DNA demethylation and hypermethylation are both required for late nodule development in Medicago

Yann Pecrix, Erika Sallet, Sandra Moreau, Olivier Bouchez, Sébastien
Carrere, Jerome Gouzy, Marie-Françoise Jardinaud, Pascal Gamas

- To cite this version:

Yann Pecrix, Erika Sallet, Sandra Moreau, Olivier Bouchez, Sébastien Carrere, et al.. DNA demethylation and hypermethylation are both required for late nodule development in Medicago. Nature Plants, 2022, 8 (7), pp.741-749. 10.1038/s41477-022-01188-w . hal-03728475

HAL Id: hal-03728475

https://hal.science/hal-03728475

Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DNA demethylation and hypermethylation are both required for late nodule development in Medicago

Pecrix 1,2, Y., Sallet ${ }^{1}$, E., Moreau ${ }^{1}$, S., Bouchez ${ }^{3}$, O., Carrere ${ }^{1}$, S., Gouzy ${ }^{1}$, J., Jardinaud ${ }^{1}$, M-F., Gamas ${ }^{1 *}$, P.
${ }^{1}$ LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France ; ${ }^{2}$ CIRAD, UMR PVBMT, F-97455 Saint-Pierre, La Réunion, France
${ }^{3}$ INRAE, US1426, GeT-PlaGe, Genotoul, 31326, Castanet-Tolosan, France;
*Corresponding author: Pascal.Gamas@inrae.fr

Introductory paragraph

Plant epigenetic regulations are involved in transposable element (TE) silencing, developmental processes and responses to the environment ${ }^{1-7}$. They often involve modifications of DNA methylation, particularly through the DEMETER (DME) demethylase family and RNA-dependent DNA methylation (RdDM) ${ }^{8}$. Root nodules host rhizobia that can fix atmospheric nitrogen for the plant benefit in nitrogen-poor soils. The development of indeterminate nodules, as in Medicago truncatula, involve successive waves of gene activation ${ }^{9-12}$, the control of which raises interesting questions. Using laser capture microdissection (LCM) coupled to RNAseq (SYMbiMICS data ${ }^{11}$), we previously identified 4,309 genes (termed NDD) activated in the nodule differentiation and nitrogen fixation zones, 36% of which belong to co-regulated genomic regions dubbed symbiotic islands ${ }^{13}$. We found MtDME to be upregulated in the differentiation zone and required for nodule development, and identified 474 differentially methylated regions (DMRs) hypomethylated in the nodule, by analyzing $\sim 2 \%$ of the genome ${ }^{4}$. Here, we coupled LCM and whole-genome bisulfite-sequencing (WGBS) for a comprehensive view of DNA methylation, integrated with gene expression at the tissue level. Furthermore, by CRISPR-Cas9 mutagenesis of MtDRM2, we showed the importance of RdDM for CHH hypermethylation and nodule development. We thus proposed a model for DNA methylation dynamics during nodule development.

Main text

We first performed WGBS using M. truncatula nodules at 6 days post inoculation with Sinorhizobium meliloti (stage of maximal MtDME expression ${ }^{4}$) and nitrogen-starved non-inoculated root tips (RT) (two replicates; sequencing coverage of ~ 16 to $25 x$, supplemental Table 1). Indeterminate nodules consist of an apical meristem (or zone I), an infection and early differentiation zone (distal and proximal zone II), a late differentiation zone (interzone II-III), and a nitrogen fixation zone (zone III). To distinguish different developmental stages, we analyzed three laser-dissected nodule zones,
namely the meristematic (M), differentiation (Diff), and nitrogen-fixation (Fix) zones (Fig. 1a; three replicates; average BsSeq coverage of 5.7, 10.5 and 15.8x respectively; supplemental Table 1). BsSeq data showed a good sample reproducibility, and allowed two groups to be clearly distinguished, one corresponding to the differentiated nodule tissues (Diff and Fix) and the other to the whole organs and M zone (Fig. 1b). While little difference was observed between whole organs, an increase of CHH methylation was found in the Diff and Fix zones (Fig. 1c, 1d), on all chromosome regions (Fig. 1e), with an average methylation level of 12.0% and 15.1% respectively, vs. 6.8% in RT. Changes in DNA methylation in all three contexts CG, CHG, and CHH were then revealed by DMR analyses, when comparing Diff and Fix vs RT (Fig. 1f). The CHH DMRs (Fix vs RT) encompassed 22.8 Mb vs. only 0.82 Mb for the CG-CHG DMRs (5.3\% and 0.2% of the nuclear genome, with an average size of 355 and 233 nt, respectively). The DMRs (shown with methylome data in the M.t 5.0 genome browser ${ }^{13}$ https://medicago.toulouse.inra.fr/MtrunA17r5.0-ANR/) were consistent with previously identified DMRs ${ }^{4}$ and highly reproducible, whether comparing biological replicates, whole organ vs LCM samples, or Diff vs Fix zones. In conclusion, a strong dynamics of DNA methylation during the late stages of nodule development was uncovered.

At the gene level, in the CG context, average methylation profiles showed gene body methylation with a strong decrease at the transcription start (TSS) and termination (TTS) sites (Fig. 2a), as commonly observed in angiosperms ${ }^{14}$. While all samples were very similar when considering the average of all genes, gene body hypomethylation was observed in nodule samples when focusing on the 4,309 NDD genes. Such hypomethylation was not seen when considering the 4,309 genes most expressed in roots, or TE-related repeats (hereafter called TEs for simplification) (Fig. 2a). By contrast, in the CHH context, and the CHG context to a lower extent, a strong hypermethylation was observed for all genes and TEs in the Diff and even more the Fix samples, with a peak of hypermethylation in the 1 kb region upstream the gene TSS (Fig. 2 b and 2 c).

CHG DMRs appeared more similar to CG DMRs than to CHH DMRs, both in terms of localization and pattern. Thus, 98.8% of CG DMRs, 85.5% of CHG DMRs and 99.5\% CG-CHG DMRs were hypomethylated in Fix vs RT, whereas all CHH DMRs were hyper-methylated ($>99.9 \%$ in Diff and Fix vs RT), in all cases with a large difference of methylation level (mean absolute difference of 0.53 and 0.42 in the CG-CHG and CHH context, respectively) (supplemental Table 2). Many DMRs were close to genes, with 71.9% of CG-CHG DMRs and 47.9\% of CHH DMRs overlapping with genes extended by 1 kb on each side. Moreover, whereas only 14% of CG-CHG DMRs overlapped with CHH DMRs, 75.9% of CGCHG DMRs overlapped with 1 kb -extended CHH DMRs, indicating their proximity (see a representative example in Extended Data Fig. 1). However, the CG-CHG DMRs preferentially targeted genes (Fig. 2d) whereas the CHH DMRs mostly targeted TEs (66.1\%, 88.5\% and 96.6\% overlap with Tephra-annotated ${ }^{13}$, EDTA ${ }^{15}$-annotated and TASR ${ }^{16}$-annotated TEs, respectively). Finally, CG-CHG DMRs were strongly enriched in NDD islands compared to their flanking regions, unlike in apical (NDA) and non-spatially regulated (NDN) islands (Fig. 2e). Thus, in summary, late nodule development is accompanied by hypomethylated CG-CHG DMRs centered on a limited number of genes, and hypermethylated CHH DMRs targeting TEs, with nearly half of them close to CG-CHG DMRs.

To further integrate gene expression (LCM-RNAseq) and methylation (LCM-BsSeq), we analyzed the DMR distribution amongst the 16 expression patterns previously defined within the nodule ${ }^{13}$ (Fig. 3ab). CG-CHG DMRs tightly positively correlated with genes expressed in the Diff and Fix zones (Patterns 5-11 and 14-16), maximally in Pattern 6 to 9 (47.5\% of 1,218 genes with DMRs) (Fig. 3c; Extended Data Fig. 2). These hypo-DMRs are associated with key or potential actors in nodule development and activity, notably genes encoding 380 NCR peptides ${ }^{9}$, leghemoglobins ${ }^{17}$, transporters, calmodulin-like proteins, symbiotic immune response regulators (MtDNF2 ${ }^{18}$, MtSymCRK ${ }^{19}$, MtNAD1 ${ }^{20}$, MtRSD ${ }^{21}$), redox control proteins and 508 long non-coding RNAs (supplemental Table 3). When comparing the regulation of NDD genes with and without CG-CHG DMRs (1,723 and 2,586 genes respectively), we found that gene induction in nodules was much
stronger for NDD genes with CG-CHG DMRs [median fold change (FC) vs root expression of 280.6 and 12.7, respectively; supplemental Table 4]. This was mostly due to a lower expression in roots (median root expression with and without DMR of 0.01 and 0.09 counts per million, respectively), correlating with a higher DNA methylation in roots (Extended Data Fig. 3). Finally, as previously observed ${ }^{13}$, many NDD genes (particularly in expression patterns 5 to 10) presented a highly differential distribution of histone marks, with repressive H3K27me3 marks in roots and active H3K9ac marks in nodules (Fig. 3d), supporting complex epigenetic regulations in symbiotic islands.

