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Abstract

We study a grid-free particle method based on following the evolution of the characteris-
tics of the Vlasov-Poisson system, and we show that it converges for smooth enough initial
data. This method is built as a combination of well-studied building blocks – mainly time
integration and integral quadratures –, hence allows to obtain arbitrarily high orders. By
making use of the Non-Uniform Fast Fourier Transform (NUFFT), the overall computational
complexity is O(P +Kd logKd), where P is the total number of particles and where we only
keep the Fourier modes k ∈ (Zd)∗ such that k2

1 + · · ·+ k2
d ≤ K2. Some numerical results are

given for the Vlasov-Poisson system in the one-dimensional case.

Introduction

Meaningful physical simulations involving the Vlasov equations usually need up to six dimensions
for the phase-space: three in position and three in velocity. For this reason, the development of
efficient numerical scheme has attracted much interest, both in the mathematical and physics
communities. After nearly forty years, two main “families” have emerged: Eulerian and Particle-
In-Cell methods.

Eulerian schemes rely on a grid-discretization of the phase space. Famous examples are:
Finite Differences, Finite Elements, (Backward/Forward) Semi-Lagrangian, Finite Volumes. . .
In particular, the Backward Semi-Lagrangian methods have proved their efficiency for high-
dimensional problems because it is possible – through some splitting – to only solve a sequence
of one-dimensional problems. However, they suffer from a CFL-like condition as it is shown in
[BM08] (an improved version of their estimate is given in [CDM13]), where the timestep has
to be sufficiently small compared to some power of the space discretization. The paper [Fil01]
proposes a finite volume scheme, and shows its convergence under a CFL condition. On the
other hand, the Particle-In-Cell methods are based on a representation of the initial condition
by a sum of Dirac masses – the so-called “particles” or “meta-particles” – which move freely in
the phase space. After a time step, the particle are deposited on a grid in order to compute an
approximation to the electrical energy. Because it relies on Monte-Carlo estimation one usually
needs many particles in order to obtain meaningful results.

Many variants of both methods have been proposed in the literature, and in this work we
will prove the convergence of a scheme proposed in [BOY11], where the authors introduce a
grid-free Weighted Particle method to study the magnetization of the Hamiltonian Mean-Field
model. Unfortunately, they only give a brief description of the algorithm with no convergence
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proof, even though the scheme is promising. Our goal is to detail thoroughly the method, and to
prove its convergence. The approach presented is different from the Particle-In-Fourier method
(see [MMBP19]), mainly in the way the charge density is computed, and how the approximate
solution is represented. The main advantages of our approach is that it allows to obtain high-
order estimates by combining well-studied high-order methods, such as integral quadratures and
time integration schemes. The convergence estimate shows that with smooth enough initial data,
the Fourier truncation error becomes neglictible, so that we don’t need many Fourier modes in
practice.

A by-product of our approach is that all the error terms are decoupled, yielding a relatively
easy proof of convergence. We name our method “Weighted Particle method”.

We start Section 1 by recalling the Vlasov-Poisson equation and an existence result in Sobolev
regularity from [CCFM17]. Then we recall the main ideas of the Particle-In-Cell method and its
variants, and review different ways of computing the electric field in the Vlasov-Poisson system.
We end this section with a presentation of the Fourier approach to solve the Poisson equation,
which will be at the core of the method presented and will allow the definition of a truncated
Fourier kernel to the Vlasov-Poisson equation. This truncated Fourier kernel can be seen as an
approximation to the exact Fourier kernel which involves an infinity of modes. In Section 2 we
explain how the Weighted Particle method we propose is obtained naturally from the truncated
Fourier kernel. The building blocks of this scheme are integral quadratures and time integration
schemes, allowing a high-order method. Starting from the quadratures, we deduce the particle
representation of the approximate solution in a natural way. Moreover, the method presented
is totally grid-free since the particles don’t require to be deposited onto some grid as it is done,
for example, in the Particle-In-Cell method. Section 3 is dedicated to the Weighted Particle
method. We start by discussing how this method differs from others in the literature, and then
present our main result: the convergence of the approximate characteristics obtained through
the Weighted Particle method towards the true characteristics of the Vlasov-Poisson system.
One-dimensional numerical results are presented in Section 4 to illustrate the accuracy one can
obtain with relatively few particles. Finally, Section 5 is dedicated to proving Theorem 3.1.
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5 Proof of Theorem 3.1 15

1 Preliminaries

Let 2d be the dimensions of the phase-space variable z = (x, v). Usually, d = 1, 2, or 3. We
consider periodic boundary conditions for the space variable x, i.e. x ∈ TdL where we denote
TdL := R/(L1Z) × · · · × R/(LdZ) for Li > 0, i = 1, . . . , d. We let v ∈ Rd. The Vlasov-Poisson
system writes

Vlasov-Poisson

∣∣∣∣∣∣∣
∂tf(t, x, v) + v · ∇xf(t, x, v) + Λ∇xΦ[f ](t, x) · ∇vf(t, x, v) = 0,

Φ[f ](t, x) = ∆−1ρ(t, x),

f(0, x, v) = f0(x, v),

(VP)

(1.1a)

where t ≥ 0 and

ρ(t, x) :=

∫
Rd

(
f(t, x, v)− 1

|TdL|

∫
TdL
f(t, y, v)dy

)
dv.

The constant Λ ∈ {±1} distinguishes the attractive case Λ = −1, which models the dynamics of
galaxies, from the repulsive one Λ = +1, which models the dynamics of plasmas. In this work
we are only interested in the repulsive case.

1.1 Existence result

For a given multi-index p = (p1, . . . , pd) ∈ Nd, we denote by ∂px the multi-derivative ∂p1x1 . . . ∂
pd
xd .

Similarly, we set vm = vm1
1 . . . vmdd for v = (v1, . . . , vd) ∈ Rd and m = (m1, . . . ,md) ∈ Nd. We

let | · | the usual euclidian norm on Rd. As the functional framework, we will consider the spaces
Hrν equipped with the norms

||f ||2Hrν =
∑

(m,p,q)∈(Nd)3

|p|+|q|≤r
|m|≤ν

∫
Rd

∫
Td
|vm∂px∂qvf(x, v)|2 dxdv. (1.2)

We have the following existence result from [CCFM17]:
Theorem 1.1

Let ν > d/2, r ≥ 3ν. There exist constants Cr,ν and Lr,ν such that for all given B > 0 and
f0 ∈ Hr+2ν+1

ν such that ||f0||Hr+2ν+1
ν

≤ B, then for all α, β ∈ [0, 1], there exists a solution
f(t, x, v) of the Vlasov-Poisson equation

∂tf + αv · ∇xf + β∇xΦ[f ] · ∇vf = 0,

with initial value f(0, x, v) = f0(x, v) on the interval [0, T ] with

T :=
Cr,ν

1 +B
,

and we have the estimate

∀t ∈ [0, T ], ||f(t)||Hr+2ν+1
ν

≤ min
(

2B, eLr,ν(1+B)t
)
||f0||Hr+2ν+1

ν
.

Moreover, for two initial conditions f0 and g0 satisfying the previous hypothesis, we have

∀t ∈ [0, T ], ||f(t)− g(t)||Hrν ≤ e
Lr,ν(1+B)t ||f0 − g0||Hrν .

This result holds in the functional space Hr+2ν+1
ν which is a subspace of the usual Sobolev

space Hr+2ν+1(TdL × Rd) = W r+2ν+1, 2(TdL × Rd).
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1.2 Particle methods

Before describing the ideas leading to the Particle-In-Cell method and its variants, we first have
to discuss the characteristics of the Vlasov-Poisson equation. They are described for instance
in [Gla96, Sect. 4.2], but for the sake of clarity we recall below their main properties. The
characteristics of the Vlasov-Poisson system (VP) are the solutions to

dX(t; s, x, v)

dt
= V (t; s, x, v), X(s; s, x, v) = x,

dV (t; s, x, v)

dt
= E(t,X(t; s, x, v)), V (s; s, x, v) = v.

(1.3)

The notation X(t; s, x, v) (resp. V (t; s, x, v)) stands for the position (resp. velocity) component
of the flow, starting from (x, v) at time s and evaluated at time t. Since

d

dt
(f(t,X(t; s, x, v), V (t; s, x, v))) = ∂tf + V (t; s, x, v) · ∇xf + E(t,X(t; s, x, v)) · ∇vf = 0,

the solution f to the Vlasov-Poisson equation is constant along the characteristics, so that

f(t, x, v) = f(0, X(0; t, x, v), V (0; t, x, v)) = f0(X(0; t, x, v), V (0; t, x, v)). (1.4)

The last useful property about the Vlasov-Poisson characteristics is that they are measure-
preserving. In other words, the mapping{

y = X(s; t, x, v)

w = V (s; t, x, v)
(1.5)

has unit Jacobian. Furthermore, we have{
x = X(t; s, y, w)

v = V (t; s, y, w)
(1.6)

and this mapping also has unit Jacobian.

We can now turn to the description of the Particle-In-Cell approach. It consists in follow-
ing the evolution of some point particles. More precisely, given an initial distribution f0, we
approximate it by a sum of P Dirac masses, P ∈ N∗:

f0(x, v) ≈
P∑
p=1

βpδ(x− xp)δ(v − vp) =: f̃0(x, v), (1.7)

where (xp, vp) are the initial coordinates of the particle p in the phase-space, p = 1, . . . , P . Here
δ(·) denotes the usual Dirac mass, and the number P is the total number of particles for which
we want to follow the evolution. The quantity βp is the weight of the particle numbered p, and
the weights are usually chosen uniform in Particle-In-Cell methods.

In (1.7), each Dirac mass represents a collection of particles who are defined only by a point
in the phase-space. Moreover we implicitely assume that the distribution of particles within a
collection remains “close” for all times to the Dirac mass representing said collection. These Dirac
masses are usually called meta-particles, because each one of them is treated numerically as one
particle but may represent physically many particles. Some schemes, such as those presented in
[Hew03, CPSF+14, CP15, FGG+17], allow the meta-particles to be deformed, and even to split
or recombine. We will not study such possibilities in this work.
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From (1.4), the approximate solution to the Vlasov-Poisson system with initial condition f̃0

can be reconstructed at time t if we know the characteristics at time t. The approximate solution
at time t writes

f(t, x, v) ≈ f̃0(X(0; t, x, v), V (0; t, x, v)) =

P∑
p=1

βpδ(X(0; t, x, v)− xp)δ(V (0; t, x, v)− vp).

Each term in the sum is non zero if and only if{
X(0; t, x, v) = xp

V (0; t, x, v) = vp

From (1.5) and (1.6), this is equivalent to{
x = X(t; 0, xp, vp)

v = V (t; 0, xp, vp)

Therefore, the approximate solution to the Vlasov-Poisson system with initial condition f̃0 can
be written as

f(t, x, v) ≈
P∑
p=1

βpδ(x−X(t; 0, xp, vp))δ(v − V (t; 0, xp, vp)).

Hence, it is sufficient to follow the characteristics forward in time in order to be able to
reconstruct the approximate solution for all times. The main problem with this approach is
that, after a time t, the particles are completely disorganized in the phase-space, and hence
one needs a “pre-processing” step before being able to compute the electric field E(t, ·) which is
obtained as E(t, ·) = ∇xΦ[f ](t, ·), where Φ[f ](t, ·) is the solution to (1.1a).

1.3 Electric field

The simplest and most direct way to solve the Poisson equation (1.1a) is to use finite differences.
However this would require solving a linear system. This is for instance the approach chosen in
[HE88, BL91].

One issue in the particle method is that we do not know ρ at equally spaced points. We
can however project the particles onto such a grid, and the way of doing so is not unique; the
simplest one is the Nearest-Grid-Point (NGP), but more elaborate ideas can be found for instance
in [BL91, Sect. 2.6]. We can cite the Cloud-In-Cell (CIC) method introduced in [BF68], where
the main idea is to introduce “shape functions” to replace the Dirac masses, in which case we
talk about “finite-size particles”.

Several authors have tried to find the best way of depositing the particles onto the grid, giving
rise to many variants of the original PIC method, but they all suffer from the same problem: the
deposition step is a very rough approximation when only a few particles are used.

Reviews of particle methods and their deposition steps are given in [Ver05] and [Oku72]. In
[Lan70], the effect of spatial grid and its influence on plasma behavior are studied.

We can also cite the FLIP scheme [BKR88] which is in essence a PIC method where the
authors try to only update the particle properties instead of completely resetting them from the
grid estimations at each time step.

Another issue with the PIC methods that has been pointed out in [Bra16] is that they cannot
preserve both energy and momentum, which are conserved at the continuous level.
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1.4 Kernel-based computation

In order to solve the Poisson equation (1.1a), one may want to use a Green kernel G to compute
E exactly:

E(t, x) =

∫
Td
K(x, y) ·

(
ρ(t, y)− 1

|TdL|

∫
Td
ρ(t, x̃)dx̃

)
dy, (1.8)

where
K(x, y) = −∇xG(x, y), −∆xG(x, y) = δ0(x− y).

This approach can be found in [WO96, RS11, Bes04], and because it introduces a discontinuity
in the electric field along the line {x = y}, there have been some attempts at smoothing it, see
e.g. [Wol00].

However the way the electric field is smoothed depends on the authors, and it may seem
arbitrary to choose one way or another. In the case of initial particles nonuniformly spaced, the
authors of [WO96] write that a mollified version of the kernel G, depending on some mollification
parameter, may be preferable to the unmollified version.

This Green kernel-based approach has also been used for numerical computations of fluid
dynamics (e.g. Euler equations) in the so-called Vortex and Vortex Blob methods [AG85, Per85,
ADL20]. These methods face the same issues, but the convergence of the former methods seems
to be have treated more thoroughly (see [Hal79, BM82, Bea86, Cot87, GHL90, CGH91]). In
particular, the authors of these papers have also faced the question of whether or not to mollify
the Green kernel, and the overwhelming opinion is that the kernel has to be mollified in order to
obtain realistic physical results. Because of the similarities between particle and vortex methods,
we can assume this conclusion also holds for particle methods. We can also cite [HRCW13], where
the authors obtain a smooth, high-order kernel approximating the Green kernel G.

