
HAL Id: hal-03727617
https://hal.science/hal-03727617v3

Preprint submitted on 16 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamics of Generalized Conic Trajectories
Eric Guiot

To cite this version:

Eric Guiot. Dynamics of Generalized Conic Trajectories. 2022. �hal-03727617v3�

https://hal.science/hal-03727617v3
https://hal.archives-ouvertes.fr


Dynamics of Generalized Conic Trajectories                             E.Guiot                   

 

 

1 
 

Dynamics of Generalized Conic Trajectories 

 
Eric Guiot 

guiot.eric_1@yahoo.fr 

 

 

Abstract: a class of generalized conic curves is obtained generalizing a property of an initial conic, linked to its 

radius of curvature. The class possesses a large variety of well-known curves and accepts as a limiting case the 

logarithmic spiral curve. The determination of corresponding law of central force allows to link in the same 

relation the restoring, inverse square and inverse cubic forces. A geometric transformation inside the class is 

highlighted as a method to construct the tangents. Results are linked with contemporary preoccupations of 

mathematical Physics and celestial mechanics. 
 

 

Keywords: Central force; Celestial Mechanics; Generalized conic trajectories; Power law of 

potentials;  

 

 

1. Introduction 

It is well known that the study of plane curves and trajectories described by the following general 

equation 

 

 𝑟(𝜃) =
𝑎

(1 + 𝑒 cos 𝑘𝜃)
1
𝑚

      (1) 

 

Where 

𝑎 is a length 

𝑒 is a positive number 

𝑚 and 𝑘 are unidimensional numbers with  𝑚 ≠ 0  

𝜃 is the polar angle 

 

is an old and important topic of classical physics, and particularly of celestial mechanics (see for 

example [1]). Indeed, depending on the choice of constants, this equation can describe a wide variety 

of fundamental curves. Let us quote for example, of course the ellipses but also famous curves such as 

the lemniscates, cardioids, etc.. Moreover the study of the cases corresponding to 𝑘 = 1,  𝑚 = 1 

(ellipse described from one of its foci, keplerian orbit) and to 𝑘 = 2, 𝑚 = 2  (ellipse described from its 

center, two-dimensional harmonic oscillator) as well as the question of their reciprocal transformation, 

naturally remains a major concern of physicists, from the founding fathers [2] to the present day (see 

for example [3]). Finally, let us quote, for example, the cases corresponding to 𝑚 = 1 , 𝑘 ≠ 1  which 

represents the trajectories studied in the famous "revolving theorem" [4]. 

 

 

However the study of the curves resulting from this equation presents another interest, this time in one 

of the fields of geometry. It is indeed possible to extract from it classes of generalized conic curves, as 

it is for example presented in reference [5]. This approach, as the geometrical study of these classes of 

curve, represent another important topic of mathematics, with historically the works, among others, of 

famous physicists and mathematicians such as Descartes, Maxwell, etc.  
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The paper can be seen as a contribution to both topics, and presents several original results. One of 

them concerns the establishment of a class of generalized conic. The common geometric property of 

these curves is related to the direction of their radius of curvature, as we present it in the first part of 

the article. The class of curves accepts several fundamental lines, such cardioïds, Lemniscates, and as 

a limiting case, the logarithmic spirals.  

 

A second interest of the paper concerns the geometrical study of this class of curve. In particular, 

several graphic methods (which often seem original) to draw the radii of curvatures and the tangents to 

the curves are detailed. Moreover, relations of geometric transformations and symetries are 

highlighted, with the establishement of relations of inversion. 

 

In the next part of the paper we adopt this time a physical point of view, and no longer simply 

geometric. We indeed consider these curves as the possible trajectories of a point particle subjected to 

a central force field. This field of force is determined, using a classical approach, known as Sciacci's 

theorem. It is shown that these forces can be described by a single and simple formula, which connects 

three fundamental potentials of Physics. Note this result is probably the most interesting and important 

of the article. 

 

Finally, in the last part of the article, we discuss our results and present possible contemporary 

applications. Indeed, we suggest several of them, in particular in celestial mechanics, with the 

presentation of a precession phenomena due to weak modifications of the central force field. We also 

link our work with several recent publications, in the field of astrodynamics.  