In contrast to the CG-CHG DMRs, the abundance and distribution of CHH DMRs strongly differed between the Diff and Fix zones (Fig. 3c). In the Diff zone, CHH DMRs were located next to 11.7% of genes, preferentially those showing CG-CHG DMRs (Pearson correlation of 0.81 ; P -value <0.001), whereas, in the Fix zone, they were next to 45.9% of all genes, whatever their expression profile. An attractive hypothesis is therefore that hyper CHH DMRs are generated first next to hypo CG-CHG DMRs in the Diff zone and then spread genome-wide. Two pathways have been reported in Arabidopsis for CHH methylation, involving RdDM and the CMT2 chromomethylase (in a DDM1dependent process), respectively ${ }^{8}$. CMT2 and DDM1 genes are weakly expressed in the Diff and Fix zones, in contrast to RdDM genes (supplemental Table 4), making RdDM the best candidate pathway for CHH hypermethylation. We tested this assumption using mutants of DRM2, the main DNA methylase in RdDM. We identified three M. truncatula homologues of AtDRM2 with a good conservation of its reported active sites ${ }^{22}$, termed MtDRM2, MtDRM2L1 (DRM2-like1) and MtDRM2L2 (Extended Data Fig. 4). We then performed multi-guide CRISPR-Cas9 mutagenesis of both MtDRM2 and MtDRM2L2 (the second best expressed family member in nodules), using hairy root transformation. WGBS was carried out with pooled DNA from nodules showing various mutations in Mtdrm2/Mtdrm212 (hereafter termed drm; Extended Data Fig. 5), using nodules poorly affected in size, thereby decreasing confounding effects due to developmental problems. Control samples consisted of nodules transformed with a CRISPR construct targeting the GUS gene. CG methylation was mostly unaffected in Mtdrm mutant nodules (17 DMRs hyper methylated in CRISPR-GUS vs drm
nodules). By contrast, CHH (Fig. 3e) and to a lower extent CHG hypermethylation were strongly decreased (respectively 9,951 and 391 DMRs hypermethylated in both replicates of CRISPR-GUS vs Mtdrm nodules with a difference in absolute methylation level >0.3, vs. no hypermethylated DMR in Mtdrm nodules) (supplemental Table 5). This implied that RdDM is involved in CHH and part of CHG hypermethylation in nodules, which was supported by 87.4% of CHH DMRs overlapping with 24 nt siRNA clusters ($71.9 \%, 91.4 \%$ and 97.7% of which co-localize with Tephra-, EDTA- and TASRannotated TEs, respectively). We set up a complementation experiment where the CRISPR-DRM construct was co-transformed with a non-editable synthetic MtDRM2 cDNA (termed DRM2-R) expressed from a pAtUBI promoter. WGBS showed that DRM2-R allowed CHH hypermethylation of genes and TEs to be recovered in nodules (Fig. 3e; only 186 DMRs hypermethylated in CRISPR-GUS vs Mtdrm/DRM2-R).

To assess the impact of RdDM on nodule development, we examined the phenotype of nodules induced by S.meliloti nifH:GFP (a marker of late rhizobium differentiation) (Fig. 3f-g). While the nodule number was not significantly modified (Extended Data Fig. 6a), nifH:GFP expression was affected in 50% of CRISPR-DRM nodules ($n=114$), vs 4.5% of CRISPR-GUS ($n=89$) and 3.2% of CRISPRDRM pUBI:DRM2-R ($\mathrm{n}=31$) nodules. In the most severe cases (about 25% of independently transformed roots), small, round-shaped and white nodules were formed with very low nifH:GFP expression and nitrogenase activity (based on an acetylene reduction assay) (Fig. 3g; Extended Data Fig. 6b; Extended Data Fig. 7). As for WGBS, we analyzed the transcriptome of Mtdrm nodules slightly affected in size. Similar number of genes were up-and down-regulated vs CRISPR-GUS nodules (1,011 and 913 genes respectively, $\mathrm{FC}>2$, $\mathrm{FDR}<0.05$), while more TEs were up-than downregulated in $d r m$ nodules (282 and 91 TEs respectively, FC>2, FDR<0.05), consistent with an increased transcription of less methylated TEs. Down-regulated genes, including 83 NCR genes, were predominantly found in patterns 8 to 11, as strongly upregulated genes (FC>4) (supplemental Table 6). This indicated a particular impact of non-CG methylation on transcriptional regulation in the late differentiation zone. Of note, MtROS1 and MtCMT2 (DNA demethylase and CHH methylase genes, respectively) were
down- and up-regulated in the mutant respectively, possibly as compensation for the loss of DRM2 ${ }^{8,23,24}$. Most Pattern 8 to 11 genes that were down and upregulated in drm nodules had a CHH DMR (Fix vs RT) within 1kb (85.1\% and 67.6\% respectively, supplemental Table 7), suggesting that the methylation status of TEs may either positively or negatively impact the expression of certain Diff/Fix genes.

Two non-exclusive hypotheses could explain an increase in RdDM during late nodule development: (i) an increased expression of TEs, leading to increased siRNA production; (ii) a more conducive environment due to chromatin relaxation ${ }^{25}$. A re-analysis of SYMbiMICS data (see Methods) revealed 1,923 nodule-expressed TEs, with 1,321 of them expressed in the Diff/Fix zones, enriched in type I TEs (43.2\% vs 34\% for all chromosomal TEs) (supplemental Table 7). These Diff/Fix TEs showed a high induction level (up to a median 47-fold increase vs zone 1 in Pattern 9) and were often close to NDD genes (48.1\% within 1 kb). Visual inspection of RNAseq data on the Mt5.0 genome browser suggested that TEs could be expressed either autonomously or by read-through transcription from strongly expressed genes (see an example in Extended Data Fig. 8). A higher fraction of Diff/Fix TEs overlapped with CHH DMRs compared to the total TE population (44.7% vs. 23.3%, respectively, with a mean overlap length of 761 vs .228 nt). Thus, an increased TE expression is a likely cause of genome-wide hypermethylation, but probably not the only one. To assess our second hypothesis, i.e. a possible decondensation of heterochromatin, we examined DAPI-stained nodule sections by confocal microscopy. We observed enlarged nuclei in the Diff/Fix zones, but their chromocenters remained well visible (Extended Data Fig. 9), which did not support an extensive decondensation of pericentromeric heterochromatin. Decondensation of facultative heterochromatin in chromosome arms remains however conceivable, all the more since we found that all eight M. truncatula H2A.W genes encoding a histone 2 variant involved in heterochromatin compaction ${ }^{26}$ are strongly downregulated in the nodule interzone and zone III (supplemental Table 4).

In conclusion, while we previously uncovered (i) the importance of DNA demethylation for Medicago nodule development ${ }^{4}$ and (ii) symbiotic islands enriched with differential mCHH and histone marks in nodules versus roots ${ }^{13}$, here we showed the extent and dynamics of DNA methylation in the nodule, by coupling LCM and WGBS. We established that CG-CHG demethylation is restricted to genes in a few genomic regions, including symbiotic islands, in contrast to CHH hypermethylation, that affects TEs first next to CG-CHG DMRs and then throughout the genome. This hypermethylation is RdDMmediated and important for nodule development. In Arabidopsis, RdDM-dependent hyper-CHH DMRs have been described in male sexual-lineage cells ${ }^{27}$, the embryo ${ }^{28}$ and root meristematic cells ${ }^{25}$ but are unusual in differentiated somatic cells. The CHH hypermethylation reported here is more reminiscent of that reported for miRNA genes in soybean nodules ${ }^{29}$ and the so-called mCHH islands found in maize and other plant species next to highly expressed genes, and proposed to act as barriers between euchromatin and heterochromatin to prevent TE expression ${ }^{14,30}$.

In our model for DNA methylation dynamics in M.truncatula nodules (Fig. 4), a subset of late symbiotic genes are found in genomic regions that are strongly repressed in the root by DNA methylation and repressive histones. A combination of CG-CHG demethylation and histone modifications would make these regions accessible to the transcriptional machinery in the nodule differentiation zone. This would lead to transcriptional induction of Diff/Fix genes and nearby TEs, either from their own promoters or by read-through transcription from strongly expressed upstream genes. This would trigger an increased siRNA production and RdDM, as a plant protection against TE activation, progressively targeting all related TEs. In our model, TE hypermethylation would thus be primarily a consequence of TE transcription, as well as possibly relaxation of facultative heterochromatin. Since the methylomes of the nodule meristem and Diff/Fix zones are very different (Fig. 1b-c), the previously discussed hypothesis ${ }^{4}$ that siRNAs produced in the Diff/Fix zone might migrate to the meristem to protect it against TE activation seems unlikely. In any case, RdDM is important for optimal expression of late symbiotic genes, possibly to decrease interference between

TE and gene expression. Taken together, our data provide new insights on the complex epigenetic landscape regulating gene expression during nodule development and nitrogen fixation.

Methods

Plant growth and inoculation

Non-transformed and Agrobacterium rhizogenes-transformed M. truncatula cv Jemalong A17 plants were grown in aeroponic caissons as described ${ }^{31}$, with the following chamber conditions:
temperature: $22^{\circ} \mathrm{C} ; 75 \%$ hygrometry; light intensity: $200 \mu \mathrm{E} . \mathrm{m}^{-2} . \mathrm{s}^{-1}$; light-dark photoperiod: $16 \mathrm{~h}-8 \mathrm{~h}$. Plants were grown for about seven days in caisson growth medium supplemented with 5 mM $\mathrm{NH}_{4} \mathrm{NO}_{3}$, then nitrogen-starved for three days, just before rhizobium inoculation. Plants were inoculated with 10 mL of a suspension $\left(\mathrm{OD}_{600 \mathrm{~nm}}=1\right)$ of Sinorhizobium meliloti 2011 (for 10 L of plant growth medium), containing the pXLGD4 hemA:IacZ plasmid (GMI6526) ${ }^{32}$, grown at $28^{\circ} \mathrm{C}$ on TY solid medium (Bacto Tryptone 5 g. L^{-1} (Becton Dickinson), Yeast Extract $3 \mathrm{~g} . \mathrm{L}^{-1}$ (Duchefa Biochemie), AgarAgar $15 \mathrm{~g} \cdot \mathrm{~L}^{-1}, \mathrm{pH} 7$) supplemented with $10 \mu \mathrm{~g} \cdot \mathrm{~mL}^{-1}$ of tetracycline and $6 \mathrm{mmol} . \mathrm{L}^{-1}$ calcium chloride. Following S. meliloti inoculation, plants were grown in nitrogen-free medium. Under these conditions, nodules became pink and nitrogen-fixing at about 7 dpi (non-transformed plants) or 10 dpi (composite plants transformed by A. rhizogenes).

Root transformation

Root transformation was carried out using Agrobacterium rhizogenes ARqua1 as described ${ }^{33}$, except that plants were kept at $20^{\circ} \mathrm{C}$ for three weeks after transformation. Transformed roots were selected by kanamycin ($25 \mathrm{mg} / \mathrm{L}$) and systematically checked for the expression of a DsRed reporter gene present on the T-DNA construct. The nodulation phenotype of composite plants was analyzed following aeroponic growth in caissons.

RNA and DNA extraction

For BsSeq or RNAseq analyses of transformed roots/nodules, at least six independently transformed root systems were used per replicate, and at least 15 nodules per root system. For RNAseq analyses
(three biological replicates per sample) RNA was extracted using the Qiagen RNeasy Plant Mini Kit (Qiagen) with RNAse-free DNAsel (Qiagen) treatment following the manufacturer's procedure. RNA was quantified using a Nanodrop Spectrophotometer ND-100 (NanoDrop Technologies, Wilmington, DE, USA) and analyzed with a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). For bisulfite sequencing, DNA was prepared using the Qiagen DNA easy kit or as described for high molecular weight plant genomic DNA ${ }^{34}$. It was quantified using a Qubit fluorometer (Invitrogen) and analyzed with a Fragment Analyzer (Agilent).