The mollification of the Green kernel involved in plasma or fluid dynamic simulations depends
on some mollification parameter which is chosen arbitrarily in the referenced papers. Hence it
may not be satisfactory to rely on mollifying the Green kernel, even though its regularized version
yields more physical results.

1.5 Fourier approach

We now present another way of approximating the Green kernel by some smooth function, and
we hope that our method will prove to be more natural than manually mollifying the kernel.

Let L := (L1, · · · , Ld), and for z ∈ Rd define

z

L
:=

(
z1

L1
, . . . ,

zd
Ld

)
We use usual notations: |z| for the `2 norm of a vector z ∈ Rd, z · w for the `2 inner-product of
two vectors z, w ∈ Rd, and |[0, L1]×[0, Ld]| =

∏d
i=1 Li. Moreover, we recall that for a multi-index

p ∈ Nd, we let
zp = (z1, · · · , zd)(p1,··· ,pd) = zp11 · · · z

pd
d .

The convention we use for the Fourier transform ĝ of a periodic function g ∈ L2(TdL) is the
following:

ĝ(k) =
1∣∣TdL∣∣
∫
TdL
g(x)e−2iπk· x

Ldx, k ∈ Zd.

The solution Φ[f ] of the Poisson equation (1.1a) can be obtained via straightforward computa-
tions:

Φ[f ](t, x) =
−1∣∣TdL∣∣

∑
k∈(Zd)∗

1

4π2
∣∣ k
L

∣∣2
∫
TdL×Rd

e2iπk·x−y
L f(t, y, v)dydv.
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Moreover, since Φ[f ] is a real quantity, the imaginary part of the right-hand side is equal to zero,
so that

Φ[f ](t, x) =
−1∣∣TdL∣∣

∑
k∈(Zd)∗

1

4π2
∣∣ k
L

∣∣2 [cos
(

2πk · x
L

)
Ck(t) + sin

(
2πk · x

L

)
Sk(t)

]
,

where
Ck(t) :=

∫
TdL×Rd

cos
(

2πk · y
L

)
f(t, y, v)dydv,

Sk(t) :=

∫
TdL×Rd

sin
(

2πk · y
L

)
f(t, y, v)dydv.

We easily obtain the electrical field E:

E(t, x) = ∇xΦ[f ](t, x) (1.9)

=
1∣∣TdL∣∣

∑
k∈(Zd)∗

1

2π
∣∣ k
L

∣∣2 kL [sin(2πk · x
L

)
Ck(t)− cos

(
2πk · x

L

)
Sk(t)

]
The formula here, with a series over k ∈ (Zd)∗, corresponds to the Poisson framework.

However, any truncation in the sum over k can be done in order to approximate E. It is
intuitive to consider only a finite number of Fourier modes, and we choose to keep only the
modes

{
k ∈ (Zd)∗ : |k| ≤ K

}
where K ∈ N∗ is some parameter (think of it as user-input).

The approximation to the field E for a given K then writes:

EK(t, x) = ∇xΦK [fK ](t, x) (1.10)

=
1∣∣TdL∣∣

∑
k∈(Zd)∗

|k|≤K

1

2π
∣∣ k
L

∣∣2 kL [sin(2πk · x
L

)
CKk (t)− cos

(
2πk · x

L

)
SKk (t)

]
, (1.11)

where
CKk (t) =

∫
Td×Rd

cos
(

2πk · y
L

)
fK(t, y, v)dydv

SKk (t) =

∫
Td×Rd

sin
(

2πk · y
L

)
fK(t, y, v)dydv

and where the function fK is solution to the Vlasov-Poisson equation with a truncated kernel:∣∣∣∣∣ ∂tf
K(t, x, v) + v · ∇xfK(t, x, v) + EK(t, x) · ∇vfK(t, x, v) = 0

fK(0, x, v) = f0(x, v)

(VPK)

Similarly to Section 1.2, we can define for a given K ∈ N∗ the characteristics of (VPK) in
the following way:

dXK(t; s, x, v)

dt
= V K(t; s, x, v), XK(s; s, x, v) = x

dV K(t; s, x, v)

dt
= EK(t,XK(t; s, x, v)), V K(s; s, x, v) = v

(1.13)

These characteristics exhibit the same properties as those given in Section 1.2, in particular the
measure-preserving property. Thus, for all k ∈ (Zd)∗ such that |k| ≤ K, we have

CKk (t) =

∫
Td×Rd

cos

(
2πk · X

K(t; 0, y, v)

L

)
f0(y, v)dydv,

SKk (t) =

∫
Td×Rd

sin

(
2πk · X

K(t; 0, y, v)

L

)
f0(y, v)dydv.

(1.14)
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Remark 1.1

Our electric field EK is presented here as an approximation to the exact E, however one
could also understand (VPK) as an intermediate system “between” Vlasov-HMF (in which
case K = 1) and Vlasov-Poisson (in which case K →∞).

2 Building blocks of the Weighted Particle method

The difficulty in the computations of (1.14) resides in the fact that we cannot know in practice
the characteristics XK(t; 0, y, v) and V K(t; 0, y, v) for all starting points (y, v) ∈ TdL×Rd. Hence,
it is natural to look at quadrature approximations, which would only involve the characteristics
for a finite number of starting points.

2.1 Quadratures

Denote by z = (x1, · · · , xd, v1, · · · , vd) ∈ R2d a variable of the phase-space, and suppose along
the dimension i of the phase space we have a quadrature rule of order qi over a closed interval
Ii. The quadrature is defined by some nodes

{
zji

}
j
, zji ∈ Ii, and nonnegative weights

{
wji

}
j
.

We suppose the nodes are equispaced with step ∆zi, i.e. z
ji
i = z0

i + ji∆zi for some ∆zi > 0 and
z0
i ∈ Ii. Under these conditions, the variable ji belongs to some finite set Ji := {0, 1, · · · , Ni},
where Ni ∈ N∗ and Ni ≤

⌊
|Ii|
∆zi

⌋
.

The error of the quadrature along dimension i is characterized as follows: there exists a
constant C > 0 such that for all g ∈ Cqi+1(Ii) we have∣∣∣∣∣∣

∫
Ii

g(ζi)dζi −
∑
ji∈Ji

wjii g(zjii )

∣∣∣∣∣∣ ≤ C
∣∣∣∣∣∣∂qi+1

ζi
g(ζi)

∣∣∣∣∣∣
L∞(Ii)

.

Examples of quadratures satisfying these conditions are the rectangle rule and Newton-Cotes
formulae of low order (high orders may involve negative weights).

Remark 2.1
We consider uniform quadratures nodes with nonnegative weights for simplicity, in order to
obtain a convergence result. However it is also possible to consider in practice non-uniform
quadratures (e.g. Gauss-Legendre or Gauss-Hermite quadratures) or negative weights (e.g.
high-order Newton-Cotes formulae).

Our notations for the one-dimensional case have been set so that a generalization to the
multi-dimensional case is straightforward. Let j ∈ J := J1 × · · · × J2d the label of the node
zj = (zj11 , . . . , z

j2d
2d ) in the multi-dimensional quadrature over I1 × · · · × I2d. The weight of the

node zj is wj = wj11 . . . wj2d2d . The multi-dimensional quadrature over I1 × · · · × I2d is simply a
cartesian product of one-dimensional quadratures over I1, . . . , I2d.

In order to understand how (1.14) is approximated using this multi-dimensional integral,
suppose for now that the initial condition f0 has a compact support in velocity: this is only for
the sake of understanding, and we will not use this hypothesis later. Under this assumption, let
Iv = Id×· · ·× I2d a cartesian product of finite intervals Id, . . . , I2d, such that supp f0 ⊂ TdL× Iv.
Then, the integrals of (1.14) are integrals over TdL× Iv and we are able to apply quadrature rules
as described above to each dimension of the phase-space. We obtain, for all k ∈ (Zd)∗ such that

8 / 39



|k| ≤ K,

CK,hk (t) =
∑

j=(j1,...,j2d)∈J
cos

(
2πk · X

K(t; 0, zj)

L

)
f0(zj)wj ,

SK,hk (t) =
∑

j=(j1,...,j2d)∈J
sin

(
2πk · X

K(t; 0, zj)

L

)
f0(zj)wj .

(2.1)

We give later in Proposition 5.5 an estimate on the approximation errors
∣∣∣CK,hk (t)− CKk (t)

∣∣∣
and

∣∣∣SK,hk (t)− SKk (t)
∣∣∣, depending on the order qi of the quadratures and the quadrature steps

∆zi.
From the coefficients CK,hk and SK,hk , one gets the following approximation to the electric

field EK :

EK,h(t, x) :=
1∣∣TdL∣∣

∑
k∈(Zd)∗

|k|≤K

1

2π
∣∣ k
L

∣∣2 kL [sin(2πk · x
L

)
CK,hk (t)− cos

(
2πk · x

L

)
SK,hk (t)

]
(2.2)

In our notations, the exponent h denotes a phase-space discretization. With this electric field
EK,h, one can define an approximation to the equation (VPK), which reads∣∣∣∣∣ ∂tf

K,h(t, x, v) + v · ∇xfK,h(t, x, v) + EK,h(t, x) · ∇vfK,h(t, x, v) = 0,

fK,h(0, x, v) = f0(x, v).

(VPK,h)

Bearing in mind that we are trying to obtain a particle method, the sums in (2.1) suggest
to have a particle corresponding to each j. We then have P = |J | = |J1| × · · · × |J2d| particles
in total. For each p = 1, . . . , P , we can find a unique index j ∈ J such that (xp, vp) := zj . The
name “Weighted Particle method” stems from the fact that we can understand f0(zj)wj in (2.1)
as the weight βp of the particle numbered j (or equivalently, the particle labelled p). Finally, we
can define the characteristics of equation (VPK,h) as:

dXK
p (t)

dt
= V K

p (t), XK
p (0) = xp

dV K
p (t)

dt
= EK,h(t,XK

p (t)), V K
p (0) = vp

p = 1, . . . , P. (2.4)

The notations for these characteristics are deliberately distinct from those defined in (1.13) in
order to distinguish them easily.

2.2 Time integration

We now have only a finite number of particles to follow, and their time evolution is defined by
(2.4) which is an Ordinary Differential Equation (ODE). Therefore, integrating the ODE over
[0, t] gives the characteristics at time t. The problem of integrating numerically an ODE has
been thoroughly studied and many numerical schemes exist.

Let Nt ∈ N, we consider a uniform time-discretization tn = n∆t, 0 ≤ n ≤ Nt, of stepsize
∆t > 0. We let T := Nt∆t. The ODE (2.4) is written as a first-order ODE, but it can be easily
rewritten as a second-order ODE. Therefore, in order to integrate numerically (2.4), one can
choose a time integration scheme to solve either first-order or second-order ODEs. We suppose
the time integration scheme is globally of order γ. As an example, we could take the explicit Euler
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Algorithm 1 Weighted Particle Method
Require:

• f0: initial distribution

• The compact intervals Id+1, . . . , I2d.

• time integration scheme (specifying the timestep ∆t and the number of timesteps Nt)

• Quadrature rule for each dimension (specifying, for each dimension i = 1, . . . , 2d, the
number of nodes Ni + 1, their locations {zji }j=0,...,Ni , and their weights {wji }j=0,...,Ni)

• K: the truncation parameter
P = (N1 + 1)× · · · × (N2d + 1). (Total number of particles)
x[p], v[p], β[p]← (xp, vp, βp), p = 1, . . . , P. (Initial positions, velocities, and weights)
for n = 0, . . . , Nt do
tn = n∆t
for all stages of the time integration over a timestep do

Use NUFFT to compute approximate Fourier coefficients CK,hk , SK,hk for |k| ≤ K
Update x, v with (2.4) by using (2.2).
if Last stage of timestep then
Compute Observables (e.g. electrical energy, momentum, total energy).

end if
end for

end for

method which is of order 1, or Runge-Kutta methods whose order depend on the coefficents. It
would also be possible to use splitting methods in order to integrate (2.4).

Note that (2.4) exhibits a Hamiltonian structure since EK,h = ∇xΦK,h[fK,h] where fK,h is
the solution to (VPK,h) and where

ΦK,h[fK,h](t, x) :=
−1∣∣TdL∣∣

∑
k∈(Zd)∗

|k|≤K

1

4π2
∣∣ k
L

∣∣2 [cos
(

2πk · x
L

)
CK,hk (t) + sin

(
2πk · x

L

)
SK,hk (t)

]
.

Therefore, we may benefit from using a symplectic time integrator. Such time integration schemes
have also been studied thoroughly, we can cite for instance [Qin96, HW75, FQ10].

For the numerical results that we will present in Section 4, we have chosen a symplectic,
3-stage, explicit, Runge-Kutta-Nyström scheme of order 4. Its Butcher tableau is given in
[FQ10, p. 327]. For higher-order symplectic integrators, we refer to [Yos90] or more recently
to [CCFM17].

Once we have applied our favorite time integration scheme to the particle numbered p ∈
{1, . . . , P}, we obtain an approximation to the solution (XK

p (tn), V K
p (tn))p=1,...,P of (2.4) . We

will denote this approximation by
XK,n
p , V K,n

p .

These are the approximate characteristics that we will compute in practice. Finally, our method
can be summed up via Algorithm 1.

3 Weighted Particle method

The Weighted Particle method simply consists in applying the ideas discussed above in Section 2.
That is, for a given k, we have to compute the approximate coefficients CK,hk and SK,hk via
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quadratures as written in (2.1). This has a complexity O(P ) where P is the total number of
particles. Then we have to do this for all k ∈ (Zd)∗ such that |k| ≤ K, in order to compute the
approximate electric field EK,h as defined by (2.2). This amounts to computing O(Kd) times
the coefficients CK,hk , SK,h. Therefore, the overall complexity for one computation of the electric
field is O(PKd). Then, we can compute the approximate characteristics via a time integration
scheme. We recall that a naive computation of the electric field via a quadrature approximation of
(1.8) would require O(P 2) operations. Hence, the Weighted Particle method is an improvement
for K . P 1/d.

Moreover, the complexity of orderO(PKd) may not be satisfying with many dimensions, even
with K small. To reduce this, we can use the Non-Uniform Fast Fourier Transform (NUFFT).
Thanks to this, the computational cost goes from O(PKd) to O(P+Kd logKd), but the NUFFT
introduces an additional approximation error.

