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Abstract—Cloud-RAN is a key 5G-enabler; it consists in
centralizing the baseband processing of base stations by executing
the baseband functions in a centralized, virtualized, and shared
entity known as the Base Band Unit (BBU)-Pool. Cloud-RAN
paves the way for joint management of the resources of multiple
base stations. This paper aims to analyze the potential reduction
in power consumption brought by the joint allocation of the radio
and computing resources. We formulate a Mixed Integer Linear
Programming (MILP) problem, considering the objective of
power consumption minimization. For comparison, we consider
the objective of throughput maximization. When the goal is power
minimization, the joint allocation can minimize the total power
consumption by up to 21.2%, with respect to the case where
radio and computing resources in the BBU pool are allocated
sequentially.

Index Terms—Cloud-RAN, 5G, Joint Resource Allocation,
Power Minimization

I. INTRODUCTION

The demand for mobile data is experiencing unprecedented,
massive growth. The 5" generation of mobile networks (5G)
attempts to tackle this issue using different technologies,
including Cloud Radio Access Network (Cloud-RAN), among
many [1], [2]. Traditionally, a base station is composed of a
Remote Radio Head (RRH) and a Base Band Unit (BBU). The
RRH is responsible for the radio frequency functions, while
the BBU executes the baseband functions. In Cloud-RAN, the
BBU is decoupled from the RRH such that the BBUs are
hosted virtually in a cloud known as the BBU Pool [3]. Cloud-
RAN carries many advantages; it allows for a scalable and
flexible network. In addition, centralization and cloudification
allow for more efficient use of resources and reduce CAPEX
and OPEX [1].

Strategies to reduce power consumption are very important
in 5G [1], [2], since, to satisfy users’ demand, a massive
number of base stations must be deployed. We consider the
joint allocation of radio and computing resources in Cloud-
RAN, and we investigate how this may help minimize the
power consumed for transmission and baseband processing.
In this work, we assume Single-Input-Single-Output (SISO)
transmission. Radio resources allocation consists in assigning
to each user some Resource Blocks (RBs) and a Modulation
and Coding Scheme (MCS), along with the transmission
power. On the other hand, computing resources allocation
consists in assigning users’ radio frames to CPUs in the BBU
pool, such that the processing deadline is met.

The throughput of users depends on their MCSs and on the
number of RBs over which they transmit [4], [5]. The transmis-
sion power assigned to users affect the Signal-to-Noise-Ratio
(SINR) of each user, which in turn controls the maximum
MCS that the user is allowed to adopt. Moreover, the execution
time of the base band processing of a user’s radio frame
increases with the number of RBs and especially with the
MCS [6]. Hence, these two radio parameters affect the required
computing resources and the computing power consumption.
In a system where the radio and the computing resources
allocations are done sequentially, the radio resources allocation
minimizes only the transmission power. Thus, the computing
resources allocation will not control the radio parameters that
affect the computing power consumption. In contrast, a joint
radio and computing resource allocation scheme would be
able to simultaneously control all the radio and computing
parameters to minimize the total transmission and processing
power. It is thus interesting to investigate the benefits of having
joint radio and computing resources allocation. While joint
allocation would have increased computational complexity
with respect to sequential allocation, it would be worthwhile
if it were to exhibit significant power consumption reductions.

In this paper, we formulate the joint allocation of radio
and computing resources in Cloud-RAN as a Mixed Integer
Linear Programming (MILP) problem that jointly allocates the
transmission power, the resource blocks, the MCS indexes, and
the CPU time to process the data of each user. We consider
the objective of minimizing the power consumption, and we
compare it with the objective of throughput maximization. To
quantify the impact of joint allocation, we compare it to a
sequential scheme that performs radio resources allocation (via
MILP) followed by computing resources allocation.

The rest of the paper is organized as follows: Section II
surveys the related work. The MILP problem is formulated
in section IIl. The simulation settings are described in section
IV, and the results of the simulations are discussed in section
V. Finally, our work is concluded in section VI.