 

As can be seen, this work is therefore a contribution to classical mechanics and applied mathematics, 

which sheds original light on some of its historical concerns. For this reason, the reader will regularly 

recognize great authors of classical physics and will find references, which we will try to highlight as 

best as possible. 

 

2 – Geometric  

 

As we presented it, the class of curves is defined by a generalization of a property of the classical 

conic curve. This property concerns the intersection 𝐼  of its radius of curvature with its semi major 

axis (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑁ሬሬԦ 

𝑭𝑴 = 𝒓 

𝑭𝑰 = 𝒆𝒓 

F 

M 

I 

Figure 1. A property of Conic Trajectories 

𝑋Ԧ 

𝑌ሬԦ 
𝑒𝑟ሬሬሬԦ 

𝑇ሬԦ 

𝑒𝜃ሬሬሬሬԦ 
𝜃 
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In fact, this relation is simply given with 

𝐹𝐼 = 𝑒𝑟        (2) 

This property is naturally already known, and a geometric demonstration can be found in reference 

[6]. However, we present an analytical proof, to illustrate further reasoning. 

 

2.1 Proof 

 

Consider a moving point 𝑀 which  describes a plane arbitrary curve around the origin of a polar 

system of coordinate (𝐹; 𝑒𝑟ሬሬሬԦ; 𝑒𝜃ሬሬሬሬԦ). The angle 𝜃 is definite by 

(𝑋Ԧ; 𝑒𝑟ሬሬሬԦ) = 𝜃 

Where (𝐹; 𝑋Ԧ; 𝑌ሬԦ) is a second system of coordinate, Cartesian and fix this time. 

 coordinate are thus given by  𝐹𝑀ሬሬሬሬሬሬԦ = 𝑟𝑒𝑟ሬሬሬԦ 

 

Using the classical change of variable we obtain 

{
𝑢 =

1

𝑟

𝑢′ =
𝑑

𝑑𝜃
𝑢

} 

 

We note that a vector 𝑇ሬԦ tangential to the curve can be given with 

𝑇ሬԦ = −𝑢′𝑒𝑅ሬሬሬሬԦ + 𝑢𝑒𝜃ሬሬሬሬԦ 

To describe the curve we write the following condition: Normal vector 𝑁ሬሬԦ  is directed toward a point 𝐼 

located on 𝐹𝑋Ԧ axis such 

 

𝐹𝐼ሬሬሬሬԦ = −
𝑒

𝑢
𝑋Ԧ 

In the polar system of coordinate, we obtain now 

𝐹𝐼ሬሬሬሬԦ = −
𝑒

𝑢
𝑋Ԧ = −

𝑒

𝑢
(cos 𝜃 𝑒𝑅ሬሬሬሬԦ − sin 𝜃 𝑒𝜃ሬሬሬሬԦ) 

And, consequently 

𝐼𝑀ሬሬሬሬሬԦ = 𝐼𝐹ሬሬሬሬԦ + 𝐹𝑀ሬሬሬሬሬሬԦ =
1

𝑢
[1 + 𝑒 𝑐𝑜𝑠 𝜃) 𝑒𝑅ሬሬሬሬԦ − 𝑒 𝑠𝑖𝑛 𝜃 𝑒𝜃ሬሬሬሬԦ] 

 

We write thus the scalar product 

𝐼𝑀ሬሬሬሬሬԦ. 𝑇ሬԦ = 0 

And we obtain the differential equation 

 

𝑢′(1 + 𝑒 𝑐𝑜𝑠 𝜃) + 𝑢𝑒 𝑠𝑖𝑛 𝜃 = 0                        (3) 

Whose solving is 

𝑢 = 𝐶1(1 + 𝑒𝑐𝑜𝑠𝜃) 

 

Trajectory is  well a conic, whose point 𝐹 is one of the foci and 𝑒 its eccentricity.  