The basic idea of this scheme has already been given in [BOY11]. However the algorithm
proposed in the referenced paper, named “Weighted Particle code”, imposes a regular lattice,
does not consider Fourier modes other than k = ±1, imposes a normalization condition on
the particle weights, and is only used to study the magnetization of the N -body simulation in
the Hamiltonian Mean-Field framework. Finally, no proof of convergence of the algorithm is
given, and the time integration scheme is not discussed. We do not have such restrictions here.
Our proposed algorithm thus appears to be an extension of the “Weighted Particle code” from
[BOY11], and it is guaranteed to converge by Theorem 3.1.

It can also be seen as an improvement of the grid-free method presented in [WO96]: in that
work the authors use a smoothed Green kernel, and the rectangle rule to approximate integrals.
We allow other types of quadratures here.

Finally, it can be seen as an application to the Vlasov-Poisson system of the method presented
in [DM89], where the authors use the Weighted Particle method to approximate the solution to
convection-diffusion equations. Our method could also be understood as a Vortex method with
a Fourier regularization of the Green kernel.

We can find such approach to the Vlasov equations via the Fourier kernel mentioned in papers
related to the Vlasov-HMF models – such as [dB10, AR95] – but no link to the general Poisson
framework is discussed. A similar idea has been proposed in [PR21] to approximate the collision
operator of the Boltzmann equation, called the Fourier-Galerkin spectral method.

The approach presented here is closely related to the Particle-In-Fourier method (PIF), see
[MMBP19]. In the PIF method the charge density ρ is approximated as a sum of shape functions,
which is similar to what is done in the Cloud-In-Cell method. The authors proposed Gaussian
shapes as a natural choice, but one could argue that this is pretty arbitrary. Our Weighted
Particle method does not require shape functions, and can compute ρ exactly up to the quadra-
ture error. The PIF method also makes use of the Non-Uniform Fast Fourier Transform, so
our method is not computationally worse than PIC or PIF. Finally, some ideas leading to the
Weighted Particle method are very different from the PIC or PIF approach. In particular we
do not seek an approximate solution as a sum of Dirac masses or shape functions, which is a
simplifying assumption in PIC and PIF methods: in WPM this representation of the solution
is simply a consequence of the quadrature rules. In our numerical examples, we use the library
FINUFFT.jl, described in [BMaK19, Bar20].

To be coherent with the paper [BOY11] which first proposed the basic ideas presented here,
we name our method “Weighted Particle method” (abbreviated WPM).
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3.1 Convergence of the Weighted Particle method

The following result gives an estimate on how the numerical approximations of the characteristics
of (VPK) – with our notations, XK,n

p and V K,n
p – approach the true characteristics of the Vlasov-

Poisson equation (VP) – with our notations, X(tn; 0, xp, vp) and V (tn; 0, xp, vp).

Theorem 3.1 (Convergence of the Weighted Particle method)

Let j ∈ N such that j ≥ 1 + maxi qi, and ν, r, α ∈ N such that ν + j > d/2, r ≥
max (3(ν + j), (j − 1)(d/2 + 1)), α > 1 + 2(r + d). Let K ∈ N, and assume f0 ∈ Hr+αν+j .

Then there exists a constant C > 0 such that the following holds: for δ ≥ 0, define finite
intervals Id+1 := [a1, b1], . . . , I2d = [ad, bd] and Iv := Id+1 × · · · × I2d such that

||f0||H0
ν(TdL×(Rd\Iv)) ≤ δ.

Then for all K ∈ N∗, and n = 1, . . . , Nt

max
p=1,...,P

(∣∣XK,n
p −X(tn; 0, xp, vp)

∣∣+
∣∣V K,n
p − V (tn; 0, xp, vp)

∣∣)
≤ C

(
Kd

[
δ +Kγ+1∆tγ +

2d∑
i=1

Kqi∆zqii

]
+

1

(1 +K)
α+1
2
−d

)

where C is independant of n,∆t,∆zi,K.

The proof of this result relies on the following inequality:

|XK,n
p −XK(tn; 0, xp, vp)|+ |V K,n

p − V K(tn; 0, xp, vp)|
≤ |XK,n

p −XK
p (tn)|+ |V K,n

p − V K
p (tn)|

+ |XK
p (tn)−XK(tn; 0, xp, vp)|+ |V K

p (tn)− V K(tn; 0, xp, vp)|
+ |XK(tn; t0, xp, vp)−X(tn; t0, xp, vp)|+ |V K(tn; 0, xp, vp)− V (tn; 0, xp, vp)|

(3.1)

We recall that (XK
p (t), V K

p (t))p are the solutions to (2.4), (XK(t; 0, xp, vp), V
K(t; 0, xp, vp))

are the solutions to (1.13), and (X(t; 0, xp, vp), V (t; 0, xp, vp)) are the solutions to (1.3).
Each line corresponds to a different type of approximation: the first one is the time discretiza-

tion error, the second one is the phase-space discretization error (i.e. the quadrature error), and
the third one is the kernel truncature error.

Before proving our main result, which is achieved through several estimates and lengthy
computations, we illustrate numerically the efficiency of our method.

4 Numerical Simulations

In this section we will give illustrations on how the Weighted Particle method performs on
two standard one-dimensional benchmarks: Weak Landau damping and Two-Stream instability.
The time integration scheme for all simulations is a symplectic, explicit, 3-stage Runge-Kutta-
Nyström method of order 4, whose Butcher tableau was taken from [FQ10, p.327]. The Weighted
Particle method is defined by some parameters:

• the truncation parameter K.

• the quadratures in x-space and v-space. We consider the rectangle rule in both dimensions,
and let N1 + 1, N2 + 1 be the number of points for each quadrature. The total number of
particles is defined as P = (N1 + 1)(N2 + 1).
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• the compact interval Iv for the v-quadrature. We consider an interval Iv = [−vmax, vmax],
where vmax is our parameter.

• the time step of the time integration scheme.

For each example, we display the time evolution of the electrical energy obtained with the
WPM method. Moreover the total energy and momentum are conserved for the exact Vlasov-
Poisson system, hence we can compare our WPM results with the exact quantities (computed
analytically at time t = 0) and display the error. We also display the electrical energy as well as
the errors obtained with a Backward semi-Lagrangian scheme which uses B-splines of order 5,
and which also solves the problem (VPK). For this Backward semi-Lagrangian scheme, labelled
“BSL”, we have used 256 points in the x-direction, and 512 points in the v-direction. Moreover,
it uses the usual Strang splitting procedure for the time integration.

We do not give the evolution of the Lp norms from the WPM method because they are all
conserved with respect to time by construction of the Weighted Particle method: the Lp norm

of the approximate solution is
(∑

j∈J f0(zj)pwj
)1/p

, and this does not depend on time. Hence
the error between the true Lp norms and the numerical ones are simply the quadrature error at
time t = 0.

4.1 Weak Landau damping

Description It is for example a test case in [Son16, p.54, Sect.4.4.2]. The initial condition
reads:

f0(x, v) = (1 + α cos(kxx)) exp(−v2/2)
1√
2π
, x ∈ [0, L], v ∈ [−vmax, vmax],

where L := 2π/kx. This is one of the most famous examples. A numerical scheme has to recover
accurately the damping rate and the period between oscillations in the electrical energy. There
exists a theoretical formula giving the electrical energy for the dominating Fourier mode (see
[Son16, p.56]). As other modes decay much faster, this formula is a good approximation of the
exact electrical energy Ethelec(t) after a short time. For kx = 0.5, the formula reads

Ethelec(t) ≈ 0.004× 0.3677e−0.1533t |cos(1.4156t− 0.536245)|
√
L/2.

WPM results The numerical parameters are K = 1, vmax = 12, kx = 0.5, α = 0.001,∆t = 0.1.
The results are given in Figure 1.

In the top row, we draw the results obtained with WPM (solid blue curve), the expected
damping rate (red dashes), and the electrical energy of the dominating Fourier mode (green
dots). For times up to t = 45, the Weighted Particle method can recover the electrical energy
with a very good accuracy. In the second row of Figure 1, we draw the difference between
the theoretical total energy and the total energy computed from WPM. We observe that the
Weighted Particle method can recover the total energy with a very good accuracy (the difference
is of order 10−10), even better than the semi-Lagrangian scheme. In the third row, we compare
the exact momentum with the momentum obtained from WPM. Here as well, the momentum
is very well recovered (e.g. the difference is of order 10−14 for the example with the smallest
number of particles), which is again better than BSL.

For this example we also observe an expected jump called the “Poincare recurrence”, which is
linked to the compact support in velocity (see [CPSF+14, Son16, EO14]). However, we are not
able to explain the amplitude increase after the jump.

The relative L2 norm error is of order 10−14.
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Figure 1: Top row (log-scale) : Electrical energy from WPM (resp. BSL), in blue (resp. red).
Below: error between WPM (resp. BSL) results and exact quantities, in blue (resp. red) –
middle row: total energy, bottom row: momentum.

4.2 Two-Stream Instability

Description This example can be found in [Son16, p.57] or [CRS09, p.1738]. Depending on
the reference, the initial condition may be different. The idea of this example in both cases is to
have two streams with opposite velocities. We will consider the formulation from [Son16]. The
initial condition then reads:

f0(x, v) = (1 + α cos(kxx))
1

2
√

2π
(exp(−(v − v0)2/2) + exp(−(v + v0)2/2)), ,

for x ∈ [0, 2π/kx], v ∈ [−vmax, vmax].

WPM results The numerical parameters are K = 1, α = 0.001, vmax = 12, kx = 0.2, v0 =
3,∆t = 0.1. The results are given in Figure 2.

For the Two-Stream instability, we know that there is first a short transitional state, followed
by an instability, and then some periodic behavior. The instability rate is 0.2845.

As in the previous example, the first row in Figure 2 corresponds to the electrical energy
obtained with the Weighted Particle method (solid blue curve), and we display the expected
instability rate (red dashes). We can observe that the instability rate is recovered accurately
with WPM. In the second row of Figure 2, we display the error between the theoretical total
energy and the total energy obtained with WPM. The total energy is also recovered accurately
(the difference is of order 10−6), much more accurately than with the semi-Lagrangian scheme.
In the third row, we compare the exact momentum with the momentum obtained from WPM.
Here as well, the momentum is very well recovered (e.g. the difference is of order 10−13 for the
example with the smallest number of particles). Again, the semi-Lagrangian yields by far the
worst results.

The relative L2 norm error is of order 10−14.

For all those examples we were able to recover very accurately the exact momentum, electrical
energy and total energy. Relatively few particles were needed, compared to the usual PIC
methods. As a comparison, we can cite for instance the paper [NSSF11] which uses a Particle-
In-Wavelets scheme, where 219 particles were necessary in order to obtain satisfying results
with a tolerable statistical noise on the Landau Damping and Two-Stream instability examples.
The authors of [CPSF+14] have done some Particle-In-Cell simulations and show that, on the

14 / 39



0 10 20 30 40 50

10−2

100 slope: 0.2845

t

Eelec,WPM

Eelec,BSL

0 10 20 30 40 50

−0.05

0.00

0.05

0.10

t

Etot,WPM − Etot,exact

Etot,BSL − Etot,exact

0 10 20 30 40 50

0

3.00× 10−13

6.00× 10−13

9.00× 10−13

1.20× 10−12

t

momWPM −momexact

momBSL −momexact

(a) Nx = 64, Nv = 128

0 10 20 30 40 50

10−2

100 slope: 0.2845

t

Eelec,WPM

Eelec,BSL

0 10 20 30 40 50

−0.05

0.00

0.05

0.10

t

Etot,WPM − Etot,exact

Etot,BSL − Etot,exact

0 10 20 30 40 50

−2.500× 10−13

0

2.500× 10−13

5.000× 10−13

7.500× 10−13

1.000× 10−12

1.250× 10−12

t

momWPM −momexact

momBSL −momexact

(b) Nx = 128, Nv = 128

0 10 20 30 40 50

10−2

100 slope: 0.2845

t

Eelec,WPM

Eelec,BSL

0 10 20 30 40 50

−0.05

0.00

0.05

0.10

t

Etot,WPM − Etot,exact

Etot,BSL − Etot,exact

0 10 20 30 40 50

−2.00× 10−13

0

2.00× 10−13

4.00× 10−13

6.00× 10−13

8.00× 10−13

1.00× 10−12

1.20× 10−12

t

momWPM −momexact

momBSL −momexact

(c) Nx = 256, Nv = 256

Figure 2: Top row (log-scale) : Electrical energy from WPM (resp. BSL), in blue (resp. red).
Below: error between WPM (resp. BSL) results and exact quantities, in blue (resp. red) –
middle row: total energy, bottom row: momentum.

Strong and Weak Landau damping examples after a short time, the statistical noise with 256×
256 particles prevents from drawing conclusions from the results. The method presented in
[CPSF+14] does not have such a problem and can predict accurately the damping rates, but
requires frequent remapping.

Moreover we have not displayed here the results of the comparison between a symplectic
time integrator and a non-symplectic one, but experiments show that using a symplectic time
integrator prevents from obtaining a drift in conservative quantities (e.g. total energy) which
otherwise occurs. For this comparison, we have tested symplectic and non-symplectic versions
of a 4th order Runge-Kutta-Nyström time integrator.

5 Proof of Theorem 3.1

The first thing to show is that the truncation of the kernel does not modify the existence result
given by Theorem 1.1.

We recall that the spaces Hrν are defined by (1.2). For functions in Hrν , we consider the
Fourier transform along the space variable x ∈ TdL and denote it Fx. Let PK be the projection
on the Fourier modes with frequency |k| ≤ K.

