translate the Lpx-bounds for {e−z(B+κ)}Sφ from Theorem 2.9
to W−1,p

x -bounds.

Proposition 2.12. Let p ∈ (1,∞) and φ ∈ [0, π/2 − ω). One has the estimate

∥e−z(B+κ)f∥W−1,p
x

≲ ∥f∥W−1,p
x

(z ∈ Sφ, f ∈ W−1,p
x ∩ L2

x).

Proof. Let z ∈ Sφ and f ∈ W−1,p
x ∩ L2

x. As a primer, let us show

∥(B + κ)− 1
2 f∥p ≲ ∥f∥W−1,p

x
.(4)

We employ a duality argument. To this end, let h ∈ Lp
′

x ∩ L2
x. Note that the coefficient

class E(Λ, λ, ε,M) is invariant under taking adjoints. Calculate using Kato’s square root
property and Theorem 2.11 (applied with B∗ and p′ instead of B and p) that

|((B + κ)− 1
2 f |h)| = |(f | (B∗ + κ)− 1

2h)|

≤ ∥f∥W−1,p
x

∥(B∗ + κ)− 1
2h∥W1,p′

x

≲ ∥f∥W−1,p
x

∥h∥p′ .

Duality lets us conclude this first claim.

Next, since e−z(B+κ) is the part of e−z(B+κ) in L2
x, write

e−z(B+κ)f = e−z(B+κ)(B + κ)
1
2 (B + κ)− 1

2 f = (B + κ)
1
2 e−z(B+κ)(B + κ)− 1

2 f.

Let g ∈ W1,p′

x ∩ L2
x, and calculate similarly as above, but using furthermore Theorem 2.9,

that

|⟨e−z(B+κ)f, g⟩| = |(e−z(B+κ)(B + κ)− 1
2 f | (B∗ + κ)

1
2 g)|

≤ ∥e−z(B+κ)(B + κ)− 1
2 f∥p∥(B∗ + κ)

1
2 g∥p′

≲ ∥(B + κ)− 1
2 f∥p∥g∥W1,p′

x

.

Duality and (4) lead to ∥e−z(B+κ)f∥W−1,p
x

≲ ∥(B + κ)− 1
2 f∥p ≲ ∥f∥W−1,p

x
. □

2.5. Uniform R-sectoriality. As a preparation for Section 4.4, we show R-sectoriality
for the operator B + κ, with R-bound uniform in the quantified parameters from Agree-
ment 1. For further background on R-boundedness and R-sectoriality, the reader can
consult [31].
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Proposition 2.13 (R-sectoriality of B). Let p ∈ (1,∞) and φ ∈ [0, π/2 − ω). Then, the
semigroup {e−z(B+κ)}z∈Sφ satisfies the square function estimate

∥∥∥( k∑
j=1

|e−zj(B+κ)fj |2
) 1

2
∥∥∥
p
≲

∥∥∥( k∑
j=1

|fj |2
) 1

2
∥∥∥
p

(
k ≥ 1, (zj)kj=1 ⊆ Sφ, (fj)kj=1 ⊆ Lpx ∩ L2

x).

In particular, for z ∈ Sφ fixed, the operator e−z(B+κ) extends from Lpx ∩ L2
x to a bounded

operator S(z) on Lpx, and the family {S(z)}z∈Sφ is an R-bounded analytic semigroup with
R-bound uniform in the parameters fixed in Agreement 1.

Remark 2.14. Proposition 2.13 shows in particular that the semigroup in Lpx is R-
sectorial of the same angle as the semigroup on L2

x. Hence, we keep writing ω instead of,
say, ωR.

Before we come to the justification of Proposition 2.13, let us record an important conse-
quence that we will need later on in Section 4.4.

Corollary 2.15. Let p ∈ (1,∞) and ψ ∈ [0, π − ω). Denote by −Bκ
p the generator

of the semigroup {S(t)}t>0 from Proposition 2.13. Then the family {z(z + Bκ
p )−1}z∈Sψ

of operators on Lpx is R-bounded, and the R-bound is uniform in the quantities fixed in
Agreement 1.

Proof. Fix z ∈ Sψ. Split arg(z) = φ + φ̃, where |φ| ∈ [0, π/2 − ω) and |φ̃| ∈ [0, π/2). The
operator (z + Bκ

p )−1 can be represented using the Laplace transform [26, Prop. 3.4.1 d)]
via

(z +Bκ
p )−1 = eiφ̃

∫ ∞

0
e−t|z|eiφS(te−iφ̃) dt.

Then, the claim follows from [31, Ex. 2.15]. □

Given 1 ≤ r < 2 < s ≤ ∞ such that p ∈ (r, s), Proposition 2.13 is a consequence of so-
called Lrx → Lsx off-diagonal estimates for {e−z(B+κ)}z∈Sφ . The general approach in the
context of homogeneous spaces was presented in [31], and for dependence of the implied
constants, see [11, Sec. 5]. To be more precise, we suppose that, for some c > 0 and for
all measurable sets E,F ⊆ Rd and z ∈ Sφ, one has the bound

∥1F e−z(B+κ)1Ef∥s ≲ |z|d/2s−d/2re−cd(E,F )2
|z| ∥1Ef∥r (f ∈ Lrx ∩ L2

x).(5)

Inequality (5) for r = s = 2 is known under the name Gaffney estimates and is well-known
in the literature. A proof of this result that carefully keeps track of the implicit constants
can be found in [10, Prop. 3.3]. Likewise, (5) is known for r = 2, s ∈ (2,∞), and with
c = 0, as a consequence of the Lpx-bounds for the semigroup provided by Theorem 2.9 and
[6, Prop. 3.2 (1)]. In this case, we speak of hypercontractivity of the semigroup. Finally, (5)
is then a consequence of interpolation of Gaffney estimates with hypercontractivity, taking
duality and composition into account.
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3. Existence and uniqueness of weak (p, q)-solutions

In this section, we consider a family of operators {Bt}0<t<T associated with coefficients
B(t, ·) ∈ E(Λ, λ, α,M) that depend Cβ

x on t.3 The prototype for such a family of operators
is the family {Lt}0<t<T from Section 1. We aim to prove the existence and uniqueness
of solutions to the associated problem (P’) in the sense of Definition 2.4. To do so, we
recast our original problem in the framework originating from the works of Dong and
Kim [15–18]. This includes the introduction of a global extension in time of our original
problem on R as outlined in [15, Rem. 1]. Implicit constants in this section are allowed
to depend on p, q, Λ, λ, α, β, Hölder regularity, and dimension.

We begin by extending our coefficient family {Bt}0<t<T to all of R. We extend constantly
at the endpoints, that is, we set Bt := B0 for all t < 0 and Bt := BT for all t > T . For
such t, we associate of course also a form bt with Bt. Note that this extension does not
affect the assumed Hölder regularity of the coefficients. Furthermore, we isometrically
extend the right-hand side f ∈ Lqt (W

−1,p
x ) outside of (0, T ) by zero to arrive at a function

in Lq(R; W−1,p
x ), which we denote by F . Also in the sequel, we will systematically denote

functions on R by capital letters to better distinguish them from their local analogues.
Given the extensions of {Bt}0<t<T and F , we look for solutions U ∈ Lq(R; W1,p

x ) fulfilling
the extended integral equation∫

R
−Φ′(s)(U(s) | g) + Φ(s)bs(U(s), g) + κΦ(s)(U(s) | g) ds

=
∫
R

Φ(s)⟨F (s), g⟩W−1,p
x ,W1,p′

x

ds,
(EIE)

where we use test functions Φ ∈ C∞
0 (R) and g ∈ C∞

0 (Rd). Dong and Kim solved a
similar problem in [18]: They show that, for a given F ∈ H−1

p,q,1(R × Rd) with F =
F0 +

∑d
i=1 ∂iFi, Fj ∈ Lq(R; Lpx), there exists a solution U ∈ H̊1

p,q,1(R × Rd) satisfying the
integral equation∫

R
−(U(s) | Ψ′(s)) + bs(U(s),Ψ(s)) + κ(U(s) | Ψ(s)) ds =

∫
R

⟨F (s),Ψ(s)⟩ ds(DKIE)

for all test functions Ψ ∈ C∞
0 (R×Rd). We explain and compare the used function spaces

in the sequel of this section. For the notion of weak solutions employed by Dong and
Kim, see also [15, p. 896] and [16, p. 3286]. Furthermore, solutions to (DKIE) are subject
to the a priori estimate

κ∥U∥Lq(R;Lpx) +
d∑
i=1

κ
1/2∥∂iU∥Lq(R;Lpx) ≲ ∥F0∥Lq(R;Lpx) +

d∑
i=1

κ
1/2∥Fi∥Lq(R;Lpx)(6)

according to [18, Thm. 7.2], where the implicit constant depends on p, q, Λ, λ, dimension,
and the parameters γ and R0 appearing in Lemma 3.2. In particular, choosing F = 0
in (6) shows the uniqueness of solutions to (DKIE).