II. RELATED WORK
Works in the literature have considered radio or comput-
ing resource allocation, independently [7]-[9]. To optimize
system throughput and energy efficiency, the authors of [7]
have formulated a Mixed Integer Non-Linear Programming
(MINLP) problem, then relaxed it into a lower-complexity
two-step approach for each resource type. The computing



resource allocation occurs first by mapping users to Virtual
Machines (VM). Secondly the radio resource allocation is
done by controlling the beamforming vectors. Nevertheless,
the scope of this allocation is limited as the algorithm did
not consider the existence of multiple RBs or sub-carriers
nor the selection of MCS indexes based on the SINR. The
authors in [8] considered joint Beamforming vector design
and BBU computational resources allocation. They aimed
at minimizing the total system power consumption while
considering the constraints of users’ Quality of Service (QoS),
fronthaul capacity, transmit power per RRH, and per Antenna.
However this paper did not consider the RBs or MCS as-
signments and the effect on the required processing time.
In [9], the authors investigated the joint communication and
computing resource allocation. They considered power and RB
assignment in addition to mapping RRH to BBUs running as
virtual machines. The problem is formulated using queuing
theory to minimize the mean response time. Then an auction-
theory-based algorithm is proposed. Joint management of radio
and computing resources has recently been considered in [5]
in the case where the computing resources are insufficient
to satisfy all users’ demands. The authors propose two co-
ordination schemes between radio and computing resources
that aim at maximizing throughput and users’ satisfaction.
The considered schemes demonstrated a significant ability to
decrease the amount of wasted transmission power. To reduce
the complexity of the Integer Linear Programming (ILP)-based
coordination algorithms, lower complexity Recurrent Neural
Network (RNN)-based algorithms were developed in [10].
They were trained to perform close to the ILP solver and
were shown to significantly reduce the execution time with
respect to the ILP problems. Aiming to maximize the sum-
rate under limited computing resources, the authors in [11]
proposed an algorithm that schedules users who contribute
less to computational outages and permits downgrading MCS
indexes if the computing resources are insufficient. In another
context, [12] formulated a radio allocation MILP problem. It
considers RBs and MCS assignment, in addition to power
allocation. However, the model is quite limited as it takes
into account only one base station but none of the interfer-
ence caused by other base stations. Additionally, the problem
only considers radio allocation without considering computing
resources allocation. Different from these research papers,
we consider joint radio and computing resource allocation.
Our model considers power allocation, MCS assignment,
RBs allocation, CPU assignment, and computing resources
allocation. To the best of our knowledge, the current literature
neither explicitly compares joint vs. non-joint allocation, nor
examines its advantages, limitations, or the influence of the
chosen objective function.

III. PROBLEM FORMULATION
A. Model Input and Parameters

To study the performance of joint radio and computing
resources allocation, we consider the following: a set of Base
Stations (RRHs) B, a set of users U, of each BS b, a set
of Resource Blocks R for each base station, a set of MCS
indexes Z that can be used in the system, and a set of CPU
cores C in the shared BBU pool (multi-core data center). We

focus on the uplink direction in which the BBU pool should
execute the complex and energy consuming decoding function
[5]. We assume that each user has a maximum transmission
power equal to Prl**, and that the CPU power consumption
is equal to P7,, . We define the following parameters: gi’/*“"b
is the channel gain between user u’ € Uy and the base station
be BonRBr e R, yfh is the SINR threshold to use an
MCS ¢ € I. If the SINR is lower than the threshold, then
using MCS 4 will increase the decoding error. o®" is the
channel noise for user u € Uy, R, ; is the throughput of a
transmission when the data are transmitted over s number of
RBs using an MCS index i € Z, and ¢, ;  is the required time
to process these data on CPU core ¢ € C. Each CPU should
process the assigned data before the deadline d. This deadline
is imposed by the Hybrid Automatic Repeat Request (HARQ)
mechanism and is equal to 2ms [5]. Not respecting this
deadline will lead to retransmission of data; thus, wasting the
initial transmission. Additionally, we suppose that users have
different QoS requirements; each user requests a minimum
throughput R,l,’,’gn that has to be satisfied.

We use the model from [6] modeled using Open Air
Interface (OAI) RAN simulator to determine how much time
is needed to process each user’s data. This model provides the
required processing time, ¢, ; . , of a user’s data as a function
of the total number of used RBs, the MCS index, and the CPU
frequency. The formula is given by:

2
. -5 i

foiells) = ey ZO“ (1)
The parameters of this model are the total number of RBs s,
the used MCS index i, and the working frequency of CPU, f..
Based on experimental studies, [6] provides the values of alpha
corresponding to the overall uplink processing: oy = 35.545,
a1 = 1.623, and oy = 0.086.