Laser micro-dissection of nodule zones

Laser microdissection of 15 dpi nodules was carried out as described ${ }^{11,35}$, using $24 \mu \mathrm{~m}$ nodule sections and four biological replicates. Rep 1 was only used to set up conditions for the whole procedure. DNA was extracted with the QIAmp micro DNA kit (QIAGEN), following the recommended procedure («Isolation of Genomic DNA from laser-microdissected tissues »). DNA was quantified using a Qubit with the Qubit dsDNA HS Assay, and then pooled from 20 (rep 2 and 4) or 21 (rep 3) nodules before library production. The amount of pooled DNA was: $81,87,99 \mathrm{ng}$ for the dissected meristematic zone (rep 2, 3, 4 respectively); 203, 218, 171 ng for the differentiation zone; 342; 361, 360 ng for the fixation zone (including S. meliloti DNA).

Bisulfite sequencing and methylome data analyses

WGBS of RT, N6, M, Diff and Fix samples was performed at the GeT-PlaGe core facility, INRAE Toulouse (http://www.get.genotoul.fr). WGBS libraries were prepared according to Swift Biosciences's protocol using the Accel-NGS Methyl-Seq DNA Library Kit for Illumina Sequencing. Briefly, DNA was fragmented by sonication and bisulfite conversion was performed using the EZ DNA Methylation-Lightning Kit (ZYMO Research) following manufacturer's recommendations. Sample purifications were performed using SPRI select magnetic beads. Then, adaptors were ligated and sequencing tags were added by PCR (10 PCR cycles). Library quality was assessed using a Fragment Analyzer (Advanced Analytical Technologies, Inc.) and libraries were quantified by Q-PCR using the Kapa Library Quantification Kit. Sequencing was performed using an Illumina HiSeq3000 (paired end

150 bp) and the Illumina HiSeq3000 Reagent Kits. WGBS of transformed root tips, CRISPR-GUS, CRISPR-DRM and DRM2-R samples was performed by BGI Hong-Kong, using the EZ DNA MethylationGold kit (ZYMO Research) and a HiSeq Xten (Illumina) platform (paired end 150 bp). For each library, the raw BSseq reads were processed with Methylpy v1.4.1 using bowtie2 (v.2.3.4.3) as aligner with Methylpy embedded default parameters "-X 1000 -k 2 --no-mixed --no-discordant sensitive", and MtrunA17 R5.0 ${ }^{13}$ genome for mapping. PCR duplicates were removed with MarkDuplicates (Picard suite v2.18.1). The methylation level of each cytosine was then computed with Methylpy v1.4.1 ${ }^{36}$. The non-conversion rate of each sample was obtained by analyzing the rate of methyl cytosines in the chloroplast genome (MtrunA17CP). The clustering analysis of Fig. 1b was performed with methylKit ${ }^{37}$ (R package, version 1.10), with a minimal coverage of ten for cytosines, correlation-based distances and Ward's method. Identification of differentially methylated sites (DMS) and differentially methylated region (DMR) calling were performed with Methylpy, independently for CG, CHG, CG-CHG and CHH contexts, only considering cytosines covered by at least four reads. DMS at a distance of less than 250 nt from each other were collapsed into DMRs. We also tested distances of $50 \mathrm{nt}, 150 \mathrm{nt}$ and 350 nt , with qualitatively similar results. Were retained the DMRs with FDR<0.05, containing at least 4 DMS, found in at least two replicates of each sample, and with a minimal difference of absolute methylation level of 0.1 for $\mathrm{CHH}, 0.2$ for $\mathrm{CHG}, 0.3$ for CG-CHG and 0.4 for CG^{38}.

The relative position of DMRs with other DMRs, genes or TEs were computed using Bedtools v2.30.0 (command "intersect" and "closest"). The relative proportion of methylated cytosines (Fig. 1c) was determined using a betabinomial test and considering cytosines with a minimal sequencing coverage of four. Representations of cytosine methylation level and DMR density were obtained using Circos ${ }^{39}$ (http://circos.ca) (Fig. 1e), ViewBS ${ }^{40}$ (v 0.1.9, using default parameters; Fig. 2a-c, Fig. 3e), and DANPOS2 ${ }^{41}$ (bin size set to 200 bp; Fig. 2d-e, Fig. 3c-d, Extended Data Fig. 3).

Despite the fact that very little LCM DNA remained and that whole organs dilute the signals, five CHH-DMRs could be independently validated by Chop-PCR ${ }^{42}$, using DNA from LCM-BsSeq analyses for
one of them, and newly prepared genomic DNA from root tips and 15 dpi nodules for the others (Supplemental Table 8). For those, DNA was prepared by CTAB extraction from three biological replicates, consisting of pools of 50 nitrogen-starved root tips from six plants and pools of 303,434 and 357 nodules from five, ten and eight plants, respectively. One $\mu \mathrm{g}$ of DNA was digested with either Nlall, Alul or Ddel for one hour at $37^{\circ} \mathrm{C}$ according to manufacturer's procedure (ThermoFisher). The control DNA consisted of one $\mu \mathrm{g}$ of DNA treated under the same conditions without restriction enzyme. Quantitative PCR reactions were performed on a Roche Light Cycler 480 using the Light Cycler Fast Start DNA Master SYBR Green I kit according to manufacturer's instructions (Roche). Cycling conditions were as follows: $95^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, 50$ cycles at $95^{\circ} \mathrm{C}$ for 5 sec , $60^{\circ} \mathrm{C}$ for 5 sec , and $72^{\circ} \mathrm{C}$ for 15 sec.

Transposable element analyses

A two-step protocol based on the mapping of siRNA reads was used to complement the published structural annotation of TEs (Tephra pipeline ${ }^{13}$). In a first step the TASR pipeline ${ }^{16}$ was run on the genome using $24 n t$ siRNA reads extracted from sRNA datasets previously listed ${ }^{13}$ (excluding A17 mutant datasets) and from a Stem and Leaves dataset downloaded from NCBI (GEO Accession GSE13761). siRNAs of $24 n$ nt with at least 10 reads among all datasets were selected.

The filtered siRNA dataset used as input of TASR contains $1,652,379$ unique siRNA sequences with a median number of sequenced reads of 18 (mean 38). TASR 1.1 pipeline was run with parameters: nsirna 4 -win 100 -minlen 80 -maxlen 20000 -idclust 0.9 -overlapclust 0.8 -cnumber 2 -idenblast 90 evalue 1e-200 -usearchv usearch8.0.1623_i86linux64. The perl code was marginally modified to set K bowtie parameter to 10000 and to disable centroid selection (execution failure in some families). Then, bedtools v2.27.1 was run to merge close repeat regions (merge -d 100). The TASR-based annotation identified 13,309 regions spanning 69,918,880 nucleotides (minimum, maximum and mean region lengths are 397, 204337, 5253 nucleotides, respectively).

The second step of the protocol aimed at increasing the sensitivity of the TE annotation. The bank previously built by TASR was used as input repeat library of RepeatMasker 4.1.0, run with
parameters: -gff -s -no_is -norna -nolow -e rmblast. Then, bedtools v2.27.1 (merge -d 100) was run to merge close regions. The final dataset (labeled TASR10-round2-RepeatMarker in the genome browser) identified 257,443 regions spanning a total of 218,292,089 nucleotides (minimum, maximum and mean region lengths are $25,318,396,847$ nucleotides, respectively).

The two annotations substantially overlapped, with 93.2\% Tephra-annotated repeats intersecting with TASR -annotated repeats. 86.9% of Tephra-annotated repeats were also found to overlap with TEs annotated with the EDTA pipeline ${ }^{15}$. All bioinformatic studies were performed with the published Tephra-annotated TEs ${ }^{13}$ but TASR- and EDTA-annotated TEs can be found in the Mt5.0 genome portal (downloads section) and browser (https://medicago.toulouse.inra.fr/MtrunA17r5.0-ANR/).

RNAseq data analysis

To evaluate TE expression in nodules, SYMbiMICS data ${ }^{11}$ were analyzed with the pipeline used for the MtExpress gene expression atlas ${ }^{43}$ and M. truncatula annotation version 5.1.8. nf-core/rnaseq pipeline version 3.0 (doi:10.5281/zenodo.4323183) was used with the following parameters " -skip_alignment --pseudo_aligner salmon ", followed by transcript assignation and quantification with salmon (version 1.4.0). The chosen expression threshold for retained genes and TEs was one CPM (count per million reads) for the sum of 15 libraries counts (i.e. three replicates of five nodule zones). Normalization was performed using trimmed mean of M values method ${ }^{44}$. Differentially expressed genes and TEs were detected with EdgeR Bioconductor package ${ }^{45}$ version 3.34.0, using the GLM (Fitted generalized linear models) likelihood ratio test, with an FDR adjusted p-value ${ }^{46}$. Analyses of GO term enrichment were performed using the topGO package version 2.44.047. Expression patterns (termed RG-Patterns for repeat and gene patterns), including 17,406 and 1,923 nodule-expressed genes and TEs, were defined for genes and TEs differentially regulated between at least two nodule zones (FDR<0.01 and LFC >1; supplemental Table 7), similarly to the 16 expression patterns previously defined from genes only ${ }^{13}$. The relative position of expressed TEs and genes was analyzed using Bedtools (v2.30.0).
siRNA distribution was analyzed using Shortstack v. 3.8.5 ${ }^{48}$, with siRNA clusters independently defined for different siRNA sizes (namely, 21, 22, 21-22 and 24 nt), using siRNAs from N0, N4, N6, N10 siRNA libraries previously generated ${ }^{13}$. The position of siRNA clusters vs DMRs, genes and TEs was analyzed using Bedtools v2.30.0.