The rest of this section is divided into two steps: First, we will relate the solution concepts
of (DKIE) and our extended integral equation (EIE) and show that the former implies

3Say that a family {Bt}0<t<T ⊆ E(Λ, λ, α, M) depends Cβx on t if Bt ∈ E(Λ, λ, α, M) and the mapping
t 7→ Bt is β-Hölder continuous with values in Cαx , that is, the scalar-valued function t 7→ ∥Bt∥Cα

x
lies in

the class Cβt .
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the latter and eventually leads to a solution for the original problem (P’). Second, we will
check the validity of the regularity assumptions on {Bt} from [18, Thm. 7.2] to harvest
the results of the first step. Eventually, this will prove the following proposition.

Theorem 3.1. Given f ∈ Lqt (W
−1,p
x ), there exists a unique weak (p, q)-solution u to (P’),

and one has the estimate

∥∂tu∥Lqt (W−1,p
x ) + ∥∇xu∥Lqt (Lpx) + κ∥u∥Lqt (Lpx) ≲ ∥f∥Lqt (W−1,p

x ) .

Step 1: Compatibility with Dong and Kim. In order to solve (DKIE), Dong and Kim
consider right-hand sides F in the spaces H−1

p,q,1(R × Rd). These spaces are isomorphic to
the spaces Lq(R; W−1,p

x ) as can bee seen from a parabolic variant of [3, Thm. 3.9]. This
means that the admissible right-hand sides for (DKIE) and (EIE) coincide. Now, [18,
Sec. 8] gives the existence of a solution U to (DKIE) in the regularity class H̊1

p,q,1(R×Rd),
which denotes the closure of C∞

0 (R × Rd) in the space H1
p,q,1(R × Rd). A function U ∈

H1
p,q,1(R × Rd) is by its very definition an element of Lq(R; W1,p

x ). Conversely a function
in Lq(R; W1,p

x ) that satisfies (EIE) is a member of H1
p,q,1(R×Rd). For complete definitions

of the above function spaces, the reader can consult [16, p. 3284] and [18, Sec. 4].

Comparing the classes of test functions employed in (EIE) and (DKIE), respectively,
reveals that Dong and Kim use a larger class of test functions in their integral formulation.
In particular, this shows that a solution to (DKIE) is also a solution to (EIE). On the other
hand, recall that a function U ∈ Lq(R; W1,p

x ) solving (EIE) is also an admissible function
for (DKIE). Using the fact that the tensors Φ(t)g(x) with Φ ∈ C∞

0 (R) and g ∈ C∞
0 (Rd)

are dense in Lq′(R; W−1,p′

x ), we deduce by continuity (compare with Remark 2.5 (iv))
that (EIE) in particular remains to hold for test functions in C∞

0 (R×Rd). Hence, we get
that U is also a solution for (DKIE), and is as such again unique.

Next, we focus on the a priori estimate (6) and its relation to the maximal regularity
estimate in Theorem 3.1: Assuming κ ≥ 1, we have

∥U∥Lq(R;W1,p
x ) ≤ κ∥U∥ +

d∑
i=1

κ1/2∥∂iU∥Lq(R;W1,p
x ) ≲ κ∥F∥Lq(R;W−1,p

x ).(7)

Note that the reasoning leading to the estimate (7) remains valid if κ < 1 with the
consequence that ≤ has to replaced by ≲, and the implied constant then depends on
κ.

Up to now, we have only worked out the existence and uniqueness of solutions to the
extended integral equation (EIE). In the last part of this step, we will derive a full
solution in the sense of Definition 2.4: Recall that F = 0 outside the interval (0, T )
by construction. Consequently, U = 0 on (−∞, 0) by uniqueness, hence U(0) = 0 by
continuity (see Remark 2.5 (ii)). Additionally, the solution U ∈ Lq(R,W1,p

x ) that has
been constructed via the method above gives rise to a restriction u = U |(0,T ) ∈ Lqt (W

1,p
x ).

Then u satisfies u(0) = U(0) = 0 by continuity and solves (IE). This shows that u is the
unique (p, q)-solution of (P’).
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Step 2: Verification of the assumptions of Dong and Kim. The following lemma shows
that the mean oscillation condition in Assumption [18, Asm. 7.1] is fulfilled. Hence,
[18, Thm. 7.2 & Sec. 8] is applicable in our setting.

Lemma 3.2. Let γ ∈ (0, 1/4). Then there exists R0 ∈ (0, 1] depending only on γ and the
Hölder regularity of {Bt}t∈R such that, for any (t, x) ∈ Rd+1 and r ∈ (0, R0], we have

−
∫

Qr(t,x)

∣∣∣∣∣Bkℓ
s (y1, ŷ) − −

∫
Q′
r(t,x̂)

Bkℓ
τ (y1, ẑ) dẑ dτ

∣∣∣∣∣ dy ds ≤ γ (k, ℓ = 1, . . . ,m),

where Qr and Q′
r denote the parabolic cylinders given by

Qr(t, x) := (t− r2, t) × Br(x) and Q′
r(t, x̂) := (t− r2, t) × B′

r(x̂),

respectively, and x = (x1, x̂) with x1 ∈ R and x̂ ∈ Rd−1.

Proof. Let r > 0 and (t, x) ∈ Rd+1. Fix (s, y) ∈ Rd+1. We decompose the integrand as∣∣∣Bkℓ
s (y1, ŷ) − −

∫
Q′
r(t,x̂)

Bkℓ
τ (y1, ẑ) dẑ dτ

∣∣∣
≤ −

∫
Q′
r(t,x̂)

∣∣∣Bkℓ
s (y) −Bkℓ

τ (y)
∣∣∣ +

∣∣∣Bkℓ
τ (y1, ŷ) −Bkℓ

τ (y1, ẑ)
∣∣∣ dẑ dτ.

Now, for the first term, we have using regularity of B that∣∣∣Bkℓ
s (y) −Bkℓ

τ (y)
∣∣∣ ≤ ∥Bkℓ

s −Bkℓ
τ ∥∞ ≲ |s− τ |β ≲ |s− t|β + |t− τ |β ≲ r2β(8)

and, for the second term,∣∣∣Bkℓ
τ (y1, ŷ) −Bkℓ

τ (y1, ẑ)
∣∣∣ ≲ |ŷ − ẑ|α∥Bkℓ

τ ∥Cαx ≲ (2r)α.(9)

Observe that both estimates are uniform in s and y, to calculate the average over Qr(t, x)
as

−
∫

Qr(t,x)

∣∣∣Bkℓ
s (y1, ŷ) − −

∫
Q′
r(t,x̂)

Bkℓ
τ (y1, ẑ) dẑ dτ

∣∣∣ dy ds ≲ r2β + (2r)α,

where the implicit constant depends on the Hölder regularity of B and α, β. Now, given
γ ∈ (0, 1/4), choose R0 ∈ (0, 1] small enough (depending on the implicit constant) to
conclude. □

Remark 3.3. Note that the proof of Lemma 3.2 did not need the full mixed Hölder
regularity of {Bt}t∈R. Indeed, the calculations in the proof show that estimates (8) and
(9) both only rely on Hölder regularity in one of the two variables and uniformly for the
other variable.