We have the following lemma:
Lemma 5.1

Let K ∈ N∗, define Φ,ΦK as in (1.9) and (1.10). Then, for all ν, r ∈ N, we have

∀g ∈ Hrν , PKΦ[g] = ΦK [g] = Φ[PKg] (5.1)

and
∀g ∈ Hrν , ||PKg||Hrν ≤ ||g||Hrν . (5.2)

Proof : The first equality of (5.1) is just the definition of ΦK . The second equality is straightfor-
ward by noting that ΦK [g] = PKΦ[g], that the mapping g 7→ Φ[g] is linear, and that the only
dependance in the space variable x of Φ[g] is the dependance on x of g. It can also be shown by
computing PKΦ[g] and Φ[PKg] explicitely and comparing the expressions.
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For (5.2), we have by the Parseval equality

||PKg||2Hrν =
∑

(m,p,q)∈(Nd)3

|p|+|q|≤r
|m|≤ν

∑
k∈(Zd)∗

|k|≤K

∫
Rd
|vm∂qvFx(g)(k, v)kp|2 dv ≤ ||g||2Hrν ,

and we recall that kp := kp1

1 ...kpdd .

It is now possible to follow step by step the proofs of [CCFM17, Thm. 5.1, Lemma 5.3], with
the estimates holding thanks to Lemma 5.1, and we will obtain the following existence result:
Proposition 5.1

Let K ∈ N∗, ν, r ∈ N, with ν > d/2 and r ≥ 3ν. There exist constants Cr,ν and Lr,ν such
that for all given B > 0 and f0 ∈ Hr+2ν+1

ν with ||f0||Hr+2ν+1
ν

≤ B, for all α, β ∈ [0, 1], there
exists a solution fK(t, x, v) of the Vlasov-Poisson equation with truncated kernel (VPK){

∂tf
K + αv · ∇xfK + β∇xΦK [fK ] · ∇vfK = 0

f(0, x, v) = f0(x, v)

on the interval [0, T ] with

T :=
Cr,ν

1 +B
,

and we have the estimate

∀t ∈ [0, T ],
∣∣∣∣fK(t)

∣∣∣∣
Hr+2ν+1
ν

≤ min
(

2B, eLr,ν(1+B)t
)
||f0||Hr+2ν+1

ν
.

Moreover, for two initial conditions f0 and g0 satisfying the previous hypotheses, we have

∀t ∈ [0, T ],
∣∣∣∣fK(t)− gK(t)

∣∣∣∣
Hrν
≤ eLr,ν(1+B)t||f0 − g0||Hrν .

We do not give the proof here as it would amount to copy verbatim the proof from [CCFM17],
and we refer the reader to this paper for a self-contained proof. We have the following lemma:
Lemma 5.2

Let ν, r1, r2 ∈ N such that r2 ≥ r1. For all f ∈ Hr2ν , there exists a constant C > 0 such that
for all k ∈ Zd, and all q ∈ Nd such that |q| ≤ r2,

∀m ∈ Nd, |m| ≤ ν,
∫
Rd
|vm∂qvFx(f)(k, v)|2 dv ≤ C

(1 + |k|)2(r2−|q|)+d

and, for all K ∈ N∗,

||(I − PK)f ||2Hr1ν ≤
C||f ||2Hr2ν

(1 +K)2(r2−r1)
.

Proof : Recall the definition of the Hr2ν norm:

||f ||2Hr2ν =
∑

(m,p,q)∈(Nd)3

|p|+|q|≤r2
|m|≤ν

∫
Rd

∫
Td
|vm∂px∂qvf(x, v)|2 dxdv
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By the Parseval equality,

||f ||2Hr2ν =
∣∣TdL∣∣ ∑

(m,p̃,q)∈(Nd)3

|p̃|+|q|≤r2
|m|≤ν

∫
Rd

∑
k∈Zd

∣∣Fx (vm∂p̃x∂qvf) (k, v)
∣∣2 dv

=
∣∣TdL∣∣ ∑

(m,q)∈(Nd)2

|q|≤r2
|m|≤ν

∑
k∈Zd

∑
p̃∈Nd

|p̃|≤r2−|q|

(2π)2|p̃|
(
k

L

)2p̃ ∫
Rd
|vm∂qvFx(f)(k, v)|2 dv. (5.3)

We recall that with our convention, as p̃ ∈ Nd, k, L ∈ Rd we let(
k

L

)2p̃

=

(
k1

L1

)2p̃1

. . .

(
kd
Ld

)2p̃d

.

A by-product of (5.3) is that, since the right-hand side is finite, the sum over k is also finite for
every m, q. In the sum over p̃ ∈ Nd with |p̃| ≤ r2− |q|, we have in particular for each i = 1, . . . , d,
the term p̃ = (0, · · · , 0, r2−|q|, 0, · · · , 0) where only the i− th coordinate is nonzero and its value
is r2− |q|. There is as well a p̃ such that p̃ = (0, . . . , 0). Thus, for some constant C that does not
depend on k, ∑

p̃∈Nd
|p̃|≤r2−|q|

(2π)2|p̃|
(
k

L

)2p̃

≥ C

(
1 +

d∑
i=1

k
2(r2−|q|)
i

)
.

The right-hand side of (5.3) being finite for every m, q, we then have(
1 +

d∑
i=1

k
2(r2−|q|)
i

)∫
Rd
|vm∂qvFx(f)(k, v)|2 dv ≤ C

1 + |k|d
,

for some C large enough. Finally, for all |q| ≤ r2, |m| ≤ ν, we have∫
Rd
|vm∂qvFx(f)(k, v)|2 dv ≤ C

1 +
∑d
i=1 k

2(r2−|q|)+d
i

≤ C

(1 +K)2(r2−|q|)+d
,

where the last equality is a consequence of Jensen’s inequality. This shows the first estimate we
claim.

We now proceed to showing the second estimate. Coming back to (5.3), let p̃ = p+ s, where
p, s ∈ Nd are such that |s| ≤ r2 − r1 and |p| ≤ r1 − |q|. A given value of p̃ may be obtained by
several combinations of s and p. However, the maximal number M of combinations yielding the
same p̃ is finite and depends only on d, r1, r2. Therefore,

||f ||2Hr2ν ≥
∣∣TdL∣∣
M

∑
(m,q)∈(Nd)2

|q|≤r2
|m|≤ν

∑
k∈Zd

∑
s∈Nd

|s|≤r2−r1

(2π)2|s|
(
k

L

)2s ∑
p∈Nd

|p|≤r1−|q|

(2π)2|p|
(
k

L

)2p ∫
Rd
|vm∂qvFx(f)(k, v)|2 dv

In the sum over s ∈ Nd with |s| ≤ r2 − r1, we have in particular for each i = 1, . . . , d the term
s = (0, · · · , 0, r2− r1, 0, · · · , 0) where only the i− th coordinate is nonzero and its value is r2− r1.
Thus,

||f ||2Hr2ν ≥
∣∣TdL∣∣
M

∑
(m,q)∈(Nd)2

|q|≤r2
|m|≤ν

∑
k∈Zd

(
d∑
i=1

[
2π

ki
Li

]2(r2−r1)
) ∑

p∈Nd
|p|≤r1−|q|

(2π)2|p|
(
k

L

)2p ∫
Rd
|vm∂qvFx(f)(k, v)|2 dv
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Again, by the Jensen inequality, there exists a constant C1 > 0 such that

d∑
i=1

[
2π

ki
Li

]2(r2−r1)

≥ C1|k|2(r2−r1).

Hence

||f ||2Hr2ν ≥ C
∑

(m,q)∈(Nd)2

|q|≤r2
|m|≤ν

∑
k∈Zd

|k|2(r2−r1)
∑
p∈Nd

|p|≤r1−|q|

(2π)2|p|
(
k

L

)2p ∫
Rd
|vm∂qvFx(f)(k, v)|2 dv,

where we let C := C1
|TdL|
M . In the sum over q, we can drop the terms corresponding to |q| > r1

because it yields an empty set {p ∈ Nd : |p| ≤ r1 − |q|}. Thus,

||f ||2Hr2ν ≥ C
∑

(m,q)∈(Nd)2

|q|≤r1
|m|≤ν

∑
k∈Zd

|k|2(r2−r1)
∑
p∈Nd

|p|≤r1−|q|

(2π)2|p|
(
k

L

)2p ∫
Rd
|vm∂qvFx(f)(k, v)|2 dv. (5.4)

Now, if |k| > K, then N 3 |k|2 > K2 ≥ 1 + K2. As we want an estimate that depends on
(1 +K)2(r2−r1) and not on (1 +K2)r2−r1 , we use the following inequality that holds for K ≥ 1:

(1 +K)2 ≤ 2(1 +K2).

We truncate the sum over k ∈ Zd to |k| > K in (5.4), and we get

||f ||2Hr2ν ≥ C
(

(1 +K)2

2

)r2−r1 ∑
(m,q)∈(Nd)2

|q|≤r1
|m|≤ν

∑
k∈Zd
|k|>K

∑
p∈Nd

|p|≤r1−|q|

(2π)2|p|
(
k

L

)2p ∫
Rd
|vm∂qvFx(f)(k, v)|2 dv.

Finally we can compare this expression to the one we had in (5.3), and obtain

||f ||2Hr2ν ≥ C(1 +K)2(r2−r1) ||(I − PK)f ||2Hr1ν .

We now have bounds for f and fK , uniform in K, so we are able to obtain an estimate on
their difference.
Proposition 5.2

Let ν, r ∈ N, with ν > d/2, r ≥ 3ν, and α ≥ 2ν + 1. Let f be the solution to the Vlasov-
Poisson equation (VP), and fK be the solution to the Vlasov-Poisson equation with truncated
kernel (VPK), both with the same initial condition f0 ∈ Hr+αν , such that ||f0||Hr+αν

≤ B for
some B > 0. Then, there exists a constant C > 0 such that for all K ∈ N∗ and all t ∈ [0, T ],∣∣∣∣(f − fK)(t)

∣∣∣∣2
Hrν
≤ C

(1 +K)α

Proof : We follow the end of the proof of Theorem 5.1 from [CCFM17].
By taking the difference (VP) - (VPK), we obtain

∂t(f − fK) + v · ∇x(f − fK)−∇xΦ[f ] · ∇v(f − fK) = ∇xΦ[PKf
K − f ] · ∇vfK .

We have by previous estimates

∀t ∈ [0, T ],

{
||f(t)||Hr+αν

≤ C(t, r, ν, B)||f0||Hr+αν

||fK(t)||Hr+αν
≤ C(t, r, ν, B)||f0||Hr+αν

.
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Since α ≥ 2ν + 1, Lemma 5.3 from [CCFM17], gives for all t ∈ [0, T ]

||(f − fK)(t)||2Hrν ≤ ||(f − f
K)(0)||2Hrν + C

∫
0,t

(
1 + ||f(σ)||Hrν

) ∣∣∣∣(f − fK)(σ)
∣∣∣∣2
Hrν

dσ

+ 2

∫ T

0

∣∣∣∣∇xΦ[PKf
K − f ] · ∇vfK(σ)

∣∣∣∣
Hrν

∣∣∣∣(f − fK)(σ)
∣∣∣∣
Hrν

dσ

(5.5)

We have (we skip the details since they are given in [CCFM17])∣∣∣∣vm∂px∂qv (∇xΦ[PKf
K − f ] · ∇vfK

)∣∣∣∣
L2 ≤ Cr,ν ||f ||Hr+2ν+1

ν
||PKfK − f ||Hrν . (5.6)

Moreover, from the decomposition PKfK−f = PK(fK−f)+(PK−I)f we have, using Lemma 5.2,

||PKfK − f ||Hrν ≤ ||PK(fK − f)||Hrν + ||(I − PK)f ||Hrν
≤ ||fK − f ||Hrν + ||(I − PK)f ||Hrν

≤ ||fK − f ||Hrν +
C

(1 +K)α

Then (5.5) becomes, with the help of (5.6),

∀t ∈ [0, T ], ||(f − fK)(t)||2Hrν ≤ ||(f − f
K)(0)||2Hrν + C(f0)

∫ t

0

||(f − fK)(σ)||2Hrνdσ

+ 2Cr,ν(f0)

∫ t

0

(
||(fK − f)(σ)||2Hrν +

C

(1 +K)α

)
dσ.

Since (1.1a) and (VPK) have the same initial condition, we the obtain by the Grönwall lemma
the existence of a time-dependent function C, independant of K, that depends on r, ν, f0, such
that

∀t ∈ [0, T ],
∣∣∣∣(f − fK)(t)

∣∣∣∣2
Hrν
≤ C(t)

(1 +K)α
.

Since the function C(t) depends continuously on t ∈ [0, T ], we get the result.

Proposition 5.3

Let c ∈ Nd, ν ∈ N, α ∈ N∗, with ν > d/2. Let E[g] := ∇xΦ[g] be the kernel to the Vlasov-
Poisson equation (VP), computed with some function g ∈ Hαν , and let EK [h] := ∇xΦK [h]
be the kernel to the Vlasov-Poisson equation with truncated kernel (VPK), computed with
h ∈ Hαν . We do not require g and h to be respectively solutions of (VP) and (VPK).

Assume there exists a constant C > 0 such that for all K ∈ N∗, ||(g − h)(t)||2H0
ν
≤ C

(1+K)α .
Then, for all t ∈ [0, T ] and all x ∈ TdL,∣∣∂cx (E[g](t, x)− EK [h](t, x)

)∣∣ ≤ C

(1 +K)
α+1
2
−d−∑i ci

.
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Proof : For any t ∈ [0, T ] and x ∈ TdL,

∂cx
(
EK [h](t, x)− E[g](t, x)

)
=

1

|TdL|
∑

k∈(Zd)∗

|k|≤K

k
L

2π
∣∣ k
L

∣∣2
(

2π
k

L

)c
sin

(
2π
k

L
· y
)(

CKk (t)− Ck(t)
)

− 1

|TdL|
∑

k∈(Zd)∗

|k|≤K

k
L

2π
∣∣ k
L

∣∣2
(

2π
k

L

)c
cos

(
2π
k

L
· y
)(

SKk (t)− Sk(t)
)

+
1

|TdL|
∑

k∈(Zd)∗

|k|>K

k
L

2π
∣∣ k
L

∣∣2
(

2π
k

L

)c(
sin

(
2π
k

L
· y
)
Ck(t)− cos

(
2π
k

L
· y
)
Sk(t)

)

Let c̄ :=
∑
i ci. Notice that |kc| ≤ |k|c̄, therefore

∣∣∂cx (EK [h](t, x)− E[g](t, x)
)∣∣ ≤ (2π)c̄

|TdL|
∑

k∈(Zd)∗

|k|≤K

∣∣ k
L

∣∣c̄+1

2π
∣∣ k
L

∣∣2 (∣∣CKk (t)− Ck(t)
∣∣+
∣∣SKk (t)− Sk(t)

∣∣)

+
(2π)c̄

|TdL|
∑

k∈(Zd)∗

|k|>K

∣∣ k
L

∣∣c̄+1

2π
∣∣ k
L

∣∣2 (|Ck(t)|+ |Sk(t)|)

≤ 1

|TdL|
∑

k∈(Zd)∗

|k|≤K

1

2π
∣∣ k
L

∣∣1−c̄ (∣∣CKk (t)− Ck(t)
∣∣+
∣∣SKk (t)− Sk(t)

∣∣)

+
1

|TdL|
∑

k∈(Zd)∗

|k|>K

1

2π
∣∣ k
L

∣∣1−c̄ (|Ck(t)|+ |Sk(t)|) .

