Therapeutic effects of large-field visual virtual immersion on balance control in unilateral vestibular patients
Olivier A.J. Martin, Denis Faure-Vincent, Jean-Dominique Gascuel, Sébastien Schmerber, Alina Voda, Pascal Bellemain

To cite this version:
Olivier A.J. Martin, Denis Faure-Vincent, Jean-Dominique Gascuel, Sébastien Schmerber, Alina Voda, et al.. Therapeutic effects of large-field visual virtual immersion on balance control in unilateral vestibular patients. ISPGR 2022 - International Society of Posture and Gait Research, Jul 2022, Montréal, Canada. pp.1-1. hal-03737948

HAL Id: hal-03737948
https://hal.archives-ouvertes.fr/hal-03737948
Submitted on 25 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Therapeutic effects of large-field visual virtual immersion on balance control in unilateral vestibular patients

Martin O.1*, Faure-Vincent D.1, Gascuel JD.2, Schmerber S.3, Voda A.1, Bellemain P.1
1GIPSA-lab, UMR5216 Grenoble-Alpes University & G-INP, Grenoble France
2INRIA Rhône-Alpes, Maverick Team & Jean Kunzman Lab, Grenoble, France
3Grenoble-Alpes University Hospital, NET Clinic, Grenoble, France
(*Contact: olivier.martin@gipsa-lab.grenoble-inp.fr)

INTRODUCTION | VR-based balance rehab. relevance?

- Balance processes use visual, vestibular and proprioceptive sensory inputs to maintain a symmetrical way of movement.
- Vestibular deficit increases in a time-dependent way due to the vestibular compensation syndrome.
- Therapeutic effects of virtual reality (VR) based sensory training are not well understood, in particular virtual vestibular training during a short rehabilitation period.
- Automatic sensory and motor compensation (visual-vestibular-motor) to reduce the patients’ visual dependency.

METHODS | The PIVVIT project (Plateforme d’Immersion Visuelle Virtuelle Thérapeutique)

CLINICAL TRIAL - PATIENTS
- Unilateral vestibular patients (42-80 y.a.; 3 m., 4 f.)
- Visually-induced dizziness (areflexia, chronic recurrent dizziness, vestibular neuritis)
- 8 weeks rehab. period = 1 or 2 rehab. session per week included in the patients care process
- Ethics validation (CPP - voluntary informed patients)

VISUAL STIMULI
- Large-field (panoramic) visual virtual flows
- Standardized optokinetic stimulus
- 8 Optic flows STIM.: 3D scrolls (Up, Down) + 3D Rotations (Clockwise, Counterclockwise) + 3D Radial expansion.
- 6 flows SPEED (speed ratio from 0.03 to 828 A.U.)
- Scenarios optimized for efficiency on patient: visual-flows constraints increase throughout the therapeutic session: flows pattern (scroll, radial and rotation), stimulation speed increased, gaze anchoring on the visual reference (with/without).

GAZE ANCHORAGE (GA)
- Visuo-spatial reference
- With GA: session 1-4; Without GA: session 5-8
- (With: session 9; Without: session 10)

PROTOCOL
- Trial 1 = Visual stimulation
- Series B: 8 stim. (8 trials)
 - 5 different 10/20-30 visual flows
- Session 6 Speed
 - Flow. & Flow. speed = 64 trials
- 2 Gaze Ancehorage cond.
 - With GA: 4 sessions
 - Without GA: 4 sessions
- 2 Phases + Compar./Valid.
 - A VR-based (PIVVIT)
 - VR = “Proof of concept” +
 - 2 standard OGS slots

DATA RECORDING AND ANALYSIS
- Balance control: Center-of-Pressure (Wright board, 100 Hz); CoP Trajectory length; Disequilibrium indicators (lost of balance control, falls)
- Gaze behaviour (Eye-Head-body) stability; BlueGain EOG, 100Hz; EOG trajectory (preliminary results)
- (Questions Responses: subjective estimation of the “balance comfort” in everyday life tasks)

ACKNOWLEDGEMENTS. Thanks to all patients, and to the Grenoble University Hospital (CHUGA NET Clinic) – Grant DRCI (Dept. Clinical Research & Innovation) : PIVVIT Project #1045.

RESULTS | VR immersion → Visual perturbation → Balance restoration

INTER SESSIONS effect (representative patient)
- Increase the CoP Trajectory length
- Reduced the postural reaction
- Encouraged the balance perturbation
- Improved the balance interactions

INDIVIDUAL effect (all patients)
- Increase the CoP Trajectory length
- Reduced the visual dependency
- Stimulate the compensatory postural adjustments.

RESULTS | VR immersion → Visual perturbation → Balance restoration

INTER SESSIONS effect (representative patient)
- Increase the CoP Trajectory length
- Reduced the postural reaction
- Encouraged the balance perturbation
- Improved the balance interactions

INDIVIDUAL effect (all patients)
- Increase the CoP Trajectory length
- Reduced the visual dependency
- Stimulate the compensatory postural adjustments.

DISCUSSION – CONCLUSION | Rapid VR-based rehab. benefits

At a Clinical/Rehab. level: Positive effects of the “large visual field” immersion on balance restoration
- METH. Patient-related sessions repetition + difficulty-dependent tuneable scenarios + patient follow-up + methodical practice through short period (two months)
- BENEFITS. Rapid functional restoration of efficient synergetic control between balance and gaze process.
- PSYCHOL. Patients’ motivation and self-confidence

At a Neuro-functional level: “visual-vestibular-motor” adaptation occurs despite the vestibular deficits
- PROCESS. Reweighting of the visual-vestibular sensory inputs reciprocal inhibition restoration
- ADAPTATION. Reduction of the visual dependence by visual-vestibular reverse compensations
- Questions about the neural basis of the “visual-vestibular plasticity”
 - Sensory adaptive threshold/gain of the VOR and/or OKN?
 - Dual sensorimotor balance in plastic restoration: Interaction MT visual area - vestibular nuclei, visual-vestibular integration for motor command tuning/adjustment.

CONCLUSION
- Optimized rehabilitation strategies based on simple virtual visual immersions Vs. standardized rehabilitation protocols (uncontrolled OKS) for unilateral vestibular patient
- Limit: No long-term effects (reported by patients after a six months period) requiring periodic booster sessions
- Our study corroborate the proof of concept of interactive VR-rehabilitation based on a large visual field stimulation device (experimental and clinical validation).