 

2.2 Generalized conic curves 
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To obtain classes of curves we make a precession on the initial ellipse of an angle 𝛼 around one of its 

foci. We generalize previously property considering this time that point 𝐼 is located on a rotating 

vector 𝑥Ԧ (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We definite the system of coordinate (𝐹; 𝑥Ԧ; 𝑦Ԧ) by 

 

(𝑋,ሬሬሬԦ 𝑥Ԧ) = 𝛼 

And we introduce a scalar relation 

𝐹𝐼 = 𝑒′𝑟 

 

Where 𝑒′ is given, if the system doesn’t precess, with the relation 

 

𝑒′ = 𝑒 

We obtain thus  

 

𝐹𝐼ሬሬሬሬԦ = −
𝑒′

𝑢
𝑥Ԧ = −

𝑒′

𝑢
(cos(𝜃 − 𝛼) 𝑒𝑅ሬሬሬሬԦ − sin(𝜃 − 𝛼) 𝑒𝜃ሬሬሬሬԦ) 

And using 

𝐼𝑀ሬሬሬሬሬԦ = 𝐼𝐹ሬሬሬሬԦ + 𝐹𝑀ሬሬሬሬሬሬԦ 

It comes 

𝐼𝑀ሬሬሬሬሬԦ =
𝑒′

𝑢
(cos(𝜃 − 𝛼) 𝑒𝑅ሬሬሬሬԦ − sin(𝜃 − 𝛼) 𝑒𝜃ሬሬሬሬԦ) +

𝑒′

𝑢
𝑒𝑅ሬሬሬሬԦ 

Thus 

𝐼𝑀ሬሬሬሬሬԦ =
𝑒′

𝑢
([
1

𝑒′
+ cos(𝜃 − 𝛼)] 𝑒𝑅ሬሬሬሬԦ − sin(𝜃 − 𝛼) 𝑒𝜃ሬሬሬሬԦ) 

𝑇ሬԦ is again 

𝑇ሬԦ = −𝑢′𝑒𝑅ሬሬሬሬԦ + 𝑢𝑒𝜃ሬሬሬሬԦ 

 

Writing as previously the condition of perpendicularity 

 

𝑦Ԧ 

𝑭𝑴 = 𝒓 

𝑁ሬሬԦ 

𝑭𝑰 

F 

M 

I 

Figure 2. Precession of angle 𝛼 
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𝐼𝑀ሬሬሬሬሬԦ. 𝑇ሬԦ = 0 

 

We obtain after simplification the differential equation  

 

𝑢′ + 𝑢′𝑒′(cos 𝜃 cos 𝛼 + 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛼) + 𝑢𝑒′(𝑐𝑜𝑠𝛼 𝑠𝑖𝑛 𝜃 − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝜃) =0           (4)  

 

Note it is the same differential equation if 𝛼 = 0. 

 
2.3 Solving  

 

To solve equation (4) we need to introduce a relationships which links angles 𝜃 and 𝛼 : A correct and 

simple solution, is given with 

 

𝛼 = 𝑛𝜃 + 𝛽 

 

Where 𝑛 is a rational number and 𝛽 a constant angle. Indeed, with this solution the solving leads for 

𝑛 = 0 to the initial conic, with a phase shift 𝛽. As we introduced it, doing variations around this 

expression, we obtained a class of curves, using  

 

𝑒′ = 𝑓(𝑒, 𝑛)       (5) 

 

2.4 Class of generalized conic trajectories 

 

With previously relation we obtained two families of solutions, depending on 𝑛 : 

 

2.4.1 General case : For 𝑛 ≠ 1 : solutions are given with the relation 

𝑢(𝜃) = 𝐶1(1 + 𝑒′ cos((𝑛 − 1)𝜃 + 𝛽)))
1
1−𝑛       (6) 

 

To simplify we choose 𝛽 = 0, which leads to 

 

𝑟(𝜃) =
𝐶′1

(1 + 𝑒′ cos 𝜃(𝑛 − 1))
1
1−𝑛

         (7) 

 

The function is periodic. Knowing our initials conditions we identify the constants 𝐶′1 and 𝑒′ 

 

{
 
 

 
 𝑟𝑚𝑖𝑛 = 𝑎(1 − 𝑒) =

𝐶′1

(1 + 𝑒′)
1
1−𝑛

 

𝑟𝑚𝑎𝑥 = 𝑎(1 + 𝑒) =
𝐶′1

(1 − 𝑒′)
1
1−𝑛}

 
 

 
 

 

And obtain 

 

{
 
 

 
 𝑒′ =

(1 + 𝑒)1−𝑛 − (1 − 𝑒)1−𝑛

(1 + 𝑒)1−𝑛 + (1 − 𝑒)1−𝑛
                                                  (8.1)

𝐶′1 = 𝑎(1 − 𝑒
2) [

2

(1 + 𝑒)1−𝑛 + (1 − 𝑒)1−𝑛
]