On the other hand, we use the 3GPP standard [4] to deter-
mine the Transport Block Size (TBS), which is the amount of
bits transmitted by a transport block in 1 ms, as a function
of the number of RBs and the MCS index. Then we get the
throughput by dividing the TBS by the transmission duration.
We note that using the MCS index to calculate the throughput
is more realistic than using Shannon’s capacity formula, as the
latter just gives the upper-bound of the channel’s throughput
and does not distinguish useful bits from redundancy and
physical layer overhead bits, as the TBS does.

B. MILP Problem

We formulate a Mixed Integer Linear Programming Model
(MILP), which minimizes the total power consumption. This
MILP problem should be optimized by assigning RBs and
MCS indexes to users, the power of their signals, and the CPUs
that will process their data. The MILP problem contains the
following variables: xf,f is a binary decision variable equal
to 1 if user u € U uses an MCS index i € I on RB r € R;
otherwise, it is zero. ygjé‘c is a binary decision variable that is
equal to 1 if and only if a user u € U, transmits data using an
MCS index ¢ € I over a total of s resource blocks, and this
user’s data are processed on CPU ¢ € C. The binary decision
variable ﬁf " is equal to 1 if and only if a user u € U uses



MCS i € I on any of its RBs. Finally, p%* is a continuous
variable that indicates the transmission power of user u €
U, on RB r € R. We note that M is the big-M notation
and is used to enforce the conditions explained below. The
formulated MILP optimization problem is:
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The objective function in (2) minimizes the total power
consumption of radio transmission and BBU processing. Equa-
tions (3), (4), (5), and (6) ensure that the decision variables are
binary, while (7) ensures that the power variable is continuous
and non-negative. Equation (8) ensures users belonging to one

base station cannot use the same RB and ensures that no
more than one MCS can be used on this RB. The minimum
throughput requirement of a user is ensured by (9), while the
limit on the total transmission power of a user is imposed by
(10). Equation (11) ensures that the signal power of a user
on a RB is zero if this RB is not used. Equations (12) and
(13) together ensure that a user transmits using the same MCS
index over all its assigned RBs. Knowing that using an MCS
index requires the SINR to be above a threshold, equations
(14) and (15) together make sure that if the SINR is lower
than the threshold of an MCS index, then the user cannot
use this MCS index. This condition is enforced by using an
auxiliary binary decision variable zb . To find the processing
time and throughput for a user, it 1s necessary to know the
total number of used resources blocks by a user [4], [6]; this
is done by (16) and (17). Finally, (18) makes sure that each
CPU can process the data assigned to it without violating the
deadline constraint.

On the other hand, to understand how different objectives
can affect the benefit of joint allocation, we consider a modi-
fied optimization problem that maximizes the total throughput
but with the same constraints as before. The objective function
becomes as follows:
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IV. SIMULATION SETTINGS

A. Simulation Environment

Our study considers an area with a variable number of Base
Stations ranging from 1 to 8. Each base station is separated
from neighboring base stations with a minimal distance. This
distance follows a uniform distribution between 0.75km and
1.5km. Each base station serves two users. The position of
each user follows a Poisson Point Process (PPP) such that
each user is located in a disk of radius 300m and centered at
the base station. Each user demands a throughput that follows
a uniform distribution between 0.25 and 4 Mbps, and the total
demand of the users from the same base station does not
exceed 4 Mbps. Each base station has 24 RBs for transmission,
where the frequency reuse is equal to 1. To find the SINR
threshold of the MCS indexes 'yfh, we used the tables in
[13], which map the SINR threshold to a Channel Quality
Indicator (CQI) with specified modulation order and code rate.
Then we use the MCS table in [4] to map each CQI to its
corresponding MCS index. Hence, we end up with a set of
possible MCS indexes:{0, 2, 4, 6, 8, 11, 13, 15, 18, 20, 22,
24, 26, 28}. The maximum user transmission power respects
the 3GPP specifications in [14]. Based on it, P7}** should
be equal to 23 dBm with tolerance of +/- 2dBm. Hence we
fix PR = 250mW =~ 24dBm. We suppose that the noise
spectral density is 110 dBm/Hz, and the Noise Figure is 8dB.
To model the channel gain, we consider the ABG model in
[15] that models path loss and shadowing at a carrier frequency
equal to 2GHz. Moreover, we consider the effect of Rayleigh
fading such that it follows an exponential distribution with unit
mean. Considering a Cloud-RAN architecture, the baseband
processing of these base stations is hosted in a shared BBU
pool. We consider just one CPU core with power consumption
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Fig. 1. Power Consumption

Pt = 30W and a clock frequency equal to 2.4GHz. We also
assume that when the CPU core executes BBU functions for
users, it consumes the max CPU power Ff,,,.,. In contrast, we
suppose that the power consumption is zero when the CPU is
idle. Our simulation setting focuses on the case where the
sum of users’ throughput demand is smaller than the system
capacity and that the computing resources are sufficient to

process the data of all users.