4. Estimates for the solution formula

In this section, we consider a family of operators {Bt}0<t<T associated with coefficients
B(t, ·) ∈ E(Λ, λ, α + ε,M) that depend Cβ+ε

x on t. The prototype for such a family of
operators is the family {Lt}0<t<T from Section 1. First, we derive a solution formula
for weak (p, q)-solutions to the associated non-autonomous problem. Second, we derive
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suitable estimates for it, which depend heavily on the regularity assumption for the coef-
ficients. Implicit constants are throughout this section allowed to depend on p, q, Λ, λ,
α, β, ε, Hölder regularity, and dimensions.

4.1. Representation formula by Acquistapace and Terreni. For a weak (p, q)-
solution u of (P’), we rely on a well-known representation formula due to Acquistapace
and Terreni in W−1,p

x given pointwise by

u(t∗) =
∫ t∗

0
e−(t∗−s)(Bt∗ +κ)(Bt∗ − Bs

)
u(s) ds+

∫ t∗

0
e−(t∗−s)(Bt∗ +κ)f(s) ds.(♡)

The proof is well-known in the literature [2, 12,22, 25], but we give a streamlined version
that directly works with absolute continuity.

Proof of (♡). Consider on [0, t∗] the function v(s) = e−(t∗−s)(Bt∗ +κ)u(s). Moreover, let
0 ≤ τ < t∗. We claim the identity

v(τ) = v(0) +
∫ τ

0
(Bt∗ + κ)e−(t∗−s)(Bt∗ +κ)u(s) + e−(t∗−s)(Bt∗ +κ)u′(s) ds.(10)

Before we turn to the proof of (10), we show how it implies (♡). Note that the function
(Bt∗ +κ)e−(t∗−s)(Bt∗ +κ)u(s) + e−(t∗−s)(Bt∗ +κ)u′(s) is in Lqt (W

−1,p
x ), since u is a weak (p, q)-

solution (keep Remark 2.5 (i) in mind) and the semigroup is bounded on W−1,p
x owing

to Proposition 2.12. Hence, by Lebesgue’s theorem, we can take the limit τ → t∗ on the
right-hand side of (10). Equally, we can take this limit on the left-hand side, owing to
the facts that u is uniformly continuous over [0, t∗] with values in W−1,p

x , and the family
{e−(t∗−s)(Bt∗ +κ)}0≤s≤t∗ is strongly continuous and bounded as a family of operators on
W−1,p

x . Then, plugging in the actual definition of v yields (♡).

Let us come back to the proof of (10). On the interval [0, τ ], s 7→ e−(t∗−s)(Bt∗ +κ), consid-
ered as a family of operators on W−1,p

x , has a bounded derivative due to Proposition 2.12
and analyticity. As u is a weak (p, q)-solution, u : [0, τ ] → W−1,p

x is likewise absolutely
continuous. Hence, observing u(0) = 0, deduce (10) from Lemma 4.1 below. □

Lemma 4.1. Let X, Y be Banach spaces, τ > 0, {T (s)}0≤s≤τ be a differentiable family
of operators X → Y with bounded derivative, and g : [0, τ ] → X be absolutely continuous.
Then s 7→ T (s)g(s) ∈ Y is an absolutely continuous function on [0, τ ] with derivative
T ′(s)g(s) + T (s)g′(s).

Proof. The assumption on T implies in particular that s 7→ T (s) is absolutely continuous
on [0, τ ]. Now, use absolute continuity of both T and g, and the Fubini–Tonelli theorem,
to give ∫ τ

0
T ′(s)g(s) + T (s)g′(s) ds

=
∫ τ

0
T ′(s)

(
g(0) +

∫ s

0
g′(u) du

)
ds+

∫ τ

0

(
T (0) +

∫ s

0
T ′(u) du

)
g′(s) ds

=
∫ τ

0
T ′(s) ds g(0) + T (0)

∫ τ

0
g′(s) ds+

∫ τ

0

∫ τ

0
T ′(s)g′(u) duds.
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All remaining integrals can now be evaluated using absolute continuity, and we only
remain with T (τ)g(τ)−T (0)g(0) after having canceled all superfluous terms. Rearranging
terms gives the claim. □

Motivated by (♡), we are going to consider the operators

S1(u)(t∗) 7→
∫ t∗

0
(Bt∗ + κ)e−(t∗−s)(Bt∗ +κ)(Bt∗ − Bs)u(s) ds,

S2(f)(t∗) 7→(Bt∗ + κ)
∫ t∗

0
e−(t∗−s)(Bt∗ +κ)f(s) ds.

(11)

Up to some technicalities, boundedness of S1 and S2 will lead to the maximal regularity
estimate for u later on in Section 6.

4.2. Digression on interpolation spaces and fractional powers. We recall some
necessary facts from the theory of interpolation spaces and their relation with fractional
powers of a sectorial operator. The reader can, for instance, consult the monographs [41]
and [26] for further information on these topics.

Given Banach spaces Y ⊆ X, θ ∈ (0, 1), and r ∈ [1,∞], write [X,Y ]θ for Calderón–Lion’s
θ-complex, and (X,Y )θ,r for Petree’s (θ, r)-real interpolation space between X and Y . The
real and complex interpolation spaces do not coincide except when X and Y are Hilbert
spaces and r = 2. However, one always has the continuous inclusion [X,Y ]θ ⊆ (X,Y )θ,∞,
see [41, Sec. 1.10.3, Thm. 1].

Suppose now that T is an invertible sectorial operator in X with D(T ) = Y . For α ∈ R,
one can define fractional powers Tα of T inside its sectorial functional calculus, which are
again invertible with (Tα)−1 = T−α, and which satisfy the identity TαT β = Tα+β, where
α, β ≥ 0. For α ∈ (0, 1), the domain of Tα is given by the complex interpolation space
[X,Y ]α.

4.3. Estimates for the kernel of S1. The following lemma is simple, but central in
our argument, as it is the only result that uses the full simultaneous regularity in spacial
and temporal variable.

Lemma 4.2. Let s ∈ (0, t∗). The operator Bt∗ −Bs acts as a bounded operator W1+α,p
x →

W−1+α,p
x along with the estimate

∥Bt∗ − Bs∥W1+α,p
x →W−1+α,p

x
≲ |t∗ − s|β+ε.

Proof. Let s ∈ (0, t∗) and f ∈ W1+α,p
x ∩ W1,2

x . Recall that a Cα+ε
x -function is a multiplier

on the space Wα,p
x , and the operator norm can be controlled by the respective Hölder

norm. Hence, for g ∈ W1−α,p′

x ∩ W1,2
x , estimate

|⟨(Bt∗ − Bs)f, g⟩| =
∣∣∫

Rd
(B(t∗, x) −B(s, x))∇f(x) · ∇g(x) dx

∣∣
≤ ∥(B(t∗, ·) −B(s, ·))∇f∥Wα,p

x
∥∇g∥W−α,p′

x

≲ ∥B(t∗, ·) −B(s, ·)∥Cα+ε∥∇f∥Wα,p
x

∥g∥W1−α,p′
x

.
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Using the regularity of A and duality, we deduce

∥(Bt∗ − Bs)f∥W−1+α,p
x

≲ |t∗ − s|β+ε∥∇f∥Wα,p
x

≤ |t∗ − s|β+ε∥f∥W1+α,p
x

. □

Lemma 4.3. Let s ∈ (0, t∗). The operator (Bt∗ + κ)e−(t∗−s)(Bt∗ +κ) acts as a bounded
operator W−1+α,p

x → Lpx, and satisfies the estimate

∥(Bt∗ + κ)e−(t∗−s)(Bt∗ +κ)∥W−1+α,p
x →Lpx

≲ |t∗ − s|−β−1.