1
1−𝑛⁄

               (8.2)

   

}
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2.4.2 particular case : For 𝑛 = 1 and 𝛽 ≠ 0 : Solution is a circle or a logarithmic spiral given by 

𝑢(𝜃) = 𝐶2𝑒
𝑒′ sin𝛽
1+𝑒 cos𝛽

𝜃
 

 

We can again determine the constant using the initial condition 

 

𝑟(𝜃 = 0) = 𝑎(1 − 𝑒) = 𝐶2 

2.4.3 mathematical expression 

 

The class of generalized conic can thus be written 

 

{
 
 

 
    𝑛 ≠ 1         𝑟(𝜃) =

𝐶′1

(1 + 𝑒′ cos(𝜃(𝑛 − 1) + 𝛽))
1
1−𝑛

               (9.1)

𝑛 = 1                           𝑟(𝜃) = 𝑎(1 − 𝑒)𝑒
−𝑒′ sin 𝛽
1+𝑒cos𝛽

𝜃
                  (9.2)

          

}
 
 

 
 

 

 

Where 𝐶′1 and 𝑒′ are defined in the general case by (8). 

 

2.5 geometric consequences 

 

The polar curves corresponding to the equation (9.1) have a common geometric property. As presented 

in section 2.2, it concerns a relationship of proportionality connecting the radial distance to the 

location of the intersection of the radius with a rotating axis, defined by the relation 

 

𝛼 = 𝑛𝜃 + 𝛽 

 

the angles being defined as presented previously. The distance between the origin 𝑂 of the system of 

coordinate and the point of intersection 𝐼 is given by the relation 

 

𝑂𝐼 = 𝑒′𝑂𝑀 

 

Where 𝑒′ is definite with relation (8). This geometric property leads to the possibility of graphically 

determining the direction of the radius of curvature, and therefore of the tangent to the curve. It is 

obviously a fundamental geometric property, which does not seem to have always been noticed, in 

most of the cases. To illustrate it, we present in this part some examples. Let us first consider the 

simplest cases, corresponding to the eccentricities of the initial conic equal to 1 ( 𝑒 = 𝑒′ = 1 ). An 

interesting case is of course the cardioid curve [7] which we present in figure 3.1 :  
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The axis of the radius of curvature (𝐼𝑀) is here simply drawn by reporting the distance 𝑂𝑀 on the 

axis corresponding on 𝛼 = 2𝜃, and the direction of the tangent in M is directly deduced therefrom. 

This construction method can be compared with other methods that we encounter in the literature (see 

for example reference [8]) and seems, at least to our knowledge, original.  

 

A similar result can also be presented for the prestigious Lemniscate of Bernouilli [9], considering this 

time the relation 𝛼 = 5𝜃 (Figure 3.2). 

𝛼 = 2𝜃 

𝜃 

(𝑇) 

I 

M 

O 

Fig 3.1. Cardioïd. 𝑛 = 2. The perpendicular to the tangent (𝑇) 

to the curve at M intersects at I such that: 𝑂𝐼 = 𝑂𝑀 and 𝛼 = 2𝜃 
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M 

I 

𝜃 = 𝜋/10 

(𝑇) 

𝛼 = 5𝜋/10 

Fig 3.2 . Lemniscate de Bernouilli. 𝑛 = 5. The perpendicular 

to the tangent (𝑇) to the curve at M intersects at I such that: 

𝑂𝐼 = 𝑒′𝑂𝑀 = 𝑂𝑀 and 𝛼 = 5𝜃 

O 

 
 

 

However, This result can be extended to all initial eccentricities between 0 and 1, but considering that 

the distance is no longer equal. An example is detailed in figure 3.3, corresponding to an ellipse, and 

where the two circles of radius 𝑂𝑀and 𝑒′𝑂𝑀 are drawn : 
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Note again  that others methods of graphical constructions corresponding on this curve can be found in 

reference [10]. 