(5.7)
We have, for g, h ∈ Hrν ,∣∣CKk (t)− Ck(t)

∣∣ ≤ ∫
TdL×Rd

|g(t, y, v)− h(t, y, v)| dydv

≤
∫
TdL

(∫
Rd

dv

(1 + |v|2)ν

)1/2(∫
Rd

(1 + |v|2)ν |g(t, y, v)− h(t, y, v)|2 dv
)1/2

dy

≤ C

(∫
TdL×Rd

(1 + |v|2)ν |g(t, y, v)− h(t, y, v)|2 dydv

)1/2

≤ C ||(g − h)(t)||H0
ν
,

for some constant C that does not depend onK or t, thanks to the assumption ν > d/2. The same
estimate holds naturally for

∣∣SKk (t)− Sk(t)
∣∣. Therefore, using our hypothesis ||(g − h)(t)||2H0

ν
≤

C
(1+K)α , we get ∣∣Ck(t)− CKk (t)

∣∣2 ≤ C

(1 +K)α
.

The same estimate holds for
∣∣SKk (t)− Sk(t)

∣∣2. Then, summing over k and applying a discrete
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Cauchy-Schwarz inequality, we obtain for any γ > d+ 2(c̄− 1), i.e. 2− 2c̄+ γ > d,∑
k∈(Zd)∗

|k|≤K

1

2π
∣∣ k
L

∣∣1−c̄+γ/2 |k|γ/2 (∣∣CKk (t)− Ck(t)
∣∣+
∣∣SKk (t)− Sk(t)

∣∣)

≤

 ∑
k∈(Zd)∗

|k|≤K

1

4π2
∣∣ k
L

∣∣2−2c̄+γ


1/2 ∑

k∈(Zd)∗

|k|≤K

|k|γ
[∣∣CKk (t)− Ck(t)

∣∣+
∣∣SKk (t)− Sk(t)

∣∣]2


1/2

≤ C
(

Kd+γ

(1 +K)α

)1/2

≤ C

(1 +K)(α−d−γ)/2
(5.8)

where the constant C does not depend on K or t.
The second sum in (5.7) can be estimated with Lemma 5.2 by using the fact that g ∈ Hαν .

Indeed, we have

|Ck(t)| =

∣∣∣∣∣12
∫
Rd

∫
TdL

(
e2iπ kL ·y + e−2iπ kL ·y

)
g(t, y, v)dydv

∣∣∣∣∣
=

∣∣∣∣ |TdL|2

∫
Rd

(Fx(g)(k, v) + Fx(g)(−k, v)) dv

∣∣∣∣
≤ C

([∫
Rd

(1 + |v|2)ν |Fx(g)(k, v)|2 dv
]1/2

+

[∫
Rd

(1 + |v|2)ν |Fx(g)(−k, v)|2 dv
]1/2

)
.

Now apply Lemma 5.2 to obtain, for all |k| > K,

|Ck(t)| ≤ C

(1 +K)α+d/2
, (5.9)

the same estimate holding for |Sk(t)|. Hence,∑
k∈(Zd)∗

|k|>K

1

|k|1−c̄
(|Ck(t)|+ |Sk(t)|) ≤ C

(1 +K)α+d/2+1−c̄−(d+1)
=

C

(1 +K)α−d/2−c̄
. (5.10)

It remains to compare the exponents in (5.8) and (5.10). Under the condition γ > d + 2(c̄ − 1),
we have

α− d/2− c̄− α− d− γ
2

=
α

2
− c̄+

γ

2
>
α+ d

2
− 1 ≥ 0,

since α ∈ N∗.
Finally, the error in (5.7) is dominated by the error of the first term. Taking for instance

γ = d+ 2c̄− 1, we obtain∣∣∂cx (E[g](t, x)− EK [h](t, x)
)∣∣ ≤ C

(1 +K)
α+1

2 −d−c̄

We will need at some point regularity in time for fK , EK , and this can be obtained at the
expense of additional space regularity. The following lemma shows how to “exchange” space
regularity with time regularity:
Proposition 5.4
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Let j ∈ N∗, ν, r, α ∈ N such that ν + j > d/2, r ≥ max (3(ν + j), (j − 1)(d/2 + 1)) and
α > 1 + 2(r + d).

Let K ∈ N∗. If f0 ∈ Hr+αν+j , then the solution fK to (VPK) as well as the solution f to
(VP) are smooth with respect to time in Hrν . That is, for all l ∈ N with l ≤ j,

∂ltf
K ∈ Hr−(l−1)(d/2+1)

ν+j−l , ∂ltf ∈ H
r−(l−1)(d/2+1)
ν+j−l ,

and we have
EK ∈ Cj([0, T ]× Rd), E ∈ Cj([0, T ]× Rd).

Proof : Because of the way the kernel EK is defined, the joint regularity in (t, x) can be studied by
studying the regularity in t and the regularity in x. Note that

(
x 7→ EK(t, x)

)
is C∞per(TdL), so

it only remains to study the regularity with respect to time of the kernel, which boils down to
studying the regularity with respect to time of the coefficients CKk (t), SKk (t). Our proof will be
done by induction on the derivative.

Base case With our assumptions we get r + α > 2(ν + j) + 1, so that by Proposition 5.1 we
have fK(t) ∈ Hr+αν+j for short enough times. Thus,

∂tC
K
k (t) =

∫
Td×Rd

cos

(
2π
k

L
· y
)
∂tf

K(t, y, v)dydv

= −
∫
Td×Rd

cos

(
2π
k

L
· y
)(

v · ∇xfK(t, y, v) + EK(t, y) · ∇vfK(t, y, v)
)
dydv

= −
∫
Td×Rd

v · 2πk

L
sin

(
2π
k

L
· y
)
fK(t, y, v)dydv,

since
−
∫
Td×Rd

cos

(
2π
k

L
· y
)
EK(t, y) · ∇vfK(t, y, v)dydv = 0.

This can be rewritten

∂tC
K
k (t) = − 1

2i

∫
Rd
v · 2πk

L

(∫
TdL
e2iπ kL ·yfK(t, y, v)dy −

∫
TdL
e−2iπ kL ·yfK(t, y, v)dy

)
dv

= −|T
d
L|

2i

∫
Rd
v · 2πk

L

(
Fx(fK)(−k, v)−Fx(fK)(k, v)

)
dv.

Therefore, ∣∣∂tCKk (t)
∣∣ ≤ |TdL|

2

∣∣∣∣2πkL
∣∣∣∣ ∫

Rd
|v|
(∣∣Fx(fK)(−k, v)

∣∣+
∣∣Fx(fK)(k, v)

∣∣) dv.
The integral can be estimated using the first estimate of Lemma 5.2 after a Cauchy-Schwarz
inequality with

|v|
∣∣Fx(fK)(k, v)

∣∣ =
(1 + |v|)ν

(1 + |v|)ν
|v|
∣∣Fx(fK)(k, v)

∣∣ .
We have, for some C which does not depend on K,

∣∣∂tCKk (t)
∣∣ ≤ C|k|


[∫

Rd
|v|2(1+ν)

∣∣Fx(fK)(k, v)
∣∣2]1/2

+

[∫
Rd
|v|2(1+ν)

∣∣Fx(fK)(−k, v)
∣∣2]1/2



≤ C|k|


[∫

Rd
|v|2(1+ν)

∣∣Fx(f − fK)(k, v)
∣∣]1/2

+

[∫
Rd
|v|2(1+ν) |Fx(f)(k, v)|

]1/2

+

[∫
Rd
|v|2(1+ν)

∣∣Fx(f − fK)(−k, v)
∣∣2]1/2

+

[∫
Rd
|v|2(1+ν) |Fx(f)(−k, v)|2

]1/2


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The same estimate holds for |∂tSKk (t)|. The second and fourth terms are estimated by Lemma 5.2,
using that f ∈ Hr+αν+j : [∫

Rd
|v|2(1+ν) |Fx(f)(−k, v)|2

]1/2

≤ 1

(1 +K)r+α+d/2
.

Let c ∈ Nd and let c̄ :=
∑
i ci. We assume c̄ ≤ r + α− 2(ν + j)− 1, so that∣∣∂cx∂tEK(t, x)

∣∣ ≤ (2π)c̄

|TdL|
∑

k∈(Zd)∗

|k|≤K

1

2π
∣∣ k
L

∣∣1−c̄ (∣∣∂tCKk (t)
∣∣+
∣∣∂tSKk (t)

∣∣)

≤ C
∑

k∈(Zd)∗

|k|≤K

|k|c̄


[∫

Rd
|v|2(1+ν)

∣∣Fx(f − fK)(k, v)
∣∣2 dv]1/2

+
1

(1 +K)r+α+d/2

+

[∫
Rd
|v|2(1+ν)

∣∣Fx(f − fK)(−k, v)
∣∣2 dv]1/2

+
1

(1 +K)r+α+d/2

 .

The sum ∑
k∈(Zd)∗

|k|≤K

|k|c̄
[∫

Rd
|v|2(1+ν)

∣∣Fx(f − fK)(k, v)
∣∣2 dv]1/2

can be bounded by some quantity equivalent to
∣∣∣∣f − fK∣∣∣∣Hc̄ν+1

≤
∣∣∣∣f − fK∣∣∣∣Hr+α−2(ν+j)−1

ν+j

. Since

f − fK ∈ Hr+αν+j , by Proposition 5.2 we get

∑
k∈(Zd)∗

|k|≤K

|k|c̄
[∫

Rd
|v|2(1+ν)

∣∣Fx(f − fK)(k, v)
∣∣2 dv]1/2

≤ C

(1 +K)ν+j+1/2
.

Hence, ∣∣∂cx∂tEK(t, x)
∣∣ ≤ C

(1 +K)ν+j+1/2
+ C

∑
k∈(Zd)∗

|k|≤K

1

(1 +K)d+1
.

This can be bounded by a constant C > 0 which does not depend on K. Hence, for β1 ∈ N,∣∣∣∣∂tfK∣∣∣∣Hβ1
ν+j−1

≤
∣∣∣∣v · fK∣∣∣∣Hβ1

ν+j−1

+
∣∣∣∣EK · ∇vfK∣∣∣∣Hβ1

ν+j−1

≤ C
∣∣∣∣fK∣∣∣∣Hβ1+1

ν+j

,

where the last inequality holds if

β1 ≤ r + α− 2(ν + j)− 1. (5.11)

For the right-hand side of the estimate to be finite, we need to have

β1 + 1 ≤ r + α,

since we only have fK ∈ Hr+αν+j . However this is already satisfied by (5.11) since ν + j ≥ 0. From
now on let β1 = r, so that

∂tf
K ∈ Hβ1

ν+j−1.

This holds true for any K ∈ N∗, let’s now show this estimate also holds with the solution f
to the non-truncated Vlasov-Poisson equation. Let p ≤ β1 − 1,∣∣∣∣∂t(f − fK)

∣∣∣∣
Hpν+j−1

≤
∣∣∣∣v · ∇x(f − fK)

∣∣∣∣
Hpν+j−1

+
∣∣∣∣EK · ∇vfK − E · ∇vf ∣∣∣∣Hpν+j−1

≤
∣∣∣∣v · ∇x(f − fK)

∣∣∣∣
Hpν+j−1

+
∣∣∣∣EK · ∇v(fK − f)

∣∣∣∣
Hpν+j−1

+
∣∣∣∣(E − EK) · ∇vf

∣∣∣∣
Hpν+j−1

≤
∣∣∣∣f − fK∣∣∣∣Hp+1

ν+j

+ C
∣∣∣∣fK − f ∣∣∣∣Hp+1

ν+j

+ max
c∈Nd
c̄≤p

∣∣∣∣∂cx (EK − E)∣∣∣∣L∞(TdL)
||f ||Hp+1

ν+j
. (5.12)
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Because p+ 1 ≤ β1 ≤ r, we have∣∣∣∣f − fK∣∣∣∣Hp+1
ν+j

≤
∣∣∣∣f − fK∣∣∣∣Hrν+j

≤ C

(1 +K)α/2
,

where the first inequality is clear and the second one comes from Proposition 5.2. For the third
term of (5.12), we have ∣∣∣∣f − fK∣∣∣∣H0

ν+j

≤
∣∣∣∣f − fK∣∣∣∣Hrν+j

≤ C

(1 +K)α/2
,

so that, by Proposition 5.3,

max
c∈Nd
c̄≤p

∣∣∣∣∂cx (EK − E)∣∣∣∣L∞(TdL)
≤ C

(1 +K)(α+1)/2−d−c̄ ≤
C

(1 +K)(α+1)/2−d−p .

Hence, (5.12) yields∣∣∣∣∂t(f − fK)
∣∣∣∣
Hpν+j−1

≤ (C + 1)
∣∣∣∣fK − f ∣∣∣∣Hp+1

ν+j

+ max
c∈Nd
c̄≤p

∣∣∣∣∂cx (EK − E)∣∣∣∣L∞(TdL)
||f ||Hp+1

ν+j

≤ C

(1 +K)α/2
+

C

(1 +K)(α+1)/2−d−p .

Thus, ∣∣∣∣∂t(f − fK)
∣∣∣∣
Hpν+j−1

≤ C

(1 +K)(α+1)/2−d−p =
C

(1 +K)γ1+β1−p
,

where

α+ 1

2
− d− p =: γ1 + β1 − p

⇐⇒ γ1 :=
α+ 1

2
− β1 − d.

Requiring γ1 > 0 yields the condition

α > 1 + 2(β1 + d).