Proof. Let s ∈ (0, t∗). Fix ω < θ < ν < π/2. The operator

(Bt∗ + κ)
3
2 e−(t∗−s)(Bt∗ +κ) = (Bt∗ + κ)[z

1
2 e−(t∗−s)z](Bt∗ + κ)

can be represented using the semigroup generated by −(Bt∗ + κ) in the following way
(see, for instance, [6, Sec. 2.2]): Write Γ± and γ± for the rays of angle ±(π/2 − θ) and ±ν,
respectively. Then, one has that (Bt∗ +κ)[z

1
2 e−(t∗−s)z](Bt∗ +κ) is a linear combination of

the terms ∫
Γ±

(Bt∗ + κ)e−z(Bt∗ +κ)
∫
γ±

ezξξ1/2e−(t∗−s)ξ dξ dz

=
∫

Γ±
z1−α/2(Bt∗ + κ)e−z(Bt∗ +κ)

∫
γ±
z
α/2−1ezξξ1/2e−(t∗−s)ξ dξ dz.

Let f ∈ W−1+α,p
x ∩ L2

x. Apply the Lpx-norm to this representation, and use (4) and
Proposition A.1 to give

∥(Bt∗ + κ)e−(t∗−s)(Bt∗ +κ)f∥p
≲ ∥(Bt∗ + κ)[z

1
2 e−(t∗−s)z](Bt∗ + κ)∥W−1,p

x

≲
∫ ∞

0

∫ ∞

0
r
α/2−1e−cruu

1/2e−c(t∗−s)u∥r1−α/2(Bt∗ + κ)e−(re±i(π/2−θ))(Bt∗ +κ)f∥W−1,p
x

dudr

≲
∫ ∞

0

∫ ∞

0
r
α/2−1e−cruu

1/2e−c(t∗−s)u dudr∥f∥(
W−1,p
x ,D(Bt∗ +κ)

)
α/2,∞

.

Using the transformations ũ = (t∗ − s)u followed by r̃ = rũ(t∗ − s)−1 in conjunction with
Fubini’s theorem, the factor in front of the norm of the real interpolation space can be
controlled by (t∗−s)(α−3)/2. By the relation 2β+α = 1, we find (t∗−s)(α−3)/2 = (t∗−s)−β−1.
Moreover, using that the (θ,∞)-real interpolation norm is always controlled by the θ-
complex interpolation norm [41, Sec. 1.10.3. Thm. 1], and the fact that the complex
interpolation space [W−1,p

x ,W1,p
x ]α/2 coincides with W−1+α,p

x , deduce

∥(Bt∗ + κ)e−(t∗−s)(Bt∗ +κ)f∥p ≲ (t∗ − s)−β−1∥f∥W−1+α,p
x

. □

4.4. Boundedness of S2. Recall the operator S2 from (11). The aim of this subsection
is to show the following.

Proposition 4.4. Let p, q ∈ (1,∞), then one has the estimate

∥S2f∥Lqt (Lpx) ≲ ∥f∥Lqt (Lpx) (f ∈ C∞
0 (Lpx ∩ L2

x)).
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It is well-known in the literature [22, 27, 35] that such bounds for S2 follow from the
boundedness of some vector-valued pseudo-differential operator. For the reader’s conve-
nience, we include a proof. For further background on vector-valued pseudo-differential
operators, the reader may consult [29] and the references therein.

For technical reasons, we extend f by 0 outside (0, T ), and we extend the operator family
{Bt}0<t<T to R constantly at the endpoints, that is to say, Bt = B0 for t ≤ 0 and Bt = BT
for t ≥ T (we performed the same extension already in Section 3). Using the vector-valued
Fourier transform F (see [28, Sec. 2.4.c] for further information) and the Fubini–Tonelli
theorem (its application is justified by integrability of Ff and exponential decay of the
semigroup), calculate∫ t∗

0
e−(t∗−s)(Bt∗ +κ)f(s) ds =

∫ ∞

−∞
e−(t∗−s)(Bt∗ +κ)1[0,∞)(t∗ − s)f(s) ds

=
∫ ∞

−∞
e−(t∗−s)(Bt∗ +κ)1[0,∞)(t∗ − s)

∫ ∞

−∞
Ff(τ)e2πisτ dτ ds

=
∫ ∞

−∞

∫ ∞

−∞
e−(t∗−s)(Bt∗ +κ)1[0,∞)(t∗ − s)e2πisτ dsFf(τ) dτ

=
∫ ∞

−∞
I(τ, t∗)Ff(τ) dτ,

(12)

where I(τ, t∗) is implicitly defined by the latest identity. Using the transformation u =
t∗ −s and the relationship between a semigroup and its generator in virtue of the Laplace
transform (apply for instance [26, Prop. 3.4.1 d)] to Bt∗ + κ/2), deduce

I(τ, t∗) = e2πiτt∗
∫ ∞

0
e−u(Bt∗ +κ)e−2πiuτ du = e2πiτt∗(2πiτ + (Bt∗ + κ))−1.

Plug this back into (12) to conclude with the definition of S2 that

S2(f)(t∗) = (Bt∗ + κ)
∫ ∞

−∞
(2πiτ + (Bt∗ + κ))−1Ff(τ)e2πiτt∗ dτ.(13)

The integral
∫ ∞

−∞ ∥(Bt∗ + κ)(2πiτ + (Bt∗ + κ))−1Ff(τ)e2πiτt∗∥L2
x

dτ is finite, so we can
commute (Bt∗ + κ) with the integral in (13) owing to Hille’s theorem. This means that
S2(f) can be represented as the pseudo-differential operator with symbol

(τ, s) 7→ (Bs + κ)(2πiτ + (Bs + κ))−1.

Of course, by expansion, we can equally study boundedness of the pseudo-differential
operator associated with the symbol (τ, s) 7→ 2πiτ(2πiτ + (Bs + κ))−1. In the following
lemma, we study this symbol thoroughly.

Lemma 4.5. The symbol a(τ, s) = 2πiτ(2πiτ + (Bs + κ))−1 is an R-Yamazaki symbol,
that is to say, there are some ε > 0 and C > 0 such that, for k = 0, 1, 2, and s, h ∈ R,
one has the R-bound

R
{

(1 + |τ |)∂kτ
[
a(τ, s) − a(τ, s+ h)

]
; τ ∈ R

}
≤ C|h|ε.

Proof. For brevity, we rescale 2πτ to τ in the definition of the symbol a. Fix ψ ∈
(π/2, π − ω) and s, h ∈ R. Define on Sψ the function A(λ) = (1 + λ)

[
(λ + (Bs + κ))−1 −

(λ+ (Bs+h + κ))−1]
.
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Step 1: The case k = 0. We show that the function A is R-bounded with control against
|h|ε. Then, in particular, the case k = 0 is verified (keep the contraction principle in
mind). For λ ∈ Sψ, expand A(λ) using the functional calculus as

(1 + λ)
1
2

[
z

1
2

λ+ z + κ/2

]
(Bs + κ/2)(F1)

×(Bs + κ/2)− 1
2
[
Bs+h − Bs

]
(Bs+h + κ/2)− 1

2(F2)

×(1 + λ)
1
2

[
z

1
2

λ+ z + κ/2

]
(Bs+h + κ/2).(F3)

Using composition of R-bounds, we can treat all three factors separately. The decay in
|h| comes (F2), where as the other two are merely bounded. Moreover, (F1) and (F3)
have the same structure, so we only present the estimate for (F1). Recall that, according
to Remark 2.8, all results from Section 2 can be applied to Bs + κ/2.

Put gλ = z
1
2 (λ + z + κ/2)−1. The operator gλ(Bs + κ/2) in (F1) is given as a linear

combination of Cauchy integrals of the form∫ ∞

0
gλ(te±iν)t(te±i(ν+π) + (Bs + κ/2))−1 dt

t
,

where ν ∈ (ω, π − ψ). According to [31, Cor. 2.14] and owing to Proposition 2.15,

R{(1 + λ)
1
2 gλ(Bs + κ/2) ; λ ∈ Sψ} ≲ sup

λ∈Sψ
(1 + |λ|)

1
2

∫ ∞

0
|gλ(te±iν)| dt

t

=: sup
λ∈Sψ

(1 + |λ|)
1
2 I(λ).