 

To conclude this part, we consider as a final example the case of a more exotic curve, which is drawn 

in figure 3.4 : 

M 

I 

O 

𝜃 

𝛼 = −𝜃 

(𝑇) 

Fig 3.3. Ellipse. 𝑛 = −1. The perpendicular to the tangent (𝑇) to 

the curve at M intersects at I such that: 𝑂𝐼 = 𝑒′𝑂𝑀 and 𝛼 = −𝜃 
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𝛼 = −3𝜃 

𝜃 

(𝑇) 

M 

I 

O 

Fig 3.4. 𝑛 = −3, 𝑒 = 0.25, 𝑒′ = 0.47 The perpendicular to the 

tangent (𝑇) to the curve at M intersects at I such that: 𝑂𝐼 = 𝑒′𝑂𝑀 

and 𝛼 = −3𝜃 
 

 

2.5.1 Generalisation of the property 

 

By considering these results, it is possible to propose their generalization and to present a geometrical 

method of construction of the tangents of this class of curves. According to results presented in section 

2.2, it consists to draw on the same graph the curve describes by the point 𝐼. This associated curve is 

thus the locus of these points of intersection and should be not confused with the evolute of the curve. 

The expression of this associated curve is given by : 

 

  𝑟(𝜃) =
−𝑒′𝐶′1

(1 + 𝑒′ cos (𝜃
(𝑛 − 1)
𝑛

))

1
1−𝑛

                         (10) 

 

This method is particularly simple when the eccentricity of the initial conic is equal to 1. In this case, 

the circle of radius 𝑂𝑀  (in dotted line in following figures) intersects with the associated curve at 𝐼. 

(𝐼𝑀) is the direction of the radius of curvature. Consider again, for example, the case of a cardioïd 

curve 𝐶1 given by 

𝑟 = 1 − cos 𝜃 

 

Curve 𝐶2 (associated curve) is given in this case by the relation 

 

𝑟′ = 1 − cos
𝜃

2
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As presented in Figure 3.5 : 

 

M 

O 

I 

Fig.3.5. 𝑛 = 2. The cardioïd 𝐶1 is drawn with its associated curve 𝐶2. 𝑂𝑀 =

𝑂𝐼. 

(𝐼𝑀) is the direction of the radius of curvature of 𝐶1 

𝐶1 
𝐶2 

 
 

Another remarkable and extremely simple example is presented in the following figure, and this time 

concerns the curve of the circles passing through the origin (case 𝑛 = 3). Corresponding curves are 

respectively given with 

 

{
 

 𝑟 = √1 − cos 2𝜃

𝑟 = √1 − cos
2𝜃

3
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𝐶1 

𝐶2 

M 

O 

I 

C 

Fig.3.6. 𝑛 = 3. The double circle 𝐶1passing through the origine O is drawn 

with its associated curve 𝐶2. 𝑂𝑀 = 𝑂𝐼. 

(𝐼𝑀) is the direction of the radius of curvature of 𝐶1, C its center. 
 

 

The radius of curvature obviously passing through the center of the circle. Consequently, as visible, 

the three points M, C and I are aligned. 

 

When initial eccentricity isn’t equal to 1, a solution is to draw a third curve corresponding on |𝑒′|𝐶′1, 

i.e. an homothetic curve of center 0. An example of the method is presented in Figure 3.7. 
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𝐶1 

𝐶11  

𝐶2 

O 

I 

M 

M’ 

Fig 3.7. .𝑛 = 0.5, 𝑒 = 0.9, 𝑒′ = 0.628.     𝐶1 is drawn with its homothetic 

curve 𝐶11 and its associated curve 𝐶2. 𝑂𝑀′ = 𝑂𝐼. 2𝛼 = 𝜃. 

(𝐼𝑀) is the direction of the radius of curvature of 𝐶1, (𝑇) the tangent at 𝑀. 

𝛼 
𝜃 

(𝑇) 

 
 

 

 

 

A remarkable case concerns the ellipse define from its center (𝑛 = −1).  Consider the curve 𝐶1 given 

by 

𝑟 =
1

√1 + 𝑒′ cos 2𝜃
 

 

Eccentricity of this ellipse 𝑒𝐻 is linked to 𝑒′ and 𝑒 by 

 

{
 
 

 
 𝑒′ =

𝑒𝐻
2

2 − 𝑒𝐻
2

𝑒 =
1 − √1 − 𝑒𝐻

2

1 − √1 − 𝑒𝐻
2}
 
 

 
 

                                  (11) 

 

 

Associated curve 𝐶2 is here define using (10) 
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𝑟 =
𝑒′

√1 + 𝑒′ cos 2𝜃
 

 

i.e. a second ellipse of the same eccentricity, which thus is confused whith the homothetic curve 𝐶11. 