CRISPR-Cas9 mutagenesis, genotyping and complementation assay

The guide RNAs (gRNA; listed in supplemental Table 9) were designed with CRISPOR (version 4.8,
 the "20bp-NGG-Sp Cas9, SpCas9-HF1, eSpCas9 1.1" option (appropriate for the use of Streptococcus pyogenes Cas9). T-DNAs contained the S. pyogenes Cas9 coding DNA sequence, to which a SV40 NLS sequence was added at the C-terminus, as well as three gRNAs, interspaced by tRNAs as described ${ }^{49}$, and preassembled as a synthetic polycistronic gene. The guides were expressed under the control of M. truncatula U6.1 (MtrunA17_Chr3g0136831) and U6.6 (MtrunA17_Chr7g0251721) RNA Pol IIIcontrolled promoters. Retained guides did not contain a TTTT stretch and did not show a perfect match with potential off target genes in the 12 nt following the NGG Protospacer Adjacent Motif (PAM). The backbones plasmids required for the assembly of the binary vectors were provided by the ENSA project (Engineering Nitrogen Symbiosis for Africa; https://www.ensa.ac.uk) and the cloning strategy was based on the Golden Gate cloning technology ${ }^{50}$. T-DNAs included a kanamycin resistance module (p35S:KanR:TNos) and a DsRed fluorescent reporter module (pAtUbi10:DsRed:TOcs), located respectively close to the right and left borders in order to counterselect partial insertions of T-DNAs.

Genotyping was done on individual transformed root systems, by extracting DNA from nodules or a root segment adjacent to nodules. Nested PCR was performed, followed by agarose gel electrophoresis analysis and systematic sequencing of PCR products. For the drm complementation assay, a synthetic MtDRM2 cDNA (ProteoGenix, Schiltigheim, France) was designed, in which all guide recognition sequences were mutated (with conservation of encoded amino acids). The synthetic construct (MtDRM2-R, 3533 nt ; supplemental Note 1) included the AtUBI
promoter and the $35 S$ terminator, flanking the cDNA and sequences required for Golden Gate cloning. The whole module was inserted into the plasmid used for CRISPR-Cas9 DRM2/DRM2L2 mutagenesis. Samples used for phenotyping and WGBS were checked to have bi-allelic edits of MtDRM2 and MtDRM2L2, and no edits of the MtDRM2-R cDNA.

Gene and protein sequence analyses

The phylogenetic tree was generated using Phylogeny.fr ${ }^{51}$ (PhyML/OneClick). Multiple alignment analyses were performed using Multalin ${ }^{52}$ version 5.4.1. Correspondences between gene names and Mt5.0 or Mt4.0 gene identifiers were obtained using Legoo ${ }^{53}$ and the Downloads section of Mt5.0 genome browser, as of 20211025.

Root nodule analysis and phenotyping

To analyze wild type nodule nuclei and chromocenters, 15 dpi nodules were fixed in 0.2% paraformaldehyde, then embedded in 8% low-melting agarose (NuSieve ${ }^{T M}$ GTG $^{T M}$ Agarose Lonza); 80 $\mu \mathrm{m}$ sections (microtome LEICA VT 1000S) were stained with $0.5 \mu \mathrm{~g} / \mathrm{ml}$ DAPI (4', 6-diamidino-2phenylindole) and observed using a confocal microscope Leica SP8 (excitation 415 nm ; emission 411478 nm).

For mutant vs control nodule phenotyping, root segments nodulated with S.meliloti 2011 nifH:GFP were harvested at 15-18 dpi from four independent caissons (in two independent experiments). Nodules were visually scored for their size, shape and color. Acetylene reduction assays were then performed, with a 4 hour incubation followed by quantification of ethylene production using an Agilent 7820A gas chromatograph. All nodulated roots were then observed with bright field and fluorescence imaging, using a stereo microscope Leica DFC7000T. They were given a GFP signal score from 0 to 4 , corresponding to $0 \%, \leq 25 \%, 25$ to $50 \%, 50$ to 75% and $>75 \%$ GFP+ nodules, respectively. A fraction of the nodules was then used for DNA and RNA extraction, while another fraction was fixed in 1.5% glutaraldehyde, and embedded in 5% low-melting agarose. Nodule sections ($60 \mu \mathrm{~m}$ thick) were prepared from 41 transformed roots (in two independent experiments), with ~10 to 20
nodules per root, and observed using a Zeiss Axiophot light/fluorescence microscope, following staining with $0.5 \mu \mathrm{~g} / \mathrm{ml}$ DAPI.

Data availability:

Raw reads from BsSeq and RNAseq experiments have been deposited at the Sequence Read Archive (SRA) (project accession numbers: SRP355902 and SRP349933). Data related to gene annotation, TE annotation (Tephra-based, TASR10_round2_RepeatMasker-based and EDTA-based), methylome and DMR analyses are available at the M. truncatula genome portal and browser https://medicago.toulouse.inra.fr/MtrunA17r5.0-ANR/

Correspondence and requests for material should be addressed to PG.

Acknowledgements

We thank the ENSA project for providing plasmid backbones for Golden gate cloning and M. truncatula root transformation. This work was supported by the ANR grants EPISYM (ANR-15-CE200002) (PG) and Laboratoire d'Excellence (LABEX) TULIP (ANR-10-LABX-41) (PG, JG), and made use of data previously generated in the ANR SYMbiMICS (ANR-08-GENO-106) (PG) and the INRA SPE "EPINOD" projects (PG). The sequencing platform was supported by France Génomique National infrastructure (ANR-10-INBS-09) (OB). We are grateful to the Genotoul bioinformatics platform Toulouse Midi-Pyrenees (Bioinfo Genotoul) for providing computing and storage resources.

Author contributions

Y.P., M-F.J. and P.G. conceived the research plans; Y.P., S.M., and M-F.J. performed most of the experiments; O.B. performed bisulfite sequencing; E.S., S.C., and J.G. performed bioinformatics analyses; Y.P., M-F.J. and P.G. analyzed the data; P.G. conceived the project and wrote the article with contributions of J.G., Y.P. and M-F.J.

Competing financial interests

The authors declare no competing financial interests

Figure Legends

Fig. 1. Coupling laser capture microdissection (LCM) to whole-genome bisulphite sequencing (WGBS) strongly increases the sensitivity of detection of differentially methylated DNA regions (DMRs).
a, representative image (out of 61 microdissected nodules, in three independent replicates) of a nodule following LCM of meristematic (M), differentiation (Diff) and nitrogen fixation (Fix) nodule zones; bar= $100 \mu \mathrm{~m}$. b, methylome-based clustering analysis of WGBS libraries, with three biological replicates of laser-dissected M, Diff and Fix zones, as well as two biological replicates of N -starved root tips (RT) and whole nodules six days-post-inoculation with Sinorhizobium meliloti (N6). c, mean methylation level in the CG, CHG and CHH contexts of genomic DNA from RT, N6, M, Diff and Fix samples, with a level of 1 corresponding to 100% of methylated cytosines. d, relative proportion of cytosine methylation levels in $\mathrm{mCG}, \mathrm{mCHG}$ and mCHH contexts (minimal coverage of 10 reads) in RT and Fix. e, distribution on the eight M. truncatula chromosomes of methylated cytosines and DMRs (Fix vs RT), as well as genes, transposable elements (TEs) and symbiosis related islands (SRIs) expressed in the nodule differentiation zone. Centromers and SRIs are depicted by thick black lines and grey lines, respectively. f, number of DMRs detected in the CG, CHG and CHH contexts, with pairwise comparisons of whole organs (N6 and RT) or laser-dissected samples (M, Diff, Fix); indicated DMRs were found in at least 2 biological replicates of each comparison, with a minimal difference of absolute methylation level of 0.4 for $\mathrm{CG}, 0.2$ for CHG and 0.1 for CHH contexts. $\mathrm{H}=\mathrm{A}, \mathrm{C}$ or T nucleotide.

Fig. 2. Average methylation patterns of genes and transposable elements (TEs), in whole organs and laser-dissected nodule differentiation and nitrogen-fixation zones, and DMR localization.
a, b, c, CG, CHG and CHH contexts, respectively. From left to right, average methylated cytosine (mC) profile of all annotated genes (50,773 genes), of NDD genes (4,309 genes upregulated in the nodule differentiation and fixation zone), of the top 4,309 genes expressed in roots, and of small TEs ($215,171 \mathrm{TEs}<1 \mathrm{~kb} ; 89 \%$ of total Tephra-annotated TEs). Two biological replicates of root tips (RT), 6 dpi nodules (N6) and laser-dissected nodule differentiation (Diff) and fixation (Fix) zones. Flanking regions of 2 kb for genes and 1 kb for TEs. Profiles correspond to Cs shared between all samples, with a minimal coverage of four reads.
d, average distribution of differentially methylated regions (fixation zone vs root tips) (DMRs) on NDD genes.
e, average CG-CHG DMR density in the 211 symbiotic differentiation islands (NDD; 1,558 genes) vs. 49 apical (NDA; 242 genes) and 57 non-spatially regulated (NDN; 275 genes) control islands ${ }^{13}$ (island underlined, with length normalized to 50 kb and 50 kb flanking regions)

TSS= transcription start site. TTS= transcription termination site.

Fig. 3. Localization of DMRs and histone marks in relation to gene expression profiles, and importance of MtDRM2 for nodule CHH hypermethylation and late nodule development.
a, zonation of the M. truncatula nodule (ZI: zone I, meristematic region; ZIId: distal zone II, (pre)infection; ZIIp: proximal zone II, early differentiation; IZ: interzone II-III, late differentiation; ZIII: zone III, nitrogen-fixation) and pDME:GUS expression (blue signal around IZ) ($\mathrm{n}=30$ in three replicates). \mathbf{b}, the 16 expression patterns previously defined ${ }^{3}$, with strong and gradual differences between nodule zones for patterns 1-11 and 12-16, respectively; differentiation zone: patterns 5-10 and 14-15; fixation zone: patterns 11 and 16. c, distribution of CG-CHG and CHH DMRs at the transcription start site (TSS) and 2 kb flanking regions of all 16 pattern genes and non-spatially regulated (NDN) genes, observed for the laser-dissected differentiation (Diff) and nitrogen-fixation (Fix) zones. d, distribution of active H3K9ac and repressive H3K27me3 histone marks on gene bodies (normalized to 2 kb) and 2 kb flanking regions, in root tip and whole nodule samples ${ }^{13}$. In c and d ,
genes were ranked first by expression pattern and then by decreasing expression level. e, Average CHH methylation of all genes and small transposable elements ($215,171 \mathrm{TEs}<1 \mathrm{~kb}$), in drm mutant nodules (CRISPR-Cas9 mutagenesis of MtDRM2 and MtDRM2L) compared to control nodules transformed with a GUS-targeting CRISPR-Cas9 construct and drm mutant nodules complemented with a synthetic non-editable MtDRM2 cDNA (MtDRM2-R). Two biological replicates from wholegenome bisulfite sequencing are shown. $\mathbf{f}, \mathbf{g}, \mathbf{h}$, sections of S. meliloti nifH:GFP-induced nodules, transformed with a GUS-targeting CRISPR-Cas9 construct (f), or MtDRM2 and MtDRM2L genes (g, h), with in addition MtDRM2-R cDNA in h; observed using light and fluorescence microscopy (left and right panels, respectively).f,g, h: 150, 200 and 40 sectioned nodules from 9, 9 and 4 independently transformed roots, respectively. Note the strong GFP signal in the ZIII of the control nodule and the mutant nodule complemented with MtDRM2-R, whereas in drm mutant nodules the GFP signal is either absent (g top: round-shaped nodule) or present in only a few cells (g bottom: elongated nodules). Bars $=100 \mu \mathrm{~m}$.