Hence, it only remains to control I(λ) against (1 + |λ|)− 1
2 to complete the treatment

of (F1). To this end, calculate with the reverse triangle inequality for sectors

I(λ) =
∫ ∞

0
t

1
2 |λ+ κ/2 + te±iν |−1 dt

t
≲

∫ ∞

0
t

1
2 (|λ| + κ/2 + t)−1 dt

t
.(14)

Split the last integral in (14) as
∫ ∞

0
dt
t =

∫ |λ|+κ/2
0

dt
t +

∫ ∞
|λ|+κ/2

dt
t to deduce a bound (up

to a constant) against (κ/2 + |λ|)− 1
2 ≈ (1 + |λ|)− 1

2 .

It remains to treat (F2). Here, a crucial observation is that (F2) is independent of λ,
hence the R-bound can in fact be controlled by the operator norm [31, Rem. 2.6 c)].
Another important ingredient is the estimate

∥Bs − Bs+h∥W1,p
x →W−1,p

x
≲ |h|ε,(15)

whose proof follows the lines of Lemma 4.2, but it suffices to have coefficients in Cε(R; L∞
x ).

Recall from Theorem 2.11 the estimate ∥(Bs + κ/2)− 1
2 f∥W1,p

x
≲ ∥f∥Lpx for f ∈ Lpx ∩ L2

x.
The same estimate holds of course if Bs is replaced by (Bs)∗. Hence, we can estimate by
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duality and using (15) that, for g ∈ Lp
′

x ,

|((Bs + κ/2)− 1
2 (Bs+h − Bs)(Bs+h + κ/2)− 1

2 f | g)|

= |((Bs+h − Bs)(Bs+h + κ/2)− 1
2 f | ((Bs)∗ + κ/2)− 1

2 g)|

≤ ∥(Bs+h − Bs)(Bs+h + κ/2)− 1
2 f∥W−1,p

x
∥((Bs)∗ + κ/2)− 1

2 g∥W1,p′
x

≲ |h|ε∥(Bs+h + κ/2)− 1
2 f∥W1,p

x
∥g∥Lp

′
x

≲ |h|ε∥f∥Lpx∥g∥Lp
′
x

.

Consequently,

R{(Bs + κ/2)− 1
2 (Bs+h − Bs)(Bs+h + κ/2)− 1

2 }

≲ ∥(Bs + κ/2)− 1
2 (Bs+h − Bs)(Bs+h + κ/2)− 1

2 ∥Lpx→Lpx
≲ |h|ε.

Step 2: The case k ≥ 1. Since the function A is holomorphic in λ and defined on a sector
that strictly includes the half-plane, this is a simple consequence of Cauchy’s formula,
see [31, Ex. 2.16]. □

Proof of Proposition 4.4. We have already seen that the bound for S2 follows from the
bound for the pseudo-differential operator associated with the symbol a(τ, t) = 2πiτ(2πiτ+
(Bt+κ))−1. It was shown in [29, Thm. 17 & Rem. 20] that boundedness for such a pseudo-
differential operator follows if the symbol a is an R-Yamazaki symbol. However, this was
just verified in Lemma 4.5. □

5. Higher regularity of weak solutions

In this section, we consider a family of operators {Bt}0<t<T associated with coefficients
B(t, ·) ∈ E(Λ, λ, α + ε,M). Note that we do not require any regularity in time in this
section. Provided that the associated problem (P’) admits a solution, we show higher
spatial regularity for this solution in Proposition 5.3. This is based on a commutator
argument that already appeared in [7]. Implicit constants are allowed to depend on p, q,
Λ, λ, α, ε, κ, Hölder constants, and dimensions.

Definition 5.1. The operator ∂αx is defined as the (unbounded) Fourier multiplication
operator on L2

x with symbol |ξ|α. It extrapolates to a bounded operator Wα,p
x → Lpx and

we keep writing ∂αx .

Recall that f ∈ Ws+α,p
x if, and only if, f ∈ Ws,p

x and ∂αx f ∈ Ws,p
x , see [40, p. 133].

We use the representation of ∂αx as a hypersingular integral to show the following com-
mutator estimate.

Lemma 5.2. Let p ∈ (1,∞). Assume that b is a smooth and bounded scalar function on
Rd. Then the commutator [∂αx , b], initially defined on Wα,p

x , extends to a bounded operator
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on Lpx, and satisfies the estimate
∥[∂αx , b]f∥Lpx ≲ ∥b∥Cα+ε

x
∥f∥Lpx (f ∈ Wα,p

x ).(16)

Proof. Observe that, since [∂αx , b] : Wα,p
x → Lpx is bounded, it suffices, in virtue of density

and Fatou’s lemma, to establish (16) for f smooth and bounded.

According to [38, Sec. 25.4], the fractional derivative ∂αx acts on bounded and smooth
functions g as the hypersingular integral given for x ∈ Rd by

∂αx g(x) = c

∫
Rd

g(y) − g(x)
|y − x|d+α dy = c

∫
Rd

g(x− y) − g(x)
|y|d+α dy.

We can apply this identity to f and bf in virtue of the assumption on b and the reduction
at the beginning of this proof. Consequently, the commutator can be written as

[∂αx , b]f(x) = c
(∫

Rd

b(x− y)f(x− y) − b(x)f(x)
|y|d+α dy − b(x)

∫
Rd

f(x− y) − f(x)
|y|d+α dy

)
= c

∫
Rd

(b(x− y) − b(x))f(x− y)
|y|d+α dy.

Split the integral into the regions |y| ≤ 1 and |y| ≥ 1 and use Hölder-regularity of b in
the first, and boundedness of b in the second case, to bound the absolute value of the
expression from above by

[b]Cα+ε
x

∫
|y|≤1

|y|−d+ε|f(x− y)| dy + ∥b∥∞

∫
|y|≥1

|y|−d−α|f(x− y)| dy.

In summary, we have shown

|[∂αx , b]f(x)| ≲ ∥b∥Cα+ε
x

∫
Rd

[
1|y|≤1|y|−d+ε + 1|y|≥1|y|−d−α]

|f(x− y)| dy.

Since 1|y|≤1|y|−d+ε + 1|y|≥1|y|−d−α is integrable over Rd, the claim follows from Young’s
convolution inequality. □

Proposition 5.3. Given a weak (p, q)-solution u of (P’) for some right-hand side f ∈
Lqt (L

p
x), one has higher spatial regularity in the sense u ∈ Lqt (W

1+α,p
x ) together with the

estimate
∥u∥Lqt (W1+α,p

x ) ≲ ∥f∥Lqt (Lpx).

Proof. The proof divides into four steps.

Step 1: Regularization of the equation. Let ρ ∈ C∞
0 (Rd) be positive with integral one

and define the usual mollifier sequence ρn(x) := ndρ(nx). Put Bn := ρn ∗x B, where ∗x
denotes convolution in the x-variable. One has

Bn(t, x)ξ · η =
∫
Rd
ρn(y)B(t, x− y)ξ · η dy (ξ, η ∈ Cdm),

hence Bn is elliptic with the same bounds as B. In conjunction with the calculation

∥Bn(t, x) −Bn(t, y)∥ ≤
∫
Rd
ρn(z)∥B(t, x− z) −B(t, y − z)∥ dz

≤ M |x− y|α+ε,
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this shows that Bn is again in the class E(Λ, λ, α + ε,M). Similarly, we derive for fixed
n using smoothness of ρ that Bn is Lipschitz in the x variable uniformly in t. Now,
according to Theorem 3.1, there exist unique weak (p, q)-solutions un to equation (P’)
with B replaced by Bn in the definition of Bt.