Drawing them on the same graph (Figure 3.8) 

 

 

𝐶2 

𝐶1 

M 

I 

O 

M‘ 

Fig.3.8. 𝑛 = −1, 𝑒 = 0.4, 𝑒′ = 0.689   the ellipse 𝐶1 is drawn with its 

associated curve 𝐶2. 𝑂𝑀" = 𝑂𝐼. 

(𝐼𝑀) is the direction of the radius of curvature of 𝐶1 
 

 

2.6 Geometric transformation 

 

Another fundamental concern of the study of curve classes is the determination of symmetry relations 

and geometric transformations. In our case, we were able to highlight a relation of transformation 

between the curves whose values of n are symmetric with respect to 1. Indeed, consider two generalized 

conics of parameters 𝐺𝐶1{𝐶11, 𝑛1, 𝑒11} and 𝐺𝐶2{𝐶12, 𝑛2, 𝑒12}, where parameters of intial conic  {𝑎, 𝑒} 

are conserved and which are linked with the relation 

 

1 − 𝑛1 = 𝑛2 − 1 

 

Which is therefore equivalent to saying that 𝑛1 and 𝑛1 are symmetric around the central value 𝑛 = 1. 

We can rewrite it 

 

𝑛1 = 2 − 𝑛2       (12) 

 

Writing the expression of these generalized conics 
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{
 
 

 
 𝑟1(𝜃) =

𝐶′11

(1 + 𝑒′11 cos 𝜃(𝑛1 − 1))
1

1−𝑛1

𝑟2(𝜃) =
𝐶′12

(1 + 𝑒′12 cos(𝜃(1 − 𝑛2))
1

1−𝑛2}
 
 

 
 

 

 

Consider now the parameters 𝑒′of the two generalized conics 

 

𝑒′11 =
(1 + 𝑒)1−𝑛1 − (1 − 𝑒)1−𝑛1

(1 + 𝑒)1−𝑛1 + (1 − 𝑒)1−𝑛1
=
(1 + 𝑒)𝑛2−1 − (1 − 𝑒)𝑛2−1

(1 + 𝑒)𝑛2−1 + (1 − 𝑒)𝑛2−1
= −𝑒′12 

 

They are conserved, apart from sign. Having now a look to the second parameter, 

𝐶′11 = 𝑎(1 − 𝑒
2) [

2

(1 + 𝑒)1−𝑛1 + (1 − 𝑒)1−𝑛1
]

1
1−𝑛1⁄

= 𝑎(1 − 𝑒2) [
2

(1 + 𝑒)𝑛2−1 + (1 − 𝑒)𝑛2−1
]

1
𝑛2−1⁄

 

Finally 

 

𝐶′11 =
𝑎2(1 − 𝑒2)

𝐶′12
 

Synthetizing the results 

[
 
 
 
𝑛1 − 1 = −(𝑛2 − 1)

𝑒′1 = −𝑒
′
2

𝐶′11 =
𝑎2(1 − 𝑒2)

𝐶′12 ]
 
 
 

 

 

It indicates the two associated conics 𝐺𝐶1 and 𝐺𝐶2 are linked with two successive geometric 

transformations, that we detail in the following. 

 

2.6.1 Inversion 

 

 First of them is an inversion, which we can describe by 

 

𝑟 →
𝑎2(1 − 𝑒2)

𝑟
 

 

i.e. an inversion whose center is the origin of the system of coordinate. Calling it 𝑂 , the image 𝑀′2 of 

a point 𝑀1 located on one of the generalized conic 𝐺𝐶1 can thus be defined with 

 

𝑂𝑀1. 𝑂𝑀′2 = 𝑎
2(1 − 𝑒2) 

 

And is consequently the inverse of 𝑀1 with respect to the reference circle (𝑂, 𝑟 = 𝑎√(1 − 𝑒2)).  We 

note this transformation of inversion as follows 

𝐼(𝑂,√(1 − 𝑒2)) 

𝑀′2 is located on an intermediary generalized conic 𝐺𝐶′2{𝐶12, 𝑛2, 𝑒11}, given thus with 
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𝑟′2(𝜃) =
1

𝐶′11

𝑎2(1 − 𝑒2)