Fig. 4. Model for the dynamics of DNA methylation during nodule development.
a, In the root, genes expressed in the nodule differentiation zone and transposable elements (TEs) are silenced, with cytosine methylation in all contexts ($\mathrm{mCG}, \mathrm{mCHG}, \mathrm{mCHH}$: violet, blue and yellow solid circles, respectively), and repressive histone marks (H3K9me2 and H3K27me1 for heterochromatic TEs; H3K27me3 for genes) ${ }^{5,13}$. The histone H2A.W variant contributes to heterochromatin condensation ${ }^{26}$.
b, In the nodule differentiation zone, mCs are removed in all contexts, notably by DME. Histone repressive marks are replaced by activating histone marks (such as H 3 K 9 ac), particularly in symbiosisrelated islands involved in nodule differentiation (SRIs-NDD) ${ }^{13}$ while the eight MtH2A.W genes are down-regulated. This leads to local chromatin opening and enables the transcription machinery including transcription factors (TFs) to access the promoters and activate gene expression.
Transcriptional activation of some TEs also occurs, either from TE promoters or by transcriptional read-through from upstream highly expressed genes.
c, In the nodule differentiation and nitrogen fixation zones, TE transcription leads to the production of siRNAs and increased RNA-directed DNA methylation (RdDM), targeting siRNA-related TEs first in cis and then in trans, genome-wide. Increased RdDM might also result from a better access of the RdDM machinery to the relaxed facultative heterochromatin (e.g. due to MtH2A.W.1-8 downregulation). In the fixation zone, no DNA re-methylation takes place, and differentiation zone genes remain expressed or not depending on the presence or absence of required TFs.

References

1 Chow, H. T., Chakraborty, T. \& Mosher, R. A. RNA-directed DNA Methylation and sexual reproduction: expanding beyond the seed. Curr Opin Plant Biol 54, 11-17, doi:10.1016/j.pbi.2019.11.006 (2019).
2 Liu, R. et al. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc Natl Acad Sci U S A 112, 10804-10809, doi:10.1073/pnas. 1503362112 (2015).
3 Whittaker, C. \& Dean, C. The FLC Locus: A Platform for Discoveries in Epigenetics and Adaptation. Annu Rev Cell Dev Biol 33, 555-575, doi:10.1146/annurev-cellbio-100616-060546 (2017).

4 Satgé, C. et al. Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula. Nat Plants 2, 16166, doi:10.1038/nplants.2016.166 (2016).

5 Nagymihaly, M. et al. Ploidy-dependent changes in the epigenome of symbiotic cells correlate with specific patterns of gene expression. Proc Natl Acad Sci U S A 114, 4543-4548, doi:10.1073/pnas. 1704211114 (2017).
6 Deleris, A., Halter, T. \& Navarro, L. DNA Methylation and Demethylation in Plant Immunity. Annu Rev Phytopathol 54, 579-603, doi:10.1146/annurev-phyto-080615-100308 (2016).
7 Niyikiza, D. et al. Interactions of gene expression, alternative splicing, and DNA methylation in determining nodule identity. Plant J, 103, 1744-1766, doi:10.1111/tpj. 14861 (2020).
8 Zhang, H., Lang, Z. \& Zhu, J. K. Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19, 489-506, doi:10.1038/s41580-018-0016-z (2018).
9 Mergaert, P., Kereszt, A. \& Kondorosi, E. Gene Expression in Nitrogen-Fixing Symbiotic Nodule Cells in Medicago truncatula and Other Nodulating Plants. Plant Cell 32, 42-68, doi:10.1105/tpc.19.00494 (2020).
10 Maunoury, N. et al. Differentiation of Symbiotic Cells and Endosymbionts in Medicago truncatula Nodulation Are Coupled to Two Transcriptome-Switches. PLoS One 5, e9519 (2010).

11 Roux, B. et al. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J 77, 817-837, doi:10.1111/tpj. 12442 (2014).
12 Limpens, E. et al. Cell- and Tissue-Specific Transcriptome Analyses of Medicago truncatula Root Nodules. PLoS One 8, e64377, doi:10.1371/journal.pone. 0064377 (2013). Pecrix, Y. et al. Whole-genome landscape of Medicago truncatula symbiotic genes. Nat Plants 4, 1017-1025, doi:10.1038/s41477-018-0286-7 (2018).
Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol 17, 194, doi:10.1186/s13059-016-1059-0 (2016).
$15 \mathrm{Ou}, \mathrm{S}$. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol 20, 275, doi:10.1186/s13059-019-1905-y (2019).

16 El Baidouri, M. et al. A new approach for annotation of transposable elements using small RNA mapping. Nucleic Acids Res 43, e84, doi:10.1093/nar/gkv257 (2015).
17 Wang, L. et al. CRISPR/Cas9 knockout of leghemoglobin genes in Lotus japonicus uncovers their synergistic roles in symbiotic nitrogen fixation. New Phytol 224, 818-832, doi:10.1111/nph. 16077 (2019).
18 Bourcy, M. et al. Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions. New Phytol 197, 1250-1261, doi:10.1111/nph. 12091 (2013).
19 Berrabah, F. et al. A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis. New Phytol 203, 1305-1314, doi:10.1111/nph. 12881 (2014).

20 Domonkos, A. et al. NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner. Genes (Basel) 8, 387, doi:10.3390/genes8120387 (2017).
21 Sinharoy, S. et al. The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula. Plant Cell 25, 3584-3601, doi:10.1105/tpc.113.114017 (2013).
22 Henderson, I. R. et al. The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana. PLoS Genet 6, e1001182, doi:10.1371/journal.pgen. 1001182 (2010).
23 Lei, M. et al. Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proc Natl Acad Sci U S A 112, 3553-3557, doi:10.1073/pnas. 1502279112 (2015).

24 He, L. et al. Pathway conversion enables a double-lock mechanism to maintain DNA methylation and genome stability. Proc Natl Acad Sci U S A 118, e2107320118, doi:10.1073/pnas. 2107320118 (2021).
25 Kawakatsu, T. et al. Unique Cell-type-specific patterns of DNA methylation in the root meristem. Nature Plants 2, 16058 (2016).
26 Bourguet, P. et al. The histone variant H2A.W and linker histone H1 co-regulate heterochromatin accessibility and DNA methylation. Nat Commun 12, 2683,
doi:10.1038/s41467-021-22993-5 (2021).
27 Walker, J. et al. Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis. Nat Genet 50, 130-137, doi:10.1038/s41588-017-0008-5 (2018).
28 Bouyer, D. et al. DNA methylation dynamics during early plant life. Genome Biol 18, 179, doi:10.1186/s13059-017-1313-0 (2017).
29 Piya, S. et al. Hypermethylation of miRNA Genes During Nodule Development. Front Mol Biosci 8, 616623, doi:10.3389/fmolb.2021.616623 (2021).
30 Li, Q. et al. RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. Proc Natl Acad Sci U S A 112, 14728-14733, doi:10.1073/pnas. 1514680112 (2015).
31 Barker, D. G. et al. Growing Medicago truncatula: choice of substrates and growth conditions. (ISBN 0-9754303-1-9. http://www.noble.org/MedicagoHandbook/, 2007).
32 Ardourel, M. et al. Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6, 1357-1374 (1994).
33 Boisson-Dernier, A. et al. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14, 695-700 (2001).
34 Mayjonade, B. et al. Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules. Biotechniques 61, 203-205, doi:10.2144/000114460 (2016).
35 Roux, B., Rodde, N., Moreau, S., Jardinaud, M. F. \& Gamas, P. Laser Capture Micro-Dissection Coupled to RNA Sequencing: A Powerful Approach Applied to the Model Legume Medicago truncatula in Interaction with Sinorhizobium meliloti. Methods Mol Biol 1830, 191-224, doi:10.1007/978-1-4939-8657-6_12 (2018).
36 Schultz, M. D. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212-216, doi:10.1038/nature14465 (2015).
37 Akalin, A. et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13, R87, doi:10.1186/gb-2012-13-10-r87 (2012).
38 Zhou, M., Palanca, A. M. S. \& Law, J. A. Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family. Nat Genet 50, 865-873, doi:10.1038/s41588-018-0115-y (2018).
39 Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res 19, 1639-1645, doi:10.1101/gr. 092759.109 (2009).
40 Huang, X. et al. ViewBS: a powerful toolkit for visualization of high-throughput bisulfite sequencing data. Bioinformatics 34, 708-709, doi:10.1093/bioinformatics/btx633 (2018).
41 Chen, K. et al. DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res 23, 341-351, doi:10.1101/gr.142067.112 (2013).
42 Zhang, H. et al. Protocol: a beginner's guide to the analysis of RNA-directed DNA methylation in plants. Plant Methods 10, 18, doi:10.1186/1746-4811-10-18 (2014).
43 Carrere, S., Verdier, J. \& Gamas, P. MtExpress, a Comprehensive and Curated RNAseq-based Gene Expression Atlas for the Model Legume Medicago truncatula. Plant Cell Physiol 62, 1494-1500, doi:10.1093/pcp/pcab110 (2021)
44 Robinson, M. D. \& Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11, R25, doi:10.1186/gb-2010-11-3-r25 (2010).