B. Performance Metrics

To analyze the performance of our model, we consider the
following performance metrics and indicators:

o Transmission Power Consumption; the total transmission
power of all users in the system.

o Computing Power Consumption, the total computing
power consumption of all users in the system.

o Total Power Consumption, the sum of the total transmis-
sion and computing power consumption in the system.

o Throughput; the sum of throughput of all users.

e CPU Idle time; the ratio for which the CPU is idle

In addition, to analyze the behavior of the joint resource
allocation model vs. the non-joint, we monitor the percentage
of utilized RBs in each base station and the selection of the
MCS indexes.

C. Simulation Tools and Procedures

To code and run the simulation, we use MATLAB. The Mat-
lab code calls GUROBI Optimizer to solve the MILP problem.
We acknowledge the fact that solving an MILP problem is an
NP-Hard problem, and it is not possible to use it in a real
setting where allocation decisions have to be made every 1 ms;
however, we recall that our goal is to probe the potential gains
of optimal joint allocation. Finding efficient, implementable,
real-time, and low-complexity joint-allocation algorithms will
be left for future work. In the next section, we plot and
analyze the performance of the joint allocation vs. the non-
joint, considering the respective objectives of minimizing the
total power consumption and maximizing the total throughput.
The performance is measured as function of the number of
RRHs connected and managed by the same BBU pool (i.e.,
number of base stations managed by the same BBU pool).
The non-joint model separates the allocation of radio resources
from the allocation of computing resources to solve the two
problems sequentially. In the case of power minimization, the
radio allocation should minimize the radio transmission power.

Then the computing resources allocation should minimize the
computing power. The simulation is repeated 25 times, and
the 95% confidence intervals are plotted.

V. RESULTS

We plot the graphs of the joint radio and computing re-
sources allocation performance with respect to each of the
following metrics.

A. Transmission and Computing Power Consumption

Figures 1(a), 1(b), and 1(c) show the performance of the
joint allocation problems vs. the non-joint concerning the
transmission power consumption, computing power consump-
tion, and the total power consumption, respectively. Consid-
ering the objective of minimizing total power consumption,
the joint radio and computing resources allocation consumes
more radio transmission power but less computing power than
the non-joint allocation. Hence, the joint algorithm consumes
less total power. When the BBU pool has just one active
base station, the joint algorithm reduces the total power
consumption by 21.2% compared to the non-joint counterpart.
When the number of base stations connected to the BBU pool
increases to 8, the improvement falls to 17.15%. This results
from increasing the number of users and the total demand
in the system; this will be explained later in this section.
On the other hand, adopting maximizing-throughput objective
leads to the exact behavior for joint and non-joint variants.
As long as the computational resources are sufficient, as [5]
shows, joint and non-joint allocation of radio and computing
resources produce the same results when the objective is total
throughput maximization. Therefore, the algorithm will use
all the available radio and computing power to maximize the
throughput. Hence, maximizing-throughput would consume up
to 260% more total power than the joint allocation that aims
to minimize power consumption would do.

B. Throughput

The performance concerning the throughput metric as a
function of the number of base stations (RRHs) in the BBU
pool is plotted in Fig. 2. Since total power minimization must
guarantee the demanded throughput for every user, both the
joint and non-joint variants achieve similar results. The slight
differences result from the different decisions on the MCS
indexes and number of RBs; together, they control the TBS
size, which indicates the throughput.
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C. CPU Idle Time

Fig. 3 shows the percentage of CPU idle time as a function
of the number of RRHs connected to the BBU pool. Using the
computing model described in section III-A, minimizing the
power consumption is consistent with reducing the CPU uti-
lization, or in other words, increasing the CPU idle time. This
explains why power minimization with joint allocation, which
can best minimize the computing power consumption, achieves
higher CPU idle time than the non-joint variant. Again, the
joint and non-joint variants of maximizing-throughput objec-
tives have much lower CPU idle time than power minimization
algorithms. This is interpreted by the fact that maximizing-
throughput algorithms aim at exploiting all the computing
resources as much as possible to maximize the throughput.
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D. MCS and RB Selection