Step 2: Qualitative higher regularity for solutions of the regularized equations. Using
the method of difference quotients, we show that the solutions un from Step 1 belong
to the class Lqt (W

2,p
x ). This is a non-quantitative technical necessity to justify certain

calculations in Step 3. To keep the notation concise, we will omit the subscript n and
simply write u instead of un for the solution and B instead of Bn for the coefficients. We
emphasize that, in this step, the only quantitative property of the regularized coefficients
that we are going to use is the Lipschitz property in x uniform in t.

For y ∈ Rd, define the translation operator Sy in the x-variable by f 7→ f(· + y). We
extend Sy by pointwise application in t to parabolic spaces like Lqt (L

p
x) (for simplicity, we

keep writing the symbol Sy for this extension). Then, set for j = 1, . . . , d and h ∈ R the
difference quotient operator Dj

hu := 1
h(Sheju − u), where ej is the jth unit vector in Rd.

Observe that the operator Dj
h leaves the space of test functions invariant.

Using the chain rule and translation in the x-variable, one gets for t∗ fixed, y ∈ Rd, and
g ∈ W1,p′

x the identity

bt∗(Syu(t∗), g)

=
∫
Rd
B(t∗, x)∇u(t∗, x+ y) · ∇g(x) dx

=
∫
Rd

[
B(t∗, x) −B(t∗, x+ y)

]
∇u(t∗, x+ y) · ∇g(x) dx+ bt∗(u(t∗), S−yg).

(17)

Note that S−y is the adjoint of Sy, and, consequently, −Dj
−h is the adjoint of Dj

h. Hence,
if we plug Dj

hu in (IE), and use the adjoint of Dj
h for the first and third, and (17) for the

second term, we obtain∫ T

0
−φ′(s)(Dj

hu(s) | g) + φ(s)bs(Dj
hu(s), g) + φ(s)κ(Dj

hu(s) | g) ds

=
∫ T

0
φ(s)

∫
Rd

(B(s, x) −B(s, x+ hej)
h

)
∇u(s, x+ hej) · ∇g(x) dx ds

−
∫ T

0
−φ′(s)(u(s) |Dj

−hg) + φ(s)bs(u(s), Dj
−hg) + φ(s)κ(u(s) |Dj

−hg) ds

=: I + II.

To bound term II, we use first that u is a solution for the right-hand side f , followed by
the fact that we can estimate the difference quotients of g by ∇g, see for instance [19,
Sec. 5.8.2. Thm. 3]. So, write∫ T

0
−φ′(s)(u(s) |Dj

−hg) + φ(s)bs
(
u(s), Dj

−hg
)

+ φ(s)κ(u(s) |Dj
−hg) ds

=
∫ T

0
φ(s)(f(s) |Dj

−hg) ds,
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and for s ∈ (0, T ) fixed and all h ∈ R, estimate the pairing in its integrand by

|(f(s) |Dj
−hg)| ≤ ∥f(s)∥Lpx∥Dj

−hg∥Lp
′
x

≲ ∥f(s)∥Lpx∥∇g∥Lp
′
x

.

Using Hölder’s inequality in the t-variable reveals that term II is induced by a function
in Lqt (W

−1,p
x ), with bound independent of h. For term I, use that B is Lipschitz in the x-

variable uniformly in s ∈ (0, T ), along with Hölder’s inequality and translation invariance
of the Lpx-norm.

Eventually, we see that Dj
hu is a weak (p, q)-solution to some right-hand side in Lqt (W

−1,p
x ),

where the norm of the right-hand side can be controlled independently of h. Consequently,
the estimate from Theorem 3.1 gives

∥Dj
hu∥Lqt (W1,p

x ) ≲ ∥f∥Lqt (Lpx) (j = 1, . . . , d, h ∈ R).(18)

In particular, we deduce from (18) that there is a sequence (hn)n of positive numbers such
that hn converges to 0, and such that Dj

hn
u converges to a weak limit point v ∈ Lqt (W

1,p
x ).

We claim that, for almost every s ∈ (0, T ), the function v(s) is the jth weak derivative in
the x-variable of u(s). Indeed, it follows from the “integration by parts”-identity∫

Rd
(Dj

hf)g dx = −
∫
Rd
f(Dj

−hg) dx,

which is a simple consequence of translation in the integral, that one has, for φ ∈ C∞
0 (Rd)

and ψ ∈ C∞
0 (0, T ), the identity

−
∫ T

0

∫
Rd
∂jφ(x)u(s, x) dx ψ(s) ds = − lim

n

∫ T

0

∫
Rd
Dj

−hnφ(x)u(s, x) dx ψ(s) ds

= lim
n

∫ T

0

∫
Rd
φ(x)Dj

hn
u(s, x) dx ψ(s) ds.

Integration against φ(x)ψ(s) gives rise to a functional on Lqt (L
p
x), hence weak convergence

of Dj
hn
u identifies the latest limit with∫ T

0

∫
Rd
φ(x)v(s, x) dx ψ(s) ds.

Finally, the fundamental lemma of the calculus of variations shows

−
∫
Rd
∂jφ(x)u(s, x) dx =

∫
Rd
φ(x)v(s, x) dx for almost every s ∈ (0, T ),

which reveals ∂ju(s, x) = v(s, x) for almost every s ∈ (0, T ) and j = 1, . . . , d. But as
v ∈ Lqt (W

1,p
x ), the lifting property for Sobolev spaces shows u ∈ Lqt (W

2,p
x ).

Step 3: Uniform bounds using a commutator argument. The current step is the essence
of this proof, filling in the details of the heuristic given in the roadmap in Section 1.2.
As in Step 2, we continue to work with the regularized coefficients, but still omitting the
subscript n in the notation. However, now we will also rely on the properties established
in Step 1 that are uniform in n.

Recall that ∂αx is the fractional derivative of order α in x from Definition 5.1. Note that ∂αx
commutes with ∇x and ∂t, which is a consequence of its definition as a Fourier multiplier.
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Our goal is to show that ∂αxu is a weak (p, q)-solution to some admissible right-hand
side. Note that ∂αxu ∈ Lqt (W

1,p
x ), owing to the higher spatial regularity of u established in

Step 2, which allows us to plug this term into the equation. That being said, calculate

∫ T

0
−φ′(s)(∂αxu(s) | g) + φ(s)bs(∂αxu(s), g) + φ(s)κ(∂αxu(s) | g) ds

=
∫ T

0
−φ′(s)(u(s) | ∂αx g) + φ(s)bs(u(s), ∂αx g) + φ(s)κ(u(s) | ∂αx g) ds

+
∫ T

0
φ(s)

[
bs(∂αxu(s), g) − bs(u(s), ∂αx g)

]
ds.

Note that ∂αx g ∈ W1,p′

x since g is smooth. Hence, in the light of Remark 2.5 (iv), use the
equation for u, and expand the definition of bs, to rewrite the last expression as

T∫
0

φ(s)(f(s) | ∂αx g) ds+
T∫

0

φ(s)
∫
Rd

B(s, x)∇∂αxu(s) · ∇g −B(s, x)∇u(s) · ∇∂αx g dx ds

=: I + II.

We have to check that the terms I and II are induced by right-hand sides in Lqt (W
−1,p
x ). For

term I, this is a direct consequence of the mapping properties of ∂αx , and the Lqt (W
−1,p
x )-

norm can be controlled by ∥f∥Lqt (Lpx).

Let us proceed with term II. Keep in mind that B(s, x) is Lipschitz in x, and thus is a
multiplier on W1,p

x . We use this fact and higher regularity of u from Step 2 to commute
∂αx with ∇x to rewrite the integral over Rd in II as

∫
Rd
B(s, x)∇∂αxu(s) · ∇g −B(s, x)∇u(s) · ∇∂αx g dx =

∫
Rd

[
B(s, x), ∂αx

]
∇u(s) · ∇g dx.

Then, we apply the commutator estimate from Lemma 5.2 for all times s (keep in mind
that B(s, ·) is smooth and bounded by the regularization in Step 1) along with Hölder’s
inequality to deduce that term II belongs to class Lqt (W

−1,p
x ) as well. In this case, the

Lqt (W
−1,p
x )-norm is controlled by ∥u∥Lqt (W1,p

x ), where implicit constants depend on the
Hölder regularity of the coefficients, which are also under control by Step 1.