47 Alexa, A., Rahnenfuhrer, J. \& Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600-1607, doi:10.1093/bioinformatics/btl140 (2006).
48 Johnson, N. R., Yeoh, J. M., Coruh, C. \& Axtell, M. J. Improved Placement of Multi-mapping Small RNAs. G3 (Bethesda) 6, 2103-2111, doi:10.1534/g3.116.030452 (2016).
49 Xie, K., Minkenberg, B. \& Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci U S A 112, 3570-3575, doi:10.1073/pnas. 1420294112 (2015).
50 Weber, E., Engler, C., Gruetzner, R., Werner, S. \& Marillonnet, S. A modular cloning system for standardized assembly of multigene constructs. PLoS One 6, e16765
51 Lemoine, F. et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 47, W260-W265, doi:10.1093/nar/gkz303 (2019).
52 Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16, 10881-10890 (1988).
53 Carrère, S., Verdenaud, M., Gough, C., Gouzy, J. \& Gamas, P. LeGOO: An Expertized Knowledge Database for the Model Legume Medicago truncatula. Plant Cell Physiol. 61, 203211, doi:https://doi.org/10.1093/pcp/pcz177 (2019)

Figure 1

Figure 2

Figure 3

Figure 4

Extended Figures 1 to 9

U DMR-plus, root tips
工 DMR-plus, nodules
DMR-minus, root tips
DMR-minus, nodules

HtDRH2_Chr6g0449921 tDRH2L1_Chr3g008057 HEDRH2L2_Chr5g040356 AtDRH2 At 5914620 AtDRH2_At5g14620
AtDRM1 At 5915380
MtDRH3_Chr4g0069001 AtDRH3_ft3g17310 Consensus

HEDRH2_Chr6g0449921 ftDRH2L1_Chr3g008057 ftDRH2L2_Chr5g040356 AtDRH2_Rt5g14620 AtDRM1_At5g15380
MtDRH3_Chr4g0069001 Ft.DRH3_Rt 3g17310 Consensus

HtDRH2_Chr6g0449921 AtDRH2L1_Chr3g008057 MtDRH2L2_Chr5g040356 AtDRH2_At5g14620 AtDRM1_At5g15380
HtDRH3_Chr4g0069001
ftDRH3_ft3g17310 Consensus

HtDRH2_Chr6g0449921 HEDRH2L1_Chr3g008057 tIDRH2L2_Chr5g040356 AtDRH2_At5g14620 AtDRM1_At5g15380
HtDRH3_Chr 4g0069001
ftDRM3_ft 3g17310
Consensus

Ht.DRH2_Chr6g0449921 HLDRH2L1_Chr3g008057 ftDRH2L2_Chr5g040356 AtDRH2_Rt5g14620 AtDRM1_At5g15380
HtDRH3_Chr4g0069001 ftDRM3_ft 3g17310 Consensus

HGPTNLYLTYTHYGTYSIQFTLYTLTFYCPYKCFNCSTAAYLLSPLHFFCSCYFLDAPNPYSLSLFLFHSECRPRASTLSPLRSGEMTGTSNGRGGKNPYFPKTEDFDYELSPYTRLSRDFRETAASSSG MADMRRRNGSGGSSNHERNEQILFPKPETLDFDLPCDTSFPQQIGDNAASSSG

131	140	150	160	170	180	190	200	210	220	230	240	250	260

261	270	280	290	300	310	320	330	340	350	360	370	380

MGDYSGLDSD-IDHNTDDELEIESFQPSCST-------VYPSGQTI-TRGSVEPSSFRGPSNTKYFDHFISHGFPGEYYSKYIQEHGEE-NEEKLLNEILTYSVLESSPQQQQPAELDPTSSEC IE-RLKHGDDSSLESDNFDHKTDDELEIESFN-SLSS-------TIPSRQTI-TRASYEARSSAGPSNTKYLDHFISHGFPGEYYSKYTOEYGEE-DEDKLLEETLTYSALESSSQQHQQYEPDPTSSEY IE-RLKHGDSSLESDNFDHNTDDELEIESFN-SLSS-------TYPSROTI-TRASYERSSFAGPSNTKYI DHFIGHGFPGEYYSKYTOEYGEE-DEDKL LEETL TYSALESSSOQHOQUEPDPTSSEY HGDDSSLESDNFDHNTDDELEIESFN-SLSS-------TYPSRQTI-TAASVEASSFAGPSNTKYLDHFISHGFPGEYYSKYIQEYGEE-DEDKLLEEILTYSALESSSQQHQQYEPDPTSSEY
 PN-SIQNRISOETYASFYEHGFSTQHIRRAIEETRGA-------NHEPHMILETLFNYSASTEASYSKSKYINHFIAHGFPEEHYIKAHOEHGDE-UYGEITNALLTYFEYDKLRES--EDMNININDDD VEFAIRKLKKAPYPELYDFIFAQIMK

391		410	42	430 UBA 440		450	460			490	500510		520
	400					470		480					AGSSHEDLSEDDFFSDEELPKFDSTNDDTLTKLVKMG-FEEEERL YAIDRIGSDS-LEAL YDFIGARDYAKRENALLLPEDKPGCSGNPKLKKRSLYEYEVLGKKRPKL-EKRTLCEDEEERQTLNLPNP FGSSHDDLSDGNSFSDEETPKSYSRNDDTLLSLYNHG-FKEEERLMAIERLGLDSSLDDLYDFIGYADLVKEEDSLLPPEDKQQCSGHPKPRKRSLYEYEYLGKKKRKYSDKRTPCEEEDDGQTLALPNP AGSSHDDLSDGDSFSDEEHPKSYSRHDDTLLSLVNHG-FKEEEALYAIERLGLDSSLDDL YDFIGYADLVKEEDSLLPPEDKQQCSGHSKPRKRSLYEYEVLGKKKRKVSDKRTPCEEEDDGQTLNLPNP

| 521 | 530 | 540 | 550 | 560 | 570 | 580 | 590 | 600 | 610 | 620 | 630 | 640 | 650 |
| :--- |

HMGFGIPNEPSSHITHRR--LPENRYGPPYFYYENYRLRPKGYHQTISRFLYDYEPEYYDSKYFCARARKRGYIHNLPIVMRFPLLPLPPRTIHDAFPLLRRHMPTHDPRTKLNC--LQTVHASAKLTDR HIIGFGYPNEPKSIITHRT--LPENAIGPPYFYYENYAITPKGYHQKISRFLYDVQPEYYDSKYFCAARRKRGYYHNLPIRARFPLLLPLPPRTILDAFPPLRRHHPSHDPRKNLNC--LQTVHGSAQTTDR HMGFGYPNEPKSIITHRT--LPENAIGPPYFYYENYALTPKGYHQTISRFLYDYQPEYYDSKYFCAARRKRGYYHNLPIANRFPLLPLPPRTILDAFPLLRKHHPSHDPRKNLNC--LQTYHGSAQTTDR MIGFGYPNEP-GLITHRS--LPELARGPPFFYYENYRLTPKGVHETISRHLFEIPPEFVDSKYFCYRARKRGYIHNLPINNRFQIQPPPKYTIHDAFPLLSKRHMPEHDKRTKLNC--ILTCTGSAQLTNR MIGFGYPNHP-GLHMHRPYPIPDIARGPPFFYYENYAMTPKGYHAKISSHLYDIYPEFYDSKHFCAARRKRGYIHNLPIQNRFQIQPPQHNTIQEAFPLTKRHMPSHDGRTKLNC--LLTTCIRSSRLTEK HYDTYYATHSRRNKSTPSRSLSSYAAKPPFFLFGGNYSNITYDSHKKMSQFLYCIEPEFYNTELFSALNRIEGYIHNLPTENRFQILPKPPHTIEDAIPRTKKHHPPHDSRKKLNCNYCET-GGITQLCDR EHKDNTYEFPSYMQPRLSQSLGPKYARRPYFFYGQLGELSPSHHSKISGFLFGIHPEHYDTRLCSALRRTEGYLHNLPTVMRFNTLPNPRLTIQDAMPHMRSHHPQHDIRKHFNSGTCSNHKDATLLCER

IRKRYESCDDFEEPSETVKKYVDQCRKLNL Y YVGKNKYAPI EPDEVEML GFPPNHTRGGGISRTDRFK IRKKL ESCEEFEFPSESYKKYYI EQCRKHHL IRKKLESCEEFEEPSESYKKYYLEQCRKHNLYHYGKHKYAPL EPDEVEHLLGFP胃NHTRGGGISRTDRFKSLGHSFDYDTYAYHLSYLKEHYPNGINLLSLFSGIGGAEYRLHRLGYPLNNYYSY EKSEY IRYALEPYNEEPEPPKHYQRYYIDQCKKHNLVHVGKNKRAPLEPDEMESILGFPKNHTRGGGMSRTERFKSLGNSFVVDTVFYHLSVLKPIFPHGINYLSLFTGIGGGEVALHRLQIKHKLVYSVEISKY IREALERY--DGETPL DYOKHYYECKKHH Y GRAL RHS--GGIL IGRRIREC--KGKPTQQDQTLILRHCHTSNLIHIRPNILSPL EPEHLECIMGYPINHTNIGGGRLAERLKLFDYCF TTDTLGYHLSVLKSHFPQGLTVLSLFSGIGGA

NRNIVRSHHEQTNQRGNL YDFDDVQQLDADRLERLMGAFGGFDLIVGGSPCNN-LAGSNRYSRNGLEGSESIL YEYFRILDLVKYMAPRFR NRNIYRSHHDQTNQKGNLIDLDDYQHLDAERLEQLHSACGGFDLYIGGSPCNN-LAGSNRYSRIGLEGTESF LI YDYFRILDLYKAMAPRFQ NRNIVRSHHEQTNQKGNLIDIIDYQQLDAERLEQLHSACGGFDLVVGGSPC NN-LAGSNRYSRIGLEGTESAL Y YYFRILDLVKAMAPRFQ NRNILKDFHEQTNQTGELIEFSDIDHLTNDTIEGLMEKYGGFDLVIGGSPC NN-LAGGNRYSRVGLEGDQSSL F FEYCRILEYYRARHRGS NRNILRSFHEQTNQKGILREFKDYDKLDDNTIERLMDEYGGFDLVIGGSPCNN-LAGGNRHHRYGLGGEHSSLDFDYCRTILERYRRKARHYRR KRKILEKHHRSSGQSGTLYQIEEIDKLTSKKFENLINNFGYFDLVIYQNPCSQPIVRPHQVGGLSAYEF--SA CESYRILQRYRRLCERR SRNILKRHHQTSGQTGELVQIEEIKSLTAKRLETLMQRFGGFDFVICQNP-STPLDLSKEISNSEACEFDY L L NEFARVTKRVRDMM
nRnIl...wheqtnQ.G.Lv\#. $\#!$ g.Lt....E.Ln..fGgFD1!!ggsPcnn.lag.nrvsr.gl.g..sslf.\#y.R!1..Vra........