With our assumption α > 1 + 2(r + d), the above inequality is satisfied.

Induction Let’s now turn to the higher derivatives. Let l ∈ N with l ≤ j, suppose that for
any m ≤ l− 1, ∂mt fK , ∂mt f ∈ H

βm
ν+j−m for some r = β1 ≥ · · · ≥ βl−1 > 0, and assume there exists

C, γ1 ≥ · · · ≥ γl−1 > 0 such that for all m ≤ l − 1, p ≤ βm,∣∣∣∣∂mt (f − fK)
∣∣∣∣
Hpν+j−m

≤ C

(1 +K)γm+βm−p
. (5.13)

Let m ≤ l, we have

∂mt C
K
k (t) =

∫
Td×Rd

cos

(
2π
k

L
· y
)
∂mt f

K(t, y, v)dydv

= −
∫
Td×Rd

cos

(
2π
k

L
· y
)(

v · ∇x∂m−1
t fK(t, y, v)

+ ∂m−1
t

[
EK(t, y) · ∇vfK(t, y, v)

]) dydv
= −

∫
Td×Rd

cos

(
2π
k

L
· y
)
v · ∇x∂m−1

t fK(t, y, v)dydv,

since ∫
Td

cos

(
2π
k

L
· y
)
EK(t, y) ·

(∫
Rd
∇vfK(t, y, v)dv

)
dy = 0.
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As in the case l = 1, we have

∣∣∂mt CKk (t)
∣∣ ≤ C|k|


[∫

Rd
|v|2(1+ν)

∣∣Fx(∂m−1
t fK)(k, v)

∣∣2 dv]1/2

+

[∫
Rd
|v|2(1+ν)

∣∣Fx(∂m−1
t fK)(−k, v)

∣∣2 dv]1/2



≤ C|k|


[∫

Rd
|v|2(1+ν)

∣∣Fx(∂m−1
t (f − fK))(k, v)

∣∣ dv]1/2

+

[∫
Rd
|v|2(1+ν)

∣∣Fx(∂m−1
t f)(k, v)

∣∣ dv]1/2

+

[∫
Rd
|v|2(1+ν)

∣∣Fx(∂m−1
t (f − fK))(−k, v)

∣∣2 dv]1/2

+

[∫
Rd
|v|2(1+ν)

∣∣Fx(∂m−1
t f)(−k, v)

∣∣2 dv]1/2

 .

The same estimate holds for |∂mt SKk (t)|. The second and fourth terms are estimated by Lemma 5.2,
using that ∂m−1

t f ∈ Hβm−1

ν+j−(m−1):[∫
Rd
|v|2(1+ν)

∣∣Fx(∂m−1
t f)(−k, v)dv

∣∣2]1/2

≤ 1

(1 +K)βm−1+d/2
.

For c ∈ Nd, c̄ ≤ βm−1 − d/2− 1, we have

∣∣∂cx∂mt EK(t, x)
∣∣ ≤ (2π)c̄

|TdL|
∑

k∈(Zd)∗

|k|≤K

1

2π
∣∣ k
L

∣∣1−c̄ (∣∣∂m−1
t CKk (t)

∣∣+
∣∣∂m−1
t SKk (t)

∣∣)

≤ C
∑

k∈(Zd)∗

|k|≤K

|k|c̄


[∫

Rd
|v|2(1+ν)

∣∣Fx(∂m−1
t (f − fK))(k, v)

∣∣2 dv]1/2

+
1

(1 +K)βm−1+d/2

+

[∫
Rd
|v|2(1+ν)

∣∣Fx(∂m−1
t (f − fK))(−k, v)

∣∣2 dv]1/2

+
1

(1 +K)βm−1+d/2

 .

The sum ∑
k∈(Zd)∗

|k|≤K

|k|c̄
[∫

Rd
|v|2(1+ν)

∣∣Fx(∂m−1
t (f − fK))(k, v)

∣∣2 dv]1/2

can be bounded by some quantity equivalent to∣∣∣∣∂m−1
t (f − fK)

∣∣∣∣
Hc̄ν+1

≤
∣∣∣∣∂m−1

t (f − fK)
∣∣∣∣
H
βm−1−d/2−1

ν+j−(m−1)

≤ C

(1 +K)γm−1+d/2+1
,

where the last inequality is given by our induction hypothesis (5.13). That is,

∑
k∈(Zd)∗

|k|≤K

|k|c̄
[∫

Rd
|v|2(1+ν)

∣∣Fx(∂m−1
t (f − fK))(k, v)

∣∣2 dv]1/2

≤ C

(1 +K)γm−1+d/2+1
.

Hence, for all m ≤ l, and c̄ ≤ βm−1 − d/2− 1∣∣∂cx∂m−1
t EK(t, x)

∣∣ ≤ C

(1 +K)γm−1+d/2+1
+ C

∑
k∈(Zd)∗

|k|≤K

1

(1 +K)d+1
.

This can be bounded by a constant C > 0 which does not depend on K. Thus, there exists a
constant C > 0 such that for all m ≤ l, all c ∈ Nd with c̄ ≤ βm−1 − d/2− 1 and all K ∈ N,∣∣∂cx∂m−1

t EK(t, x)
∣∣ ≤ C
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for some constant C > 0 which is independant of t,K, x. Hence, for βl ∈ N,

∣∣∣∣∂ltfK∣∣∣∣Hβlν+j−l
≤
∣∣∣∣v · ∂l−1

t ∇xfK
∣∣∣∣
Hβlν+j−l

+

l−1∑
m=0

(
l − 1

m

) ∣∣∣∣∂mt EK · ∇v∂l−1−m
t fK

∣∣∣∣
Hβlν+j−l

≤ C
l−1∑
m=0

(
l − 1

m

) ∣∣∣∣∂l−1−m
t fK

∣∣∣∣
Hβl+1

ν+j−(l−1)

where the last inequality holds when

βl ≤ βl−1 − d/2− 1

...
βl ≤ β1 − d/2− 1,

which reduces to
βl ≤ βl−1 − d/2− 1 (5.14)

thanks to our assumption β1 ≥ · · · ≥ βl−1. By induction on l = j, j − 1, . . . , 1, we get conditions
on the βl (recall we let β1 = r):

βl ≤ β1 − (l − 1)(d/2 + 1) = r − (l − 1)(d/2 + 1).

In order to have βj ≥ 0, we need to have r ≥ (j − 1)(d/2 + 1) which is one of our assumptions on
r. Let p ≤ βl,∣∣∣∣∂lt(f − fK)

∣∣∣∣
Hpν+j−l

≤
∣∣∣∣v · ∇x∂l−1

t (f − fK)
∣∣∣∣
Hpν+j−l

+
∣∣∣∣∂l−1

t (E · ∇vf)− ∂l−1
t

(
EK · ∇vfK

)∣∣∣∣
Hpν+j−l

≤
∣∣∣∣∂l−1

t (f − fK)
∣∣∣∣
Hp+1
ν+j−(l−1)

+

l−1∑
m=0

(
l − 1

m

) ∣∣∣∣∂mt E · ∇v∂l−1−m
t f − ∂mt EK · ∇v∂l−1−m

t fK
∣∣∣∣
Hpν+j−l

≤
∣∣∣∣∂l−1

t (f − fK)
∣∣∣∣
Hp+1
ν+j−(l−1)

+

l−1∑
m=0

(
l − 1

m

) ∣∣∣∣∂mt E · ∇v∂l−1−m
t f − ∂mt EK · ∇v∂l−1−m

t fK
∣∣∣∣
Hpν+j−l

≤
∣∣∣∣∂l−1

t (f − fK)
∣∣∣∣
Hp+1
ν+j−(l−1)

+

l−1∑
m=0

(
l − 1

m

)∣∣∣∣(∂mt E − ∂mt EK) · ∇v∂l−1−m
t f

∣∣∣∣
Hpν+j−l

+
∣∣∣∣∂mt EK · ∇v∂l−1−m

t (f − fK)
∣∣∣∣
Hpν+j−l


≤
∣∣∣∣∂l−1

t (f − fK)
∣∣∣∣
Hp+1
ν+j−(l−1)

+

l−1∑
m=0

(
l − 1

m

)∣∣∣∣(E[∂mt f ]− EK [∂mt f
K ]
)
· ∇v∂l−1−m

t f
∣∣∣∣
Hpν+j−l

+
∣∣∣∣∂mt EK · ∇v∂l−1−m

t (f − fK)
∣∣∣∣
Hpν+j−l


≤
∣∣∣∣∂l−1

t (f − fK)
∣∣∣∣
Hp+1
ν+j−(l−1)

+

l−1∑
m=0

(
l − 1

m

)
max
c∈Nd
c̄≤p

∣∣∣∣∂cx (E[∂mt f ]− EK [∂mt f
K ]
)∣∣∣∣

L∞(TdL)

∣∣∣∣∂l−1−m
t f

∣∣∣∣
Hp+1
ν+j−l

+ max
c∈Nd
c̄≤p

∣∣∣∣∂cx∂mt EK∣∣∣∣L∞(TdL)

∣∣∣∣∂l−1−m
t (f − fK)

∣∣∣∣
Hp+1
ν+j−l

 . (5.15)

Recall our assumption (5.13):

∀m ≤ l − 1, p ≤ βm,
∣∣∣∣∂mt (f − fK)

∣∣∣∣
Hpν+j−m

≤ C

(1 +K)γm+βm−p
,

hence∣∣∣∣∂l−1
t (f − fK)

∣∣∣∣
Hp+1
ν+j−(l−1)

+

l−1∑
m=0

(
l − 1

m

)
max
c∈Nd
c̄≤p

∣∣∣∣∂cx∂mt EK∣∣∣∣L∞(TdL)

∣∣∣∣∂l−1−m
t (f − fK)

∣∣∣∣
Hp+1
ν+j−l

≤ C

(1 +K)γl−1+βl−1−p
+

l−1∑
m=0

(
l − 1

m

)
max
c∈Nd
c̄≤p

∣∣∣∣∂cx∂mt EK∣∣∣∣L∞(TdL)

C

(1 +K)γl−1−m+βl−1−m−p
.
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By our previous estimates,
∣∣∣∣∂cx∂l−1

t EK
∣∣∣∣
L∞(TdL)

≤ C for any c ∈ Nd with c̄ ≤ βl−1 − d/2 − 1.
Thus,

∣∣∣∣∂l−1
t (f − fK)

∣∣∣∣
Hp+1
ν+j−(l−1)

+

l−1∑
m=0

(
l − 1

m

)
max
c∈Nd
c̄≤p

∣∣∣∣∂cx∂mt EK∣∣∣∣L∞(TdL)

∣∣∣∣∂l−1−m
t (f − fK)

∣∣∣∣
Hp+1
ν+j−l

≤ C

(1 +K)γl−1+βl−1−p
+

l−1∑
m=0

(
l − 1

m

)
C

(1 +K)γl−1−m+βl−1−m−p
.

Moreover, for any m ≤ l − 1, γl−1 + βl−1 − p ≤ γm + βm − p, so that by (5.13),

∣∣∣∣∂l−1
t (f − fK)

∣∣∣∣
Hp+1
ν+j−(l−1)

+

l−1∑
m=0

(
l − 1

m

)
max
c∈Nd
c̄≤p

∣∣∣∣∂cx∂mt EK∣∣∣∣L∞(TdL)

∣∣∣∣∂l−1−m
t (f − fK)

∣∣∣∣
Hp+1
ν+j−l

≤ C

(1 +K)γl−1+βl−1−p−1
.

We need to estimate the first term in the sum of (5.15). Again, by (5.13) we have∣∣∣∣∂mt (f − fK)
∣∣∣∣
H0
ν+j−m

≤ C

(1 +K)γm+βm
,

therefore Proposition 5.3 gives

max
c∈Nd
c̄≤p

∣∣∣∣∂cx (E[∂mt f ]− EK [∂mt f
K ]
)∣∣∣∣

L∞(TdL)
≤ C

(1 +K)γm+βm+ 1
2−d−p

≤ C

(1 +K)γl−1+βl−1+ 1
2−d−p

.

Finally, using the condition (5.14),∣∣∣∣∂lt(f − fK)
∣∣∣∣
Hpν+j−l

≤ C

(1 +K)γl−1+βl−1+min(1/2−d,−1)−p

≤ C

(1 +K)γl−1+βl+d/2+1+min(1/2−d,−1)−p

≤ C

(1 +K)γl−1+βl+min(3/2−d/2,d/2)−p

Thus we deduce that we must have γl = γl−1 + min(3−d,d)
2 = · · · = γ1 +(l−1)min(3−d,d)

2 . Moreover,
γ1 = α+1

2 − β1 − d, hence

γl =
α+ 1

2
− β1 − d+ (l − 1)

min(3− d, d)

2
.

The condition γl > 0, l = 2, . . . , j, gives

α > 2(β1 + d)− (l − 1) min(3− d, d)− 1.

It is clear that min(3− d, d) ≤ d, thus −min(3− d, d) ≥ −d, so that

α > 2(β1 + d)− (j − 1)d− 1 = 2(r + d)− (j − 1)d− 1,

which is guaranteed to hold for every j ∈ N∗ since we assume α > 1 + 2(r + d).

We recall from Section 2.1 that qi is the order of the quadrature along the i-th dimension
and that ∆zi is the quadrature step along the i-th dimension, 1 ≤ i ≤ 2d. We recall as well that
the coefficients CKk , S

K
k are defined by (1.14), and the coefficients CK,hk , SK,hk by (2.1). We have

the following estimates on the quadrature error:
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Proposition 5.5

Let j ∈ N such that j ≥ 1 + maxi qi, and ν, r, α ∈ N such that ν + j > d/2, r ≥
max (3(ν + j), (j − 1)(d/2 + 1)), and α > 1 + 2(r + d). Let K ∈ N, and assume f0 ∈ Hr+αν+j .

Then there exists a constant C > 0 such that the following holds: for δ ≥ 0, define finite
intervals Id+1 := [a1, b1], . . . , I2d = [ad, bd] and Iv := Id+1 × · · · × I2d such that

||f0||H0
ν(TdL×(Rd\Iv)) ≤ δ.