In summary, Theorem 3.1 gives ∂αxu ∈ Lqt (W
1,p
x ) with estimate

∥u∥Lqt (W1+α,p
x ) ≲ ∥u∥Lqt (Lpx) + ∥∂αxu∥Lqt (W1,p

x ) ≲ ∥f∥Lqt (Lpx) + ∥u∥Lqt (W1,p
x ) ≲ ∥f∥Lqt (Lpx),

where we have applied Theorem 3.1 once more, but this time for u instead of ∂αxu, to get
the final estimate.
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Step 4: Taking the limit in Step 1. The solutions un to the regularized equations from
Step 1 satisfy the identity

T∫
0

φ′(s)(un(s) | g) + φ(s)(f(s) | g) − φ(s)κ(un(s) | g) ds

=
T∫

0

φ(s)
∫
Rd

Bn(s, x)∇un(s) · ∇g dx ds.

(19)

Moreover, we have seen in Step 3 that ∥un∥Lqt (W1+α,p
x ) ≲ ∥f∥Lqt (Lpx) holds uniformly in n.

Since p and q are in the reflexive range, we find a subsequence (which we still denote
by un) for which un and ∇un converge weakly in Lqt (L

p
x) to some limit v ∈ Lqt (W

1+α,p
x ).

Moreover, ∥v∥Lqt (W1+α,p
x ) ≲ ∥f∥Lqt (Lpx). The former fact directly enables us to pass to the

limit
T∫

0

φ′(s)(v(s) | g) + φ(s)(f(s) | g) + φ(s)κ(v(s) | g) ds

on the left-hand side of (19). For the right-hand side, write

T∫
0

φ(s)
∫
Rd

Bn(s, x)∇un(s, x) · ∇g(x) dx ds =
T∫

0

φ(s)
∫
Rd

∇un(s, x) ·Bn(s, x)∗∇g(x) dx ds.

Clearly, Bn(s, x)∗ is uniformly bounded, and, by regularity in the x-variable of B, one
has Bn(s, x)∗ → B(s, x)∗ pointwise. Hence, the dominated convergence theorem gives
φ(s)Bn(s, x)∗∇g(x) → φ(s)B(s, x)∗∇g(x) strongly in Lq

′

t (Lp
′

x ). Hence, the right-hand
side of (19) converges to

T∫
0

φ(s)
∫
Rd

B(s, x)∇v(s, x) · ∇g(x) dx ds.

In summary, taking the limit in (19) results in
T∫

0

φ′(s)(v(s) | g) + φ(s)(f(s) | g) − φ(s)κ(v(s) | g) ds

=
T∫

0

φ(s)
∫
Rd

B(s, x)∇v(s, x) · ∇g(x) dx ds.

This shows that u and v solve the same equation. Uniqueness of solutions leads to
u = v ∈ Lqt (W

1+α,p
x ) as desired. The corresponding estimate was already mentioned

above. □

Remark 5.4. In Step 3, we have used that the fractional derivative can be written as a
Fourier multiplier, and hence commutes with ∇. This is the central reason that ties us
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to whole-space in the x variable. Moreover, the limiting argument in Step 4 relies on the
control of the implied constants from Theorem 3.1.

6. Proof of Theorem 1.1

Following the plan outlined in the roadmap in Section 1.2 we assemble the results from
the previous sections to prove Theorem 1.1.

Proof of Theorem 1.1. Let f ∈ Lqt (L
p
x). In virtue of Remark 2.5 (iii), we consider the

shifted problem (P’) with Bt = Lt instead of (P). Let u be its unique (p, q)-solution from
Theorem 3.1. We want to show Ltu(t) ∈ Lqt (L

p
x) with estimate against ∥f∥Lqt (Lpx). This

happens in three steps.

Step 1: Reduction to right-hand sides in C∞
0 (Lpx ∩ L2

x). Let (fn)n be a sequence in
C∞

0 (Lpx ∩ L2
x) that converges to f in Lqt (L

p
x). Let un be the weak (p, q)-solution of (P’)

with Bt = Lt and right-hand side fn provided by Theorem 3.1. Suppose the maximal
regularity estimate

∥Ltun(t)∥Lqt (Lpx) ≲ ∥fn∥Lqt (Lpx)(20)

with implicit constant independent of n. Since the un are weak (p, q)-solutions, arguing as
in Step 4 of the proof of Proposition 5.3, we see that un converges weakly to u in Lqt (L

p
x)

and that ∇un converges weakly to ∇u in Lqt (L
p
x). Let v ∈ Lq

′

t (Lp
′

x ) ∩ L2
t (L2

x). Then, in
particular, (Lt∗un(t∗) | v(t∗)) → (Lt∗u(t∗) | v(t∗)) for almost every t∗. Consequently, we
find by Fatou’s lemma and (20) that

∣∣∣∫ T

0
⟨Ltu(t), v(t)⟩ dt

∣∣∣ ≤ lim inf
n

∣∣∣∫ T

0
⟨Ltun(t), v(t)⟩ dt

∣∣∣
≲ lim inf

n
∥fn∥Lqt (Lpx)∥v∥Lq

′
t (Lp

′
x )

= ∥f∥Lqt (Lpx)∥v∥Lq
′
t (Lp

′
x ).

Hence, duality yields ∥Ltu(t)∥Lqt (Lpx) ≲ ∥f∥Lqt (Lpx), provided we can show (20).

Step 2: Treating the first term in (♡). We write u instead of un for this part to emphasize
that this step does not rely on the regularization of the right-hand side. Let v ∈ Lq

′

t (Lp
′

x )∩
L2
t (L2

x). We aim to estimate S1 by duality. To this end, write

∣∣∣∫ T

0

∫ t

0
((Lt + κ)e−(t−s)(Lt+κ)(Lt − Ls)u(s) | v(t)) dsdt

∣∣∣
=

∣∣∣∫ T

0

∫ t

0
(u(s) |

(
(Lt + κ)e−(t−s)(Lt+κ)(Lt − Ls)

)∗
v(t)) ds dt

∣∣∣.(21)

For t and s fixed, the operator (Lt + κ)e−(t−s)(Lt+κ)(Lt − Ls) maps W1+α,p
x → Lpx with

norm controlled by |t − s|−1+ε as combining Lemmas 4.2 and 4.3 shows. Consequently,
its adjoint maps Lp

′

x → W−1−α,p′

x with the same bound. Use this together with the
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W1+α,p
x –W−1−α,p′

x duality pairing in (21) to bound its right-hand side by∫ T

0

∫ t

0
∥u(s)∥W1+α,p

x
∥
(
(Lt + κ)e−(t−s)(Lt+κ)(Lt − Ls)

)∗
v(t)∥W−1−α,p′

x

ds dt

≲
∫ T

0

∫ t

0
∥u(s)∥W1+α,p

x
|t− s|−1+ε∥v(t)∥Lp

′
x

ds dt.

By Hölder’s inequality, this can be bounded by∥∥∥∫ t

0
|t− s|−1+ε∥u(s)∥W1+α,p

x
ds

∥∥∥
Lqt

∥v(t)∥Lq
′
t (Lp

′
x ).(22)

By Young’s convolution inequality (the convolution kernel s 7→ |s|−1+ε is integrable over
(0, T )) and Proposition 5.3, control (22) by ∥u∥Lqt (W1+α,p

x )∥v∥Lq
′
t (Lp

′
x ) ≲ ∥f∥Lqt (Lpx)∥v∥Lq

′
t (Lp

′
x ).

Hence, duality shows in summary

∥
∫ t

0
(Lt + κ)e−(t−s)(Lt+κ)(Lt − Ls)u(s) ds∥Lqt (Lpx) ≲ ∥f∥Lqt (Lpx).(23)

In particular, the above calculation (applied with v constant) shows that∫ t

0
∥(Lt + κ)e−(t−s)(Lt+κ)(Lt − Ls)u(s)∥ ds < ∞ for almost every t ∈ (0, T ).