DRM2 EXON8-INTRON-EXON9
CCGGGATGCTCCGGGAATCCAAAGCTGAAAAAGCGCAGTCTCTATGAATATGAGGTCCTTGGGAAGAAAAGACCGAAGTTAGAGAAGAGAACACTATGTGAAGACGAGGAGGAGGCGCAAACGCTTAAT \longrightarrow Guide a PAM
CTGCCTAATCCTATGATGGGGTTTGGTATTCCTAATGAGCCCAGTTCTATGATTACACACAGGAGACTGCCTGAAAATGCCGTTGGCCCGCCCTATTTCTACTACGAGAATGTGGCGTTGGCACCGAAA PAM Guide b
GGTGTCTGGCAAACAATCTCAAGGTTCTTATATGATGTGGAACCCGAGTACGTCGACTCAAAATACTTTTGTGCTGCTGCGCGTAAACGTGGATATATTCACAATCTCCCAATTGTGAATAGATTCCCT CTTTTACCTCTTCCACCGCGCACCATCCATGATGCATTCCCTTTACTAAGGAGGTGGTGGCCGACATGGGACCCCAGGACAAAGCTTAATTGTTTGCAGACCGTACATGCTAGTGCGAAACTTACCGAC AGAATCCGGAAAGCGGTAGAAAGTTGTGATGATTTTGAGGAACCTTCTGAAACGGTAAAAAAATATGTGTTGGATCAGTGTCGGAAATGGAACCTGGTATGGGTGGGTAAGAATAAAGTTGCCCCCCTA GAGCCCGATGAAGTTGAGATGCTGTTGGGATTCCCTAGGAATCATACAAGGGGTGGTGGAATCAGTAGGACGGACAGATTCAAGTCACTTGGAAATTCTTTCCAGGTATGAAAACTCTTTATCTCTCcctcrgrtrctgaratgrcrt АGTTTAGTGGCTTAATTAGTTGGTTGGTTAGGTTGAGTCAGTTAGTAGATGAGGCTTATTTGGTGGTAATTAGAATTGGGAGTGTCTTGGATCTCTCAAATTTAAAGGGAMTTGTGTTTTCTGTTCATCGGTAAGAATGCATCCTTTCTATTCATAATCTAAATCAGTTTTTAATTTGTATCATCCGGTATCAGCCTGGTTGGGTTTACTTTCTCTCTTTCACCATAATAAT

 Guide C PAM
ATTGGTGGTGCAGAGGTAGCTCTGCATAGACTTGGCATCCCTCTAAGGAATGTAGTGTCAGTCGAGAAATCTGAAGTGAACAGGAACATTGTTAGGAGTTGGTGGGAGCAAACCAACCAAAGGGGTAAT TTAGTTGATTTTGATGATGTGCAACAGCTAGATGCCGACCGTTTGGAGCGGCTGATGGGCGCATTTGGTGGCTTTGATCTAATTGTTGGTGGAAGCCCTTGCAATAATCTGGCTGGAAGCAATAGGGTT AGTCGGAATGGACTTGAGGGCTCGGAATCTATCCTATTTTATGAATACTTTAGGATTTTAGACTTAGTGAAGGTTATGGCGCCTAGATTTCGATGA

DRM2L2 EXON8-Intron-EXON9
CAALCAATGCAGTGGGCATTCAAAACCAAGAAAGCGTAGTCTTTATGAATATGAAGTGCTAGGAAAGAAAAAACGAAAGGTGTCCGACAAGAGAACTCCATGTGAAGAGGAGGATGATGGCCAAACACT TAATCTGCCTAACCCAATGATGGGGTTTGGGGTTCCCAACGAGCCAAAGTCTATAATTACACACCGGACACTCCCTGAGAATGCTATTGGACCTCCCTACTTCTACTATGAAAATGTGGCACTAACACC GAAAGGTGTTTGGCAAACAATATCTAGGTTTTTGTATGACGTGCAGCCGGAATATGTAGACTCAAAATATTTTTGTGCTGCGGCTAGGAAAAGGGGATATGTTCACAATCTCCCTATTGCCAATAGATT Guide P PAM
CCCGCTTTTACCTCTTCCACCACGGACAATACTTGATGCATTCCCCCTATTGAGGAAATGGTGGCCATCATGGGATCCTAGAAAAAACCTGAATTGTTTGCAAACGGTACATGGCAGTGCACAAACCAC PAM Guide f
CGACAGAATCCGGAAAAAGCTGGAAAGTTGTGAAGAATTTGAAGAACCATCGGAATCTGTCAAGAAGTATGTTTTGGAACAATGTCGGAAATGGAATTTGGTATGGGTGGGCAAGAATAAAGTTGCCCC

 CTCTCCATCGACPCGGTGTCCCTCTAAATAATGTTGTGTCGGTGGAAAAATCCGAAGTAAATAGGAACATTGTTAGAAGTTGGTGGGAACAGACAAATCAAAAAGGTAATTTGATTGATATCGATGATG Guide d PAM
TGCAACAGCTAGATGCTGAGCGTTTGGAGCAGCTCATGAGTGCAGTTGACACAGT
b

	DRM2 guides (220			plants)	DRM2L2	
	a	guides (158 plants)				
	b	c	d	e	f	
Mono-guide editions	5	9	69	6	4	4
Multi-guide editions	15	80	50	57	22	32

C

d

CTTAATTGTTCATTTTATTTCAGGTCGACACAGTAGCATATCATCTATCAGTTTTGAAGGAGATGTAT----AAGGGTGAATCTTCTATCTCTTTTTTCTGGAATTGGTGGTGCAGAGGTAGCTCTGCATAGACTTGGCATCCCTCTAAGGAATGTAGTGTCAGTCGAGAAATCTGAL

b CRISPR-GUS

GFP score: 4; ethylene area / nodule: $8.4 \mathrm{pA*}$ *
pAtUBI:DRM2-R

GFP score: 4; ethylene area / nodule: $3.5 \mathrm{pA}^{*} \mathrm{~s}$

CRISPR-DRM2/DRM2L2

GFP score: 1; ethylene area / nodule: $0.8 \mathrm{pA*}$ *
CRISPR-DRM2/DRM2L2 pAtUBI:DRM2-R

GFP score: 4; ethylene area / nodule: $6.6 \mathrm{pA}^{*} \mathrm{~s}$

Supplemental Tables 1, 8 and 9 Supplemental Note 1

Supplemental Table 1. Whole-genome bisulfite sequencing libraries and BsSeq data summary.
corresponding names in the M.truncatula genome browser are in parentheses; estimated genome size $=430 \mathrm{Mb}$

Supplemental Table 8. Chop-PCR validation of CHH DMRs.

Whole organ analyses CHH DMR position	Methylationsensitive restriction enzyme	mean delta CT nodule ($\mathrm{n}=3$)	SE delta CT nodule	mean delta CT root tips ($\mathrm{n}=3$)	SE delta CT nodule	Shapiro test*	Fisher's test*	one-sided t.test
$\begin{gathered} \text { Chr1_35839283- } \\ 35840045 \end{gathered}$	Alul	7.53	1.12	12.54	1.30	0.9730	0.8565	0.0324
	Ddel	9.76	3.28	14.93	3.16	0.4665	0.9270	0.1904
$\begin{gathered} \text { Chr2_32878129- } \\ 32878605 \end{gathered}$	Alul	9.00	1.58	12.67	3.27	0.0523	0.3803	0.2149
	Ddel	6.66	0.42	7.59	0.50	0.2860	0.3103	0.4908
$\begin{gathered} \text { Chr3_51183413- } \\ 51184086 \end{gathered}$	Alul	4.05	1.30	8.54	0.95	0.6230	0.6981	0.0455
	Ddel	8.13	1.56	10.99	0.79	0.4083	0.5227	0.1082
$\begin{gathered} \text { Chr4_30558968- } \\ 30560144 \end{gathered}$	Alul	2.03	0.96	5.38	2.13	0.6684	0.3397	0.1409
	Ddel	3.09	1.37	4.37	1.32	0.6019	0.9645	0.2960
$\begin{gathered} \text { Chr4_31795384- } \\ 31796098 \\ \hline \end{gathered}$	Alul	1.71	1.18	7.54	1.41	0.8531	0.8236	0.0256
	Ddel	4.14	1.93	9.64	1.50	0.8754	0.7566	0.0614
$\begin{gathered} \text { Chr4_31798378- } \\ 31799002 \end{gathered}$	Alul	5.94	1.24	14.82	0.86	0.6587	0.6447	0.0035
	Ddel	5.83	1.83	21.72	1.74	0.4678	0.9517	0.0028
$\begin{gathered} \text { Chr4_9710107- } \\ 9710722 \end{gathered}$	Alul	4.76	1.45	6.42	1.06	0.2362	0.7014	0.2339
	Ddel	4.94	1.81	6.96	0.92	0.2130	0.4092	0.2174
Laser dissected Fix zone vs root tip DNA	Methylationsensitive restriction enzyme	delta CT Fix zone ($\mathrm{n}=2$)**		delta CT root tips ($\mathrm{n}=2$)**				
$\begin{gathered} \text { Chr1_26645685- } \\ 26647163 \end{gathered}$	Nalll-1	-1.04		3.36				
	Nalll-2	1.82		2.94				
	Ddel-1	1.47		5.74				
	Ddel-2	0.33		6.55				

delta CT: compared to mock non-digested samples

$n=$ biological replicates, using pools of 303,434 and 357 nodules (15 dpi) from 5,10 and 8 plants, respectively.
*Shapiro test: normality test; Fisher's test: variance equality test
** DNA remaining from LCM-BsSeq experiments; the results for each replicate are shown since no statistical test was possible (only two replicates being available)