(1 + 𝑒′11 cos 𝜃(𝑛1 − 1))
−1
1−𝑛1

=  
𝐶′12

(1 − 𝑒′12 cos 𝜃(1 − 𝑛2))
1

1−𝑛2

      

 

An illustration of the transformation  

𝐺𝐶1
𝐼(0,𝑎√1−𝑒2)
→        𝐺𝐶′2 

Can be found in Figure 4: 

 

 

 

𝑀 

𝑀’ 
O 

𝐶𝑟  

𝐺𝐶1{𝑛1 = 0, 𝑎 = 1, 𝑒 = 0.7} 

𝐺𝐶′2  
𝐶 

Fig 4. M’ is the image of M with the tranformation of inversion I. 𝐶𝑟  is the circle of reference 

centered at O, 𝐶 the circle of diameter OM. 𝐺𝐶1 is an ellipse whose foci is located at 𝑂, 𝐺𝐶′2 its 

image (generalized cardioïd). 𝑀1 and 𝑀2 are invariable points and located at the intersections of 

𝐺𝐶1, 𝐺𝐶′2 and 𝐶𝑟  

𝑀′1 

𝑀′2 

 
To illustrate it, we suggest in following Figures, the representation of certain associated generalized 

conics, with the circle of reference: 
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Fig 4.1  {𝑒 = 0.4, 𝑛1 = −3, 𝑛2 = 5}   {𝑒 = 0.4, 𝑛1 = −2, 𝑛2 = 4} 

 

                                                                                                                                                                                                  

                               
 

Fig 4.2   {𝑒 = 0.4, 𝑛1 = −2.5, 𝑛2 = 4.5}         {𝑒 = 0.4, 𝑛1 = −1.5, 𝑛2 = 3.5} 

 

And, for the fundamental trajectories 

 

 
 

Fig 4.3    {𝑒 = 0.7, 𝑛1 = −1, 𝑛2 = 3 }                                          {𝑒 = 0.7, 𝑛1 = 0, 𝑛2 = 2 } 

 

Ellipse of Hooke and generalized circle                      Keplerian orbit and generalized cardioid 

 

Several points can be highlighted on these figures. In particular, the curves are bounded between two 

radius, depending on the choice of the parameters of the initial conic, and corresponding on 𝑎(1 − 𝑒) ≤

𝑟 ≤ 𝑎(1 + 𝑒). Moreover, we can notice that the two associated generalized conics and the reference 

circle intersect at the same point, which is a property of this geometrical transformation.  

 

In fact, these results were known when 𝑒′ is equal to 1. For example, it is well known that “the image 

under inversion of a line not through the center of inversion is a circle passing through” this center, 

which corresponding here to the associated curves (𝑛1 = −1, 𝑛2 = 2) when 𝑒 = 1. Another classical 

case is the Lemniscate of Bernouilli, whose image is an hyperbolae (𝑛1 = −3, 𝑛2 = 5) [9]. But it 

appears that the general cases have not been detailed (corresponding on 𝑒 ≠ 1). 
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2.6.2 Rotation 

 

To obtain 𝐺𝐶2 we need to make a second geometric transformation, this time a rotation around 𝑂 and 

of angle given by 
𝜋

𝑛1 − 1
=

𝜋

1 − 𝑛2
 

 Indeed, with this transformation we obtain 

𝐶′12

(1 − 𝑒′12 cos(𝜃(1 − 𝑛2))
1

1−𝑛2

  →  
𝐶′12

(1 + 𝑒′12 cos(𝜃(1 − 𝑛2))
1

1−𝑛2

= 𝑟2  

 

Noting this geometric transformation 𝑅𝑂,𝑛1−1 we obtain thus 

𝐺𝐶′2
𝑅𝑂,𝑛1−1
→     𝐺𝐶2 

 

2.6.3 Synthesis 

 

Finally, the associated conic can be linked by the two successive transformations 

 

𝐺𝐶1
𝐼
→ 𝐺𝐶′2

𝑅
→𝐺𝐶2 

 

We present an illustration in Figure 5. 