To understand the behavior of the different algorithms,
we observe the decisions of the algorithms on MCS indexes
assignment and on the number of RBs assigned to users. Fig. 4
shows the percentage of utilized RBs in each base station
as a function of the total number of RRHs (Base Stations)
connected to the BBU pool, and Fig. 5 shows the cumulative
distribution probability of selecting an MCS index for each
algorithm. Considering the power minimization objective and
analyzing both figures, the joint algorithm tends to assign
fewer number of RBs but higher MCS indexes to users as
much as possible. Achieving the same throughput could be
done by either using a lower number of RBs and a high MCS
index, if the SINR is good, or using a higher number of RBs
with a lower MCS index. The joint allocation variant of power
minimization would go for increasing the MCS index. This
requires increasing the transmission power, but overall would
decrease the required computing resources, as the computing
model in section ITI-A shows. As a result, the computing power
consumption decreases, and thus the total combined power
consumption decreases. In contrast, the non-joint sequential
allocation firstly solves the radio allocation that minimizes
transmission power independently of the computing resources
allocation. While the results of the radio allocation (i.e., the
MCS index and the number of resource blocks) affect the
computing resources requirements, the computing resources
allocation has to satisfy these requirements, without modifying
any of the radio decisions such as the MCS index or the
number of RBs. In general, this leaves a tighter room to
minimize computing power consumption. It could only be
possible to adjust the CPU frequency and select which CPU
to process the data in case of non-homogeneous CPU power
consumption. In short, the non-joint sequential algorithm min-
imizes the transmission power and tends to spread the data
over a higher number of RBs but with a lower MCS index.
On the other hand, maximizing-throughput algorithm tends to
use all the RBs in each base station as well as the maximum
transmission power for every user. This justifies the very high
RB utilization and the usage of high MCS indexes, as Fig. 4
and Fig. 5 show. However, maximizing-throughput algorithm
should make sure its selections do not increase the interference
worsening performance.

Fig. 6 further supports this previous explanation. The heat
maps show the intensity of assigning the pair composed
of 1) the number of resources blocks, 2) MCS indexes to
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users. While the Joint-Power Minimization algorithm intensely
allocates a lower number of RBs to users and a very high MCS
index, the Non-Joint-Power Minimization favors assigning a
higher number of RBs but lower MCS indexes. On the other
hand, maximizing-throughput algorithm assigns more RBs and
high MCS indexes to users.

As a final note, we have reduced the size of the problem
and made the problem tractable by using a small number
of resource blocks, a small number of users, and a small
number of base stations. The reason is that an MILP problem
is known to be NP-hard. However, we can generalize our
conclusions to a higher-dimensional problem. Moreover, the
results of maximizing-throughput objective help us understand
the performance, in case the minimum throughput requirement
for users is high to the degree that all the radio resources
are required to satisfy these demands. Suppose that the
QoS requirements (i.e., minimum throughput) of users are
increased, so that the throughput maximization objective can
satisfy the needs without being able to improve the assigned
data rates. This means, more or less, all the radio resources
(i.e., RBs and transmission power) are needed to satisfy the
minimum throughput requirement (i.e. (9)). On the other
hand, since power-minimization objective should satisfy the
minimum requirement constraint, it will give the same results
as throughput maximization objective; all the radio resources
are needed and it is not possible to use less to save power. In
such a case, the joint and non-joint allocation will perform the
same, even if the goal is power-minimization, as long as the
bottleneck happens at the level of the radio resources. In case
the computing resources are scarce and the radio resources are
sufficient, (9) must be relaxed. In such case, the joint allocation
should perform better than the non-joint as [5] shows.

VI. CONCLUSION

In this paper, we have studied the performance of joint radio
and computing resources allocation in Cloud RAN. We have
formulated a Mixed Integer Linear Programming Model and
compared the performance of the joint allocation with respect
to a non-joint sequential model, considering the objectives of
minimizing power consumption and throughput, respectively.
The results demonstrate that when the computing resources
are sufficient, the joint allocation is beneficial and achieves
performance gains by reducing the total power consumption
when the objective is power minimization. Given that we used
a high-complexity problem solver to analyze the benefits of
joint allocation and that it is impractical to use such a solver

in a real implementation, we aim to improve our study in the
future by proposing low-complexity sub-optimal algorithms
that can achieve the benefits of the joint allocation, while
outputting results in real-time.
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