Supplemental Table 9. Multi-guide (mg) cloning, sequencing and Chop-PCR primers
cloning primers
mgDRM2a-F
mgDRM2a-R
mgDRM2b-F
mgDRM2b-R
mgDRM2c-F
mgDRM2c-R
mgDRM2L2d-F
mgDRM2L2d-R
mgDRM2L2e-F
mgDRM2L2e-R
mgDRM2L2f-F
mgDRM2L2f-R
sequencing primers
DRM2-F1
DRM2-F2
DRM2-F3
DRM2-F4
DRM2-F5
DRM2-R1
DRM2-R2
DRM2-R3
DRM2-R4
DRM2-R5
DRM2L2-F1
DRM2L2-F2
DRM2L2-R1
DRM2L2-R2
DRM2L2-R3
Chop-PCR primers
Chr1-26645685..26647163_F
Chr1-26645685..26647163_R
Chr1_35839283..35840045_F
Chr1_35839283..35840045_R
Chr2_32878129..32878605_F
Chr2_32878129..32878605_R
Chr3_51183413..51184086_F
Chr3_51183413..51184086_R
Chr4_24118045..24119280_F
Chr4_24118045..24119280_R
Chr4_30558968..30560144_F
Chr4_30558968..30560144_R
Chr4_31798378.31799002_F
Chr4_31798378..31799002_R
Chr4_9710107..9710722_F
Chr4_9710107..9710722_R

5' to 3' sequence
TAGGTCTCCTCTATGAATATGGTTTTAGAGCTAGAA CGGGTCTCATAGAGACTGCGCTGCACCAGCCGGG TAGGTCTCCAAACCCCATCATGTTTTAGAGCTAGAA CGGGTCTCGGTTTGGTATTCCTGCACCAGCCGGG TAGGTCTCATGTATCCTAAAGGTTTTAGAGCTAGAA CGGGTCTCATACATCTCCTTCTGCACCAGCCGGG TAGGTCTCCTCTCCATCGACTGTTTTAGAGCTAGAA CGGGTCTCGGAGAGCTACTTCTGCACCAGCCGGG TAGGTCTCGCAAACAATATCTGTTTTAGAGCTAGAA CGGGTCTCGTTTGCCAAACACTGCACCAGCCGGG TAGGTCTCTTTCCTCAATAGGGTTTTAGAGCTAGAA CGGGTCTCAGGAAATGGTGGCTGCACCAGCCGGG

GGTTGTTTCATTGGCCTCACTGT GAATGCCCTTCTGCTTCCTG CGCTATCCGGGATTGACAGCTA CTGTTTTTCCCAATGAAACTTTCCA CCTTTACTAAGGAGGTGGTGGCC AGGATGCATTCTTACCGATGAACA
ACTGACTCAACCTAACCAACCA CGCGGTGGAAGAGGTAAAAGAG GATTCCGAGCCCTCAAGTCCAT TCTAGGCGCCATAACCTTCACT GGCCTAGACTCCTCACTTGACG GCAGTGGGCATTCAAAACCAAG CACTCATGAGCTGCTCCAAACG CCAACAACGAGATCAAAACCACCA GGCAACTTTATTCTTGCCCACCC

AGCTGGTGGGGTCCATGACACA AGCAGGCTTACAACCTTCTTGGC ACCCACCGAAATCGACACTAGGGG GGTTGAGCTGAGTTGAGATTTGCA GTTGAGGATGTGGTCGTCTTAGCT TGCACAACCGCGACAAGAAGGA CCGAAAAATGACGCGACATACCCCA TCGGTATTTTCAAATTCACCGCTGT TCCCTTGACTTGGGACCCACTT CGGCATTGGTGAAAACGTGTCACG AGACGAGCCACACAATCCAGTG TTCTTCGTCTTCCCAAGGCCCA AGACACCAGGAGACAAGCCCTGA ACCGTGGAAGCTATGTCTGAACGT TGCTCAAAAAGGTGCCACGTGT GGTTCAAACCCTGGACCTGGCA

Supplemental note 1. Synthetic DRM2-R sequence used for cloning a non-editable MtDRM2 cDNA
ACGTGCAGAAGACAAGTAAGGAGgacgtcgttgtggttggtgctttccttacattctgagcctctttccttctaatccactcatctgcatcttcttgtgtcc ttactaatacctcattggttccaaattccctccctttaagcaccagctcgtttctgttcttccacagcctcccaagtatccaagggactaaagcctccacattcttcag atcaggatattcttgtttaagatgttgaactctatggaggtttgtatgaactgatgatctaggaccggataagttcccttcttcatagcgaacttattcaaagaatgt tttgtgtatcattcttgttacattgttattaatgaaaaaatattattggtcattggactgaacacgagtgttaaatatggaccaggccccaaataagatccattgata tatgaattaaataacaagaataaatcgagtcaccaaaccacttgccttttttaacgagacttgttcaccaacttgatacaaaagtcattatcctatgcaaatcaat aatcatacaaaaatatccaataacactaaaaaaattaaaagaaatggataatttcacaatatgttatacgataaagaagttacttttccaagaaattcactgatt ttataagcccacttgcattagataaatggcaaaaaaaaacaaaaaggaaaagaaataaagcacgaagaattctagaaaatacgaaatacgcttcaatgcagt gggacccacggttcaattattgccaattttcagctccaccgtatatttaaaaaataaaacgataatgctaaaaaaatataaatcgtaacgatcgttaaatctcaac ggctggatcttatgacgaccgttaaggaaattgtggttgtcggacgaagtccagtaataaacggcgtcaaagtggttgcagccggcacacacgagtcgtgtttat caactcaaagcacaaatacttttcctcaacctaaaaataaggcaattagccaaaaacaactttgcgtgtaaacaacgctcaatacacgtgtcattttattattagc tattgcttcaccgccttagctttctcgtgacctagtcgtcctcgtcttttcttcttcttcttctataaaacaatacccaaagagctcttcttcttcacaattcagatttca atttctcaaaatcttaaaaactttctctcaattctctctaccgtgatcaaggtaaatttctgtgttccttattctctcaaaatcttcgattttgttttcgttcgatcccaat ttcgtatatgttctttggtttagattctgttaatcttagatcgtagacgattttctgggtttgatcgttagatatcatcttaattctcgattagggtttcatagatatcatc cgatttgttcaaataatttgagttttgtcgaataattactcttcgatttgtgatttctatctagatctggtgttagtttctagtttgtgcgatcgaatttgtcgattaatct gagtttttctgattaacagatgcagatcttaATGGGTGACTATTCTGGTCTGGATAGTGATATAGATTGGAACACCGATGATGAGCTT GAGATTGAGAGTTTTCAACCCTCCTGTTCAACTGTTGTTCCCAGTGGGCAGACTATTACTGCTGGGTCTGTAGAGCCAAGC TCATTCGCAGGTCCATCTAACACCAAGGTGTTTGACCACTTCATCAGTATGGGATTTCCTGGTGAAGTCGTTTCAAAAGTCA TTCAAGAGCATGAGGAGAATGAAGAGAAACTGCTTAATGAGATTCTCACATACTCAGTTCTTGAAAGTTCTCCTCAGCAGC AACAGCCAGCTGAACTAGACCCCACCTCATCCGAGTGTGCGGGGAGTTCGTGGGAGGATTTATCGGAAGATGATTTTTTTTT CTGATGAAGAATTGCCAAAATTCGATTCTACCAATGATGATACGTTGACGAAACTTGTAAAAATGGGATTTGAAGAGGAG GAGGCTTTAGTGGCCATCGACAGAATATCAGACTCACTTGAAGCTCTGGTCGATTTTATTGGTGCTGCTCAAGTGGCGAAA GCAGAGAATGCCCTTCTGCTTCCTGAAGATAAGCCGGGATGCTCCGGGAATCCAAAGCTGAAAAAGCGaAGcCTaTAcGAg TAcGAaGTCCTTGGGAAGAAAAGACCGAAGTTAGAGAAGAGAACACTATGTGAAGAtGAGGAGGAGGCGCAAACGCTTA ATCTGCCTAATCCTATGATGGGtTTcGGcATcCCTAATGAGCCCAGTTCTATGATTACACACAGGAGACTGCCTGAAAATGC CGTTGGCCCGCCCTATTTTCTACTACGAGAATGTGGCGTTGGCACCGAAAGGcGTaTGGCAgACgATaTCgcGaTTCTTATATG ATGTGGAACCCGAGTACGTCGACTCAAAATACTTTTGTGCTGCTGCGCGTAAACGTGGATATATTCACAATCTCCCAATTGT GAATAGATTCCCTCTTTTACCTCTTCCACCGCGCACCATCCATGATGCATTtCCactAttgcgacgcTGGTGGCCGACATGGGAC CCCAGGACAAAGCTTAATTGTTTGCAGACCGTACATGCTAGTGCGAAACTTACCGACAGAATCCGGAAAGCGGTAGAAAG TTGTGATGATTTTGAGGAACCTTCTGAAACGGTAAAAAAATATGTGTTGGATCAGTGTCGGAAATGGAACCTGGTATGGG TGGGTAAGAATAAAGTTGCCCCCCTAGAGCCCGATGAAGTTGAGATGCTGTTGGGATTCCCTAGGAATCATACAAGGGGT GGTGGAATCAGTAGGACGGACAGATTCAAGTCACTTGGAAATTCTTTCCAGGTCGACACAGTAGCATATCATCTATCAGTT TTaAAaGAaATGTAcCCaAAgGGaGTGAATCTTCTATCTCTTTTTTCTGGAATTGGTGGTGCAGAaGTtGCaCTtCAcAGgCTa GGCATCCCTCTAAGGAATGTAGTGTCAGTCGAGAAATCTGAAGTGAACAGGAACATTGTTAGGAGTTGGTGGGAGCAAA CCAACCAAAGGGGTAATTTAGTTGATTTTGATGATGTGCAACAGCTAGATGCCGACCGTTTGGAGCGGCTGATGGGCGCA TTTGGTGGCTTTGATCTAATTGTTGGTGGAAGCCCTTGCAATAATCTGGCTGGAAGCAATAGGGTTAGTCGGAATGGACTT GAGGGCTCGGAATCTATCCTATTTTATGAATACTTTAGGATTTTAGACTTAGTGAAGGTTATGGCGCCTAGATTTCGATGAc tctagctagagtcgatcgacaagctcgagtttctccataataatgtgtgagtagttcccagataagggaattagggttcctatagggtttcgctcatgtgttgagca tataagaaacccttagtatgtatttgtatttgtaaaatacttctatcaataaaatttctaattcctaaaaccaaaatccagtactaaaatccagatCGCTGAGCT CGAATTCTAGTTTGTCTTCACAGA
$X X X X$: sequences added for Golden Gate cloning using Bpil
xxxx: AtUBI promoter
xxxx:35S terminator
XXXX : DRM2 cDNA
XXXX : mutated DRM2 sequences (targeted by DRM2 guides) x: mutated nucleotides