Then for all k ∈ (Zd)∗ and K ∈ N∗, we have

∣∣∣CKk (t)− CK,hk (t)
∣∣∣ ≤ Cδ + C

2d∑
i=1

(
1 + C

2π(qi + 1)

ln(qi + 2)

∣∣∣∣ kL
∣∣∣∣)qi+1

∆zqii (5.16)

and ∣∣∣SKk (t)− SK,hk (t)
∣∣∣ ≤ Cδ + C

2d∑
i=1

(
1 + C

2π(qi + 1)

ln(qi + 2)

∣∣∣∣ kL
∣∣∣∣)qi+1

∆zqii (5.17)

where the estimates are uniform in time, and C does not depend on ∆zi.
As a consequence, for C large enough, we have the following estimates:

∣∣∣CKk (t)− CK,hk (t)
∣∣∣ ≤ Cδ + C

2d∑
i=1

(1 + C|k|)qi+1 ∆zqii (5.18)

and ∣∣∣SKk (t)− SK,hk (t)
∣∣∣ ≤ Cδ + C

2d∑
i=1

(1 + C|k|)qi+1 ∆zqii . (5.19)

Proof : We prove only the error estimate for
∣∣∣CKk (t)− CK,hk (t)

∣∣∣, since the treatment is exactly the

same for
∣∣∣SKk (t)− SK,hk (t)

∣∣∣.
First of all, by the regularity assumption on f0 we know from Proposition 5.4 that EK ∈

Cj([0, T ]×Rd). Therefore, the characteristics (XK , V K) ∈ Cj([0, T ]×Td ×Rd), so that the j-th
space derivative is continuous in time.

The quadratures in velocity will be performed on the intervals Id+i = [ai, bi], i = 1, . . . , d, and
the quadratures in space will be performed on Td. To make notations clearer and more general,
define Ii := [0, Li] for i = 1, . . . , d.

For n = 1, · · · , 2d, we define

z̃n := (zn, . . . , z2d) ∈ In × · · · × I2d,

gt(z̃n) :=

∫
I1×···×In−1

cos

(
2π
k

L
·XK(t; 0, z)

)
f0(z)dz1 · · · dzn−1,

ht(z̃n) =
∑

j1,...,jn−1

wj11 · · ·w
jn−1

n−1 cos

(
2π
k

L
·XK(t; 0, zj11 , · · · , z

jn−1

n−1 , z̃n)

)
f0(zj11 , · · · , z

jn−1

n−1 , z̃n).

We will prove the estimates (5.16) and (5.17) by induction on the number of dimensions.
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Base case For a fixed z̃2 ∈ I2 × · · · × I2d, the quadrature along the first dimension gives∣∣∣∣∣∣
∫
I1

cos

(
2π
k

L
·XK(t; 0, z1, z̃2)

)
f(0, z1, z̃2)dz1 −

∑
j1

wj11 cos

(
2π
k

L
·XK(t; 0, zj11 , z̃2)

)
f0(zj11 , z̃2)

∣∣∣∣∣∣
≤ C∆z1

q1

∣∣∣∣∣∣∣∣∂q1+1
z1

[
cos

(
2π
k

L
·XK(t; 0, ·, z̃2)

)
f0(·, z̃2)

]∣∣∣∣∣∣∣∣
L∞(I1)

.

(5.20)
We proceed to estimate the right-hand side, and consider a derivative along the n-th dimension
instead of only along the first dimension:

∂qn+1
zn

[
cos

(
2π
k

L
·XK(t; 0, z)

)
f0(z)

]
=

qn+1∑
l=0

(
qn + 1

l

)
∂qn+1−l
zn f0(z)∂lzn cos

(
2π
k

L
·XK(t; 0, z)

)
.

(5.21)
By the Faà di Bruno formula (see [AS64, Sect. 24.1.2]), we have

∂lzn cos

(
2π
k

L
·XK(t; 0, z)

)
=

l∑
m=0

cos(m)

(
2π
k

L
·XK(t; 0, z)

)∑
(l; a1, . . . , al)

′
l∏

c=1

(
2π
k

L
· ∂cznX

K(t; 0, z)

)ac
,

where the unindexed sum is performed over all l-tuples (a1, . . . , al) such that

a1 + 2a2 + · · ·+ lal = l and a1 + a2 + · · ·+ al = m.

The sum
∑

(l; a1, . . . , al)
′ is also called a Stirling number of the Second kind, of parameters (n,m).

It counts the number of ways of partitioning a set of l elements into m non-empty subsets. We
have∣∣∣∣∂lzn cos

(
2π
k

L
·XK(t; 0, z)

)∣∣∣∣ ≤ l∑
m=0

∑
(l; a1, . . . , al)

′
l∏

c=1

∣∣∣∣2π kL · ∂cznXK(t; 0, z)

∣∣∣∣ac
≤

l∑
m=0

∑
(l; a1, . . . , al)

′
l∏

c=1

∣∣∣∣2π kL
∣∣∣∣ac
2

∣∣∂cznXK(t; 0, z)
∣∣ac

≤ (2π)l
∣∣∣∣ kL
∣∣∣∣l
2

l∑
m=0

∑
(l; a1, . . . , al)

′
l∏

c=1

∣∣∂cznXK(t; 0, y, z)
∣∣ac ,

where the second inequality has been obtained by the discrete Cauchy-Schwarz inequality.
Since the characteristics XK is of class Cj([0, T ]× TdL × Rd), with j ≥ maxi qi + 1, we know

there exists a constant Cf0(K) that depends possibly on K such that for all N 3 c ≤ qn + 1,∣∣∣∣∂cznXK
∣∣∣∣
L∞([0,T ]×TdL×Iv)

≤ Cf0
(K).

However, we want this constant Cf0 to be independant of K, and to be able to choose such
a constant, we notice that as K → ∞, we recover the non-truncated Vlasov-Poisson system’s
characteristics. For these characteristics, thanks to the regularity assumption, we know that
there exists a constant denoted Cf0

(∞) such that∣∣∣∣∂cznX∣∣∣∣L∞([0,T ]×TdL×Iv)
≤ Cf0

(∞) <∞.

So we can build a sequence of constants {Cf0(K)}K≥1 which is bounded. Then define Cf0 :=
maxK≥1 Cf0(K), and we have ∣∣∣∣∂cznXK

∣∣∣∣
L∞([0,T ]×TdL×Iv)

≤ Cf0 .
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Hence, for all t ∈ [0, T ],∣∣∣∣∂lzn cos

(
2π
k

L
·XK(t; 0, z)

)∣∣∣∣ ≤ Clf0
(2π)

l

∣∣∣∣ kL
∣∣∣∣l l∑
m=0

∑
(l; a1, . . . , al)

′.

The remaining sums correspond to the Bell number Bl, and it counts the number of ways to
partition a set that has exactly l elements. We have the following bound (see [BT10]):

Bl ≤
(

0.792l

ln(l + 1)

)l
≤ ll

(ln(l + 1))l
.

Therefore,∣∣∣∣∂lzn cos

(
2π
k

L
·XK(t; 0, z)

)∣∣∣∣ ≤ Clf0

(
2πl

ln(l + 1)

)l ∣∣∣∣ kL
∣∣∣∣l ≤ Clf0

(
2π(qn + 1)

ln(qn + 2)

)l ∣∣∣∣ kL
∣∣∣∣l .

By regularity of the initial condition f0, we can choose the constant Cf0
large enough so that for

all n = 1, · · · , 2d, ∣∣∣∣∂lznf0

∣∣∣∣
L∞(I1×···×I2d)

≤ Cf0
, l = 0, . . . , qn + 1.

We then get from (5.21)∣∣∣∣∂qn+1
zn

[
cos

(
2π
k

L
·XK(t; 0, z)

)
f0(z)

]∣∣∣∣
≤ Cf0

qn+1∑
l=0

(
qn + 1

l

) ∣∣∣∣∣∣∣∣∂lzn cos

(
2π
k

L
·X(t; 0, z)

)∣∣∣∣∣∣∣∣
L∞(I1×···×I2d)

≤ Cf0

(
1 + Cf0

2π(qn + 1)

ln(qn + 2)

∣∣∣∣ kL
∣∣∣∣)qn+1

Note that the right-hand side does not depend on y or v, hence∣∣∣∣∣∣∣∣∂qn+1
zn

[
cos

(
2π
k

L
·XK(t; 0, ·)

)
f0(·)

]∣∣∣∣∣∣∣∣
L∞(I1×···×I2d)

≤ Cf0

(
1 + Cf0

2π(qn + 1)

ln(qn + 2)

∣∣∣∣ kL
∣∣∣∣)qn+1

.

(5.22)
Plugging this estimate with n = 1 back into (5.20), we obtain∣∣∣∣∣∣
∫
I1

cos

(
2π
k

L
·XK(t; 0, z1, z̃2)

)
f0(z1, z̃2)dz1 −

∑
j1

wj11 cos

(
2π
k

L
·XK(t; 0, zj11 , z̃2)

)
f0(zj11 , z̃2)

∣∣∣∣∣∣
= |gt(z̃2)− ht(z̃2)| ≤ C

(
1 +

2π(q1 + 1)

ln(q1 + 2)

∣∣∣∣ kL
∣∣∣∣)q1+1

∆zq11 ,

where the constant C does not depend on k,∆z1, q1, z̃2.

Induction step We have

|gt(z̃n+1)− ht(z̃n+1)| =

∣∣∣∣∣∣
∫
In

gt(zn, z̃n+1)dzn −
∑
jn

wjnn ht(z
jn
n , z̃n+1)

∣∣∣∣∣∣
≤
∫
In

|gt(zn, z̃n+1)− ht(zn, z̃n+1)| dzn +

∣∣∣∣∣∣
∫
In

ht(zn, z̃n+1)dzn −
∑
jn

wjnn ht(z
jn
n , z̃n+1)

∣∣∣∣∣∣ . (5.23)

The first term on the right-hand side can be bounded using the previous step in the induction,
which is assumed to give the following estimate:

|gt(z̃n)− ht(z̃n)| ≤ C
n−1∑
i=1

(
1 + C

2π(qi + 1)

ln(qi + 2)

∣∣∣∣ kL
∣∣∣∣)qi+1

∆zqii .
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Since the right-hand side does not depend on z̃n, we get∫
In

|gt(zn, z̃n+1)− ht(zn, z̃n+1)| dzn ≤ |In| ||gt(z̃n)− ht(z̃n)||L∞(In×···×I2d)

≤ C
n−1∑
i=1

(
1 + C

2π(qi + 1)

ln(qi + 2)

∣∣∣∣ kL
∣∣∣∣)qi+1

∆zqii ,

where the constant C does not depend on k,∆zi, qi, z̃n+1.
It remains only to estimate the second term on the right-hand side of (5.23). We notice that

it correspond to the quadrature error of the function zn 7→ ht(zn, z̃n+1) over In. Thus,∣∣∣∣∣∣
∫
In

ht(zn, z̃n+1)dzn −
∑
jn

wjnn ht(z
jn
n , z̃n+1)

∣∣∣∣∣∣ ≤ C ∣∣∣∣∂qn+1
zn ht(·, z̃n+1)

∣∣∣∣
L∞(In)

∆zqnn . (5.24)

We have

∂qn+1
zn ht(zn, z̃n+1) = ∂qn+1

zn ht(z̃n)

=
∑

j1,··· ,jn−1

wj11 · · ·w
jn−1

n−1 ∂
qn+1
zn

[
cos

(
2π
k

L
·XK(t; 0, zj11 , · · · , z

jn−1

n−1 , z̃n)

)
f0(zj11 , · · · , z

jn−1

n−1 , z̃n)

]
,

and hence∣∣∣∣∂qn+1
zn ht(·, z̃n+1)

∣∣∣∣
L∞(In)

≤
∑

j1,··· ,jn−1

∣∣∣wj11 · · ·wjn−1
n1

∣∣∣∣∣∣∣∣∣∣∣∂qn+1
zn

[
cos

(
2π
k

L
·XK(t; 0, zj11 , · · · , z

jn−1

n−1 , z̃n)

)
f0(zj11 , · · · , z

jn−1

n−1 , z̃n)

]∣∣∣∣∣∣∣∣
L∞zn (In)

≤
∑

j1,··· ,jn−1

∣∣∣wj11 · · ·w
jn−1

n−1

∣∣∣ ∣∣∣∣∣∣∣∣∂qn+1
zn

[
cos

(
2π
k

L
·XK(t; 0, ·)

)
f0(·)

]∣∣∣∣∣∣∣∣
L∞(I1×···×I2d)

.

By (5.22), we get

∣∣∣∣∂qn+1
zn ht(·, z̃n+1)

∣∣∣∣
L∞(In)

≤ C
(

1 + C
2π(qn + 1)

ln(qn + 2)

∣∣∣∣ kL
∣∣∣∣)qn+1 ∑

j1,··· ,jn−1

∣∣∣wj11 · · ·w
jn−1

n−1

∣∣∣ .
Moreover, since the weights are nonnegative,∑

j1,··· ,jn−1

∣∣∣wj11 · · ·w
jn−1

n−1

∣∣∣ =
∑

j1,··· ,jn−1

wj11 · · ·w
jn−1

n−1 .

The right-hand side corresponds to an approximation of the constant function equal to one on the
hyperrectangle I1×· · ·×In−1, hence the quadrature is exact and the value of the sum corresponds
to the volume of the hyperrectangle. Therefore,∣∣∣∣∂qn+1

zn ht(·, z̃n+1)
∣∣∣∣
L∞(In)

≤ C
(

1 + C
2π(qn + 1)

ln(qn + 2)

∣∣∣∣ kL
∣∣∣∣)qn+1

.

We can plug this into (5.24) to get∣∣∣∣∣∣
∫
In

ht(zn, z̃n+1)dzn −
∑
jn

wjnn ht(z
jn , z̃n+1)

∣∣∣∣∣∣ ≤ C
(

1 + C
2π(qn + 1)

ln(qn + 2)

∣∣∣∣ kL
∣∣∣∣)qn+1

∆zqnn .