Whence, Hille’s theorem shows

(Lt + κ)
∫ t

0
e−(t−s)(Lt+κ)(Lt − Ls)u(s) ds

=
∫ t

0
(Lt + κ)e−(t−s)(Lt+κ)(Lt − Ls)u(s) ds

= S1(u)(t),

so that (23) translates to

∥S1(u)∥Lqt (Lpx) ≲ ∥f∥Lqt (Lpx).

Step 3: Treating the second term in (♡). Thanks to the reduction to more regular
right-hand sides in Step 1, Proposition 4.4 directly yields ∥S2(fn)∥Lqt (Lpx) ≲ ∥fn∥Lqt (Lpx) ≲
∥f∥Lqt (Lpx).

In summary, Steps 2 and 3 in conjunction with Theorem 3.1 give

∥Ltun(t)∥Lqt (Lpx) ≲ ∥S1(un)∥Lqt (Lpx) + ∥S2(fn)∥Lqt (Lpx) + κ∥un∥Lqt (Lpx) ≲ ∥f∥Lqt (Lpx),

which is (20). Hence, ∥Ltu(t)∥Lqt (Lpx) ≲ ∥f∥Lqt (Lpx) as was demonstrated in Step 1. This
completes the proof. □

Appendix A. Interpolation

We derive a representation of the real interpolation spaces used in Section 4 using analytic
semigroups. While such descriptions are of course part of the literature, the following
exposition aims to give explicit control for the implicit constants and is tailored to our
desired application.
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Let ψ ∈ [0, π/2). Assume that we are given a reflexive Banach space X and an analytic
semigroup {e−zT }z∈Sψ on X that satisfies for some M > 0 the bound

∥e−zT ∥X→X + ∥zT e−zT ∥X→X ≤ M (z ∈ Sψ).(24)

Proposition A.1. Let φ ∈ (−ψ,ψ), and put γ(t) := teiφ. For θ ∈ (0, 1), the space

DT (θ, φ) :=
{
x ∈ X ; t 7→ ∥t1−θT e−γ(t)Tx∥X ∈ L∞(0,∞)

}
,

equipped with the norm

∥x∥DT (θ,φ) := ∥x∥X + ∥t1−θT e−γ(t)Tx∥L∞(0,∞;X),

coincides with the real interpolation space (X,D(T ))θ,∞ up to equivalent norms, and the
constants in the norm equivalence depend only on θ and M .

The (θ,∞)-real interpolation space in Proposition A.1 can be defined using the trace
method as follows. Suppose that we are given two Banach spaces Y ⊆ X and θ ∈ (0, 1).
Then, define the space

V(θ,X, Y ) :=
{
u : (0,∞) → X ; t 7→ uθ(t) := t1−θu(t) ∈ L∞(0,∞;Y )

& t 7→ vθ(t) := t1−θu′(t) ∈ L∞(0,∞;X)
}
,

and equip it with the norm ∥u∥V(θ,X,Y ) := ∥uθ∥L∞(0,∞;Y ) + ∥vθ∥L∞(0,∞;X). As usual, u′

denotes the weak derivative of u. It turns out that functions in V(θ,X, Y ) are absolutely
continuous with values in X. This enables us to put

(X,Y )θ,∞ :=
{
u(0) ; u ∈ V(θ,X, Y )

}
, ∥x∥(X,Y )θ,∞ := inf

u
∥u∥V(θ,X,Y ),

where the infimum is taken over all u ∈ V(θ,X, Y ) with u(0) = x, confer [33, Prop. 1.2.10].

The proof of Proposition A.1 follows the lines of [33, Prop. 2.2.2]. However, we include
three marginal adaptations. First, we explicitly trace the dependence of the implicit
constants. Second, our space DT (θ, φ) is defined using complex rays in the sector of
analyticity of T . Third, we drop the restriction t ∈ (0, 1) from the definition of the space
DT (θ,∞) in [33].

Proof of Proposition A.1. To ease the notation, all norms without a subscript shall denote
the norm on X.

Step 1: ∥x∥DT (θ,φ) ≲ ∥x∥(X,D(T ))θ,∞ . Let u ∈ V(θ,X,D(T )) with u(0) = x. Write using
absolute continuity x = u(t) −

∫ t
0 u

′(s) ds. First, use the decomposition of x and the
triangle inequality to give

∥t1−θT e−γ(t)Tx∥ ≤ ∥t1−θT e−γ(t)Tu(t)∥ + ∥t1−θT e−γ(t)T
∫ t

0
u′(s) ds∥.

For the first term, use (24) and the definition of the graph norm to deduce

∥t1−θT e−γ(t)Tu(t)∥ ≤ M∥t1−θTu(t)∥ ≤ M∥t1−θu(t)∥D(T ).
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For the second term, continue likewise using (24) and |γ(t)| = t to get

∥t1−θT e−γ(t)T
∫ t

0
u′(s) ds∥ = ∥t1−θγ(t)T e−γ(t)T 1

t

∫ t

0
u′(s) ds∥ ≤ M∥t1−θ 1

t

∫ t

0
u′(s) ds∥.

Using [33, Cor. 1.2.9], proceed by

M∥t1−θ 1
t

t∫
0

u′(s) ds∥ ≤ M

1 − θ
∥t1−θu′(t)∥.

So far, we have shown that
∥t1−θT e−γ(t)Tx∥ ≲ ∥t1−θu(t)∥D(T ) + ∥t1−θu′(t)∥ ≤ ∥u∥V(θ,X,D(T )),(25)

with implicit constant only depending on θ and M .

Second, use again the decomposition of x together with averaging and Fubini’s theorem
to calculate

∥x∥ ≤
∫ 1

0
∥u(t)∥ dt+

∫ 1

0

∫ t

0
∥u′(s)∥ ds dt

≤ ∥t1−θu(t)∥L∞(0,1;X)

∫ 1

0
tθ

dt
t

+
∫ 1

0

∫ 1

s
∥u′(s)∥ dtds

≲ ∥t1−θu(t)∥L∞(0,∞;X) + ∥s1−θu′(s)∥L∞(0,∞;X)

∫ 1

0
sθ

ds
s

≲ ∥u∥V(θ,X,D(T )).

Implicit constants only depend on θ. Apply the L∞(0,∞)-norm to estimate (25) and add
it to this second inequality. Then, take the infimum over all admissible u to conclude this
step.

Step 2: ∥x∥(X,D(T ))θ,∞ ≲ ∥x∥DT (θ,φ). Let x ∈ DT (θ, φ), and put u(t) := η(t)e−γ(t)Tx,
where η : (0,∞) → [0, 1] is a smooth cutoff function that is 1 around 0, supported in [0, 1],
and which satisfies ∥η′∥∞ ≤ 2. Observe that u and u′ are again supported in [0, 1]. Hence,
for the first term in ∥u∥V(θ,X,D(T )), we calculate for t ∈ [0, 1] using (24) that

∥t1−θu(t)∥D(T ) ≤ ∥t1−θe−γ(t)Tx∥ + ∥t1−θT e−γ(t)Tx∥

≤ M∥x∥ + ∥t1−θT e−γ(t)Tx∥L∞(0,∞;X).

Similarly, the second term of ∥u∥V(θ,X,D(T )) can be controlled in virtue of

∥t1−θu′(t)∥ ≤ ∥t1−θT e−γ(t)Tx∥ + ∥η′∥∞∥t1−θe−γ(t)Tx∥

≤ ∥t1−θT e−γ(t)Tx∥L∞(0,∞;X) + 2M∥x∥.
In summary, u ∈ V(θ,X,D(T )) with ∥u∥V(θ,X,D(T )) ≲ ∥x∥DT (θ,φ), with implicit constant
depending only on M . In particular, ∥x∥(X,D(T ))θ,∞ ≲ ∥x∥DT (θ,φ). □
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