Finally, we obtain from (5.23)

|gt(z̃n+1)− ht(z̃n+1)| ≤ C
n∑
i=1

(
1 + C

2π(qi + 1)

ln(qi + 2)

∣∣∣∣ kL
∣∣∣∣)qi+1

∆zqii .
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This achieves the induction step, so that this inequality holds for all n = 1, . . . , 2d.
When n = 2d,∣∣∣∣∣
∫
TdL×Iv

cos

(
2π
k

L
·XK(t; 0, z)

)
f0(z)dz − CK,hk (t)

∣∣∣∣∣ ≤ C
2d∑
i=1

(
1 + C

2π(qi + 1)

ln(qi + 2)

∣∣∣∣ kL
∣∣∣∣)qi+1

∆zqii ,

where the constant C does not depend on k,∆x,∆v, qx, qv. Finally, by definition of the intervals
Ii, we have

Ck(t) =

∫
Td×Iv

cos

(
2π
k

L
·XK(t; 0, z)

)
f0(z)dz +

∫
Td×(Rd\Iv)

cos

(
2π
k

L
·XK(t; 0, z)

)
f0(z)dz.

The second term on the left-hand side can be handled by using the fact that f0 ∈ Hr+2ν+1
ν , so

that ∣∣∣∣∣
∫
Td×(Rd\Iv)

cos

(
2π
k

L
·XK(t; 0, z)

)
f0(z)dz

∣∣∣∣∣
≤
∫
Td×(Rd\Iv)

|f0(z)|dz

≤

(∫
Td×(Rd\Iv)

1

(1 + |v|2)ν
dxdv

)(∫
Td×(Rd\Iv)

(1 + |v|2)ν |f0(x, v)|2dxdv

)
≤ C ||f0||H0

ν(TdL×(Rd\Iv)) ≤ Cδ

This achieves to show our claimed estimates.

Finally, we are able to prove the convergence result.
Proof of Theorem 3.1 : We first show that any r-order time integration scheme for second order

ODEs can be applied, then proceed to the claimed estimate. Throughout this proof we denote
by C a quantity which is independant from t, n,∆t,∆zi,K, and whose value may change from
line to line.

Recall the the characteristics of the Vlasov equation with a truncated Fourier kernel:
d

dt
XK(t; 0, x, v) = V K(t; 0, x, v)

d

dt
V K(t; 0, x, v) = EK(t,XK(t; 0, x, v))

where EK is defined by (1.11). Therefore,

d2

dt2
XK(t; 0, x, v) = EK(t,XK(t; 0, x, v)).

However this function EK is not a function we can compute in practice in the Weighted Particle
method, since it requires a knowledge of the mapping (x, v)→ (XK , V K)(t; t0, x, v) for all (x, v) ∈
TdL × Rd in order to compute CKk (t) and SKk (t). We instead use the approximations CK,hk , SK,hk

of CKk , S
K
k , given in (2.1):

CK,hk (t) =
∑
j∈J

cos

(
2π
k

L
·XK(t; 0, zj)

)
f(0, zj)wj ,

SK,hk (t) =
∑
j∈J

sin

(
2π
k

L
·XK(t; 0, zj)

)
f(0, zj)wj .

We recall that from these approximates coefficients, we defined in (2.2) an approximate kernel
EK,h:

EK,h(t, x) =
1∣∣TdL∣∣

∑
k∈(Zd)∗

|k|≤K

1

2π
∣∣ k
L

∣∣2 kL [sin(2πk · x
L

)
CK,hk (t)− cos

(
2πk · x

L

)
SK,hk (t)

]
.
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Let p = 1, . . . , P , the quantity XK
p (tn), defined in (2.4), is the solution to the second-order ODE:

d2

dt2
XK
p (t) = EK,h(t,XK

p (t)), XK
p (t0) = xp.

Moreover we have
EK(t, x) = EK,h(t, x) + (δE)K(t, x)

where

(δE)K(t, y) := EK(t, y)− EK,h(t, y)

=
1∣∣TdL∣∣

∑
k∈(Zd)∗

|k|≤K

1

2π
∣∣ k
L

∣∣2 kL [sin(2πk · y
L

)
(CK,hk − CKk )(t)− cos

(
2πk · y

L

)
(SK,hk − SKk )(t)

]

Thus we deduce

|(δE)K(t, y)| ≤ 1∣∣TdL∣∣
∑

k∈(Zd)∗

|k|≤K

1

2π
∣∣ k
L

∣∣2
∣∣∣∣ kL
∣∣∣∣ (∣∣∣CK,hk − CKk

∣∣∣ (t) +
∣∣∣SK,hk − SKk

∣∣∣ (t))

≤ C
∑

k∈(Zd)∗

|k|≤K

1

|k|

(∣∣∣(CK,hk − CKk )
∣∣∣ (t) +

∣∣∣(SK,hk − SKk )
∣∣∣ (t))

≤ CKdδ + C

2d∑
i=1

∆zqii
∑

k∈(Zd)∗

|k|≤K

(1 + C|k|)qi+1

|k|

≤ CKd

(
δ +

2d∑
i=1

∆zqii K
qi

)
=: E(K,∆x,∆v) (5.25)

where the third inequality is from (5.18) and (5.19). The exact characteristics XK(t; t0, xp, vp),
defined in (1.13), then satisfy

d2

dt2
XK(t; t0, xp, vp) = EK,h(XK(t; t0, xp, vp)) + (δE)K(t,XK(t; t0, xp, vp)).

We recall inequality (3.1), so that we can prove the claimed result in three steps, each one
corresponding to a line of this inequality. Each line corresponds to a different type of approxima-
tion: the first one is the time discretization error, the second one the phase-space discretization
error, and the third one the kernel truncature error.

Because EK,h is more appropriately dealt with by vector variables, we use the following
notations: VK(t) := d

dtX
K(t), XK(t) := (XK(t; t0, x1, v1), . . . , XK(t; t0, xP , vP )), and VK(t) :=

d
dtX

K(t).

Step 1: time discretization error Notice that the time dependence of the function EK,h
is only due to the time dependence of the finite-dimensional vector XK(t) ∈ RdP . Therefore we
may write CK,hk (t) ≡ CK,hk (XK(t)) by abuse of notations, in which case CK,hk (x) is a C∞(RdP ,R)

function of x. It is possible to write d2

dt2X
K(t) = EK,h(XK(t)) for some function

RdP → RdP

x = (x1, . . . , xP ) 7→ EK,h(x) =
(
EK,h1 (x), . . . ,EK,hP (x)

)
where, for i = 1, . . . , P we let xi ∈ Rd and

Rd 3 EK,hi (x) =
1∣∣TdL∣∣

∑
k∈(Zd)∗

|k|≤K

1

2π
∣∣ k
L

∣∣2 kL [sin(2πk · xi
L

)
CK,hk (x)− cos

(
2πk · xi

L

)
SK,hk (x)

]
.
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The coefficients CK,hk (x) and SK,hk (x) are defined by

CK,hk (x) =

P∑
p=1

cos
(

2πk · xp
L

)
βp,

SK,hk (x) =

P∑
p=1

sin
(

2πk · xp
L

)
βp.

Therefore, the mapping
(
x 7→ EK(x)

)
∈ C∞(RdP ,RdP ). Moreover, from the definition of the

characteristics (XK ,VK), we have 
d

dt
XK(t) = VK(t)

d

dt
VK(t) = EK,h(XK(t))

The right-hand side is a C∞(R2dP ,R2dP ) function of (XK(t),VK(t)), therefore we know that
the characteristics t 7→ (XK(t),VK(t)) are C∞([0, T ]).

In order to apply the error estimate for the time integration scheme to solve second-order
ODE, we recall that the error depends on the (γ + 1)-th derivative of the function x 7→ EK,h(x).
If the time integration scheme solves first-order ODEs, the error would depend on the (γ+1)− th
derivative of the function (x, v) 7→ (v,EK,h(x)).

It can be shown with the Faà di Bruno formula that for any l ∈ NdP , |l| ≤ γ,∣∣∣∣∣∣∂l
x

[
sin
(

2πk · xi
L

)
CK,hk (x)− cos

(
2πk · xi

L

)
SK,hk (x)

]∣∣∣∣∣∣
L∞(RdP )

≤ CKγ+1,

where the constant C does not depend on K.
Therefore, no matter if the time integration scheme approximates first-order or second-order

ODEs, we obtain for any n = 1, . . . , Nt

max
p=1,...,P

(∣∣XK,n
p −XK

p (tn)
∣∣+
∣∣V K,np − V Kp (tn)

∣∣) ≤ CKd+γ+1∆tγ

where the constant C does not depend on K or ∆t.

Step 2: phase-space discretization The assumptions that characteristics and their ap-
proximations have the same initial conditions can be rewritten as XK(t0) = XK(t0) and VK(t0) =
VK(t0). We have, for s ∈ [t0, t0 + T ],(

XK(s)
VK(s)

)
=

(
XK(t0)
VK(t0)

)
+

∫ s

t0

(
VK(τ)

EK,h(XK(τ))

)
dτ

=

(
XK(t0)
VK(t0)

)
+

∫ s

t0

(
VK(τ)

EK(τ,XK(τ))

)
dτ +

∫ s

t0

(
0

(δE)K(τ,XK(τ))

)
dτ.

Note that we also have(
XK(s)
VK(s)

)
=

(
XK(t0)
VK(t0)

)
+

∫ s

t0

(
VK(τ)

EK(τ,XK(τ))

)
dτ,

so that(
XK(s)
VK(s)

)
=

(
XK(s)
VK(s)

)
+

∫ s

t0

(
VK(τ)− VK(τ)

EK(XK(τ))− EK(XK(τ))

)
dτ +

∫ s

t0

(
0

(δE)K(τ,XK(τ))

)
dτ.

From the mean value theorem we get:

∣∣EK(τ,XK(τ))− EK(τ,XK(τ))
∣∣ ≤ C

 ∑
k∈(Zd)∗

|k|≤K

|CKk (t)|+ |SKk (t)|

∣∣XK(τ)−XK(τ)
∣∣ .
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Using the fact that the function f0 ∈ Hr+αν+j , we can apply the same ideas as those leading to
(5.9), in order to obtain

|Ck(t)| ≤ C

(1 + |k|)r+α+d/2

for some C > 0 which does not depend on k. The same estimate holds for
∣∣SKk (t)

∣∣. Hence∣∣EK(τ,XK(τ))− EK(τ,XK(τ))
∣∣ ≤ C ∑

k∈(Zd)∗

|k|≤K

1

(1 + |k|)r+α+d/2

∣∣XK(τ)−XK(τ)
∣∣

≤ C
∣∣XK(τ)−XK(τ)

∣∣ (5.26)

where the constant C can be taken independant of K because r + α > d/2. Thus, using (5.25),∣∣∣∣(XK(s)−XK(s)
VK(s)− VK(s)

)∣∣∣∣ ≤ ∫ s

t0

∣∣∣∣( VK(τ)− VK(τ)
EK(XK(τ))− EK(XK(τ))

)∣∣∣∣ dτ + T |E(K,∆x,∆v)|

≤ C
∫ s

t0

∣∣∣∣(VK(τ)− VK(τ)
XK(τ)−XK(τ)

)∣∣∣∣ dτ + T |E(K,∆x,∆v)| ,

and we conclude by using the Grönwall lemma:∣∣∣∣(XK(s)−XK(s)
VK(s)− VK(s)

)∣∣∣∣ ≤ CTeCTKd

(
δ +

2d∑
i=1

∆zqii K
qi

)
,

where C is independant of K,∆zi, s.

Step 3: kernel truncature error We estimate the approximation in the characteristics
that is due to the truncation error in the Fourier Kernel. For p = 1, . . . , P ,

XK(t; t0, xp, vp) = xp +

∫ t

t0
V K(τ ; t0, xp, vp)dτ, X(t; t0, xp, vp) = xp +

∫ t

t0
V (τ ; t0, xp, vp)dτ,

V K(t; t0, xp, vp) = vp +

∫ t

t0
EK(τ,XK(t0, xp, vp))dτ, V (t; t0, xp, vp) = vp +

∫ t

t0
E(τ ;X(τ ; t0, xp, vp))dτ,

so that we have(
XK(s)
VK(s)

)
=

(
XK(t0)
VK(t0)

)
+

∫ s

t0

(
VK(s)

EK(τ,XK(τ))

)
dτ

=

(
X (s)
V(s)

)
+

∫ s

t0

(
VK(s)− V(s)

EK(τ,XK(τ))− E(τ,X (τ))

)
dτ

=

(
X (s)
V(s)

)
+

∫ s

t0

(
VK(s)− V(s)

EK(τ,XK(τ))− E(τ,XK(τ))

)
+

(
0

E(τ,XK(τ))− E(τ,X (τ))

)
dτ.

Thus,∣∣∣∣(XK(s)−X (s)
VK(s)− V(s)

)∣∣∣∣ ≤ ∫ s

t0

∣∣∣∣( VK(s)− V(s)
EK(τ,XK(τ))− EK(τ,X (τ))

)∣∣∣∣+

∣∣∣∣( 0
EK(τ,X (τ))− E(τ,X (τ))

)∣∣∣∣ dτ.
Since f0 ∈ Hr+αν+j , by Proposition 5.2 we have

∣∣∣∣(f − fK)(t)
∣∣∣∣2
Hrν
≤ C

(1+K)α , hence by Proposi-
tion 5.3 we obtain ∣∣∣∣( 0

EK(τ,X (τ))− E(τ,X (τ))

)∣∣∣∣ ≤ C

(1 +K)
α+1

2 −d
,

where C does not depend on K. We get∣∣∣∣(XK(s)−X (s)
VK(s)− V(s)

)∣∣∣∣ ≤ ∫ s

t0

∣∣∣∣( VK(s)− V(s)
EK(τ,XK(τ))− EK(τ,X (τ))

)∣∣∣∣ dτ +
C

(1 +K)
α+1

2 −d
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For the same reasons as those leading to (5.26), we obtain∣∣∣∣(XK(s)−X (s)
VK(s)− V(s)

)∣∣∣∣ ≤ C ∫ s

t0

∣∣∣∣( VK(s)− V(s)
XK(τ)−X (τ)

)∣∣∣∣ dτ +
CT

(1 +K)
α+1

2 −d
.

Finally, the Grönwall lemma yields∣∣∣∣(XK(s)−X (s)
VK(s)− V(s)

)∣∣∣∣ ≤ CTeCT

(1 +K)
α+1

2 −d

which completes the proof.
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