 

 

 

      
 

      
 

𝐶𝐺2 

𝐶𝐺1 𝐶𝐺′2 

𝑛1 = −2 

𝑛2 = 4 = 2 − (−2) 

𝐼 

𝑅 

𝐶𝐺2 

Figure 5. Initial conic 𝐺𝐶1{𝑎 = 1, 𝑒 = 0.7, 𝑛 = −2}   is modified by two 

successive geometric transformations in 𝐺𝐶2{𝑎 = 1, 𝑒 = 0.7, 𝑛 = 4} 
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2.7 Limiting case :  𝒏 = 𝟏. Circle and Logarithmic spiral 

 

As presented in (9.2) the solution is a logarithmic spiral, also called “equiangular spiral”, because its 

slope angle is constant.  In our case the expression is given by 

 

𝑟(𝜃) = 𝑎(1 − 𝑒). 𝑒
𝑒 "sin𝛽
1+𝑒′cos 𝛽

𝜃
 

 As previously, we can illustrate the geometric properties contained in differential equation (4). The 

leading coefficient of this curve is 

𝛾 =
𝑟

𝑟′
=
1 + 𝑒′ cos 𝛽

𝑒′ sin 𝛽
 

If we now have a look on this coefficient in the general case defined by (7) we obtain 

𝛾 = −
1 + 𝑒′ cos(𝑛 − 1)𝜃

𝑒′ sin(𝑛 − 1)𝜃
 

 

Consequently, radius of curvature are parallel when 

𝛽 = (1 − 𝑛)𝜃 

To illustrate it we choose the simple case 𝑛 = 0 and 𝛽 = 𝜋 2⁄  (Figure 6.1). We plot thus an ellipse (curve 

𝐶0) and the corresponding spiral ( 𝐶1) 

 

 

 

 

 

 

𝐶1 

𝑟 = 0.3𝑒0.7𝜃  

𝐶2 

𝐶0 M 

M’ 

I 

I’ O 

Fig. . 𝑒 = 0.7, 𝛽 = 𝜋
2⁄ .  (𝑀′𝐼′) and (𝑀𝐼) are parallel because 𝜃 = 𝜋

2⁄ . 

(𝐼𝑀) is the direction of the radius of curvature of 𝐶𝑂, (𝐼′𝑀′) and (𝐼′′𝑀′′ ) of 𝐶1. 

M’’ 

I’’ 
𝜃 − 𝛽 

𝜃 − 𝛽 

𝑂𝐼

𝑂𝑀
=
𝑂𝐼′

𝑂𝑀′
=
𝑂𝐼′′

𝑂𝑀′′
= 𝑒 
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Consider now a precession of the abscissa axis on an angle (𝜃 − 𝛽) (axe (𝑂𝐼′) on the Figure). The 

intersection of the radius of curvature of 𝐶1 intersects with this axis as such manner that relation of 

proportionality is maintained, and is therefore the geometric consequence of equation (4). These points 

of intersection 𝐼, 𝐼′, 𝐼′′.. draw to their whole a logarithmic spiral 𝐶2 given by 

𝑟 = −𝑒(1 − 𝑒)𝑒0.7(𝜋−𝛽+𝜃) 

By considering these results, we can again suggest an original method of construction of the tangents to 

this kind of curves: Considering a logarithmic spiral 𝐶1  given by 

𝑟 = 𝑎𝑒𝑘𝜃 

We seek to determine the corresponding angle 𝛽. So we pose the equation 

𝑘 =
sin𝛽

1 + cos 𝛽
 

Solving leads to 

sin 𝛽 =
2𝑘

1 + 𝑘2
 

Associated curve 𝐶2 is given by 

𝑟 = −𝑎𝑒𝑘(𝜋−𝛽+𝜃) 

i.e. a second logarithmic curve. Drawing the two curves on the same graph, we deduce the direction of 

the radius of curvature as previously. Consider for example the case 𝑎 = 1, 𝑘 = 2 (Figure 6.2). 

 We obtain sin 𝛽 = 4/5. We draw thus 

𝑟 = −𝑒2(𝜋−sin
−1(4 5⁄ )+𝜃) 

 

 

 

𝐶1 

𝑟 = 𝑒2𝜃  

 

𝐶2 

𝑟 = −𝑒2(𝜋+𝜃−sin −1(4
5⁄ ) 

 

I 

M 

Fig.6.2. the spiral 𝐶1 is drawn with its associated curve 𝐶2. 𝑂𝑀 = 𝑂𝐼. 

(𝐼𝑀) is the direction of the radius of curvature of 𝐶1 
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To conclude this geometrical study, we have a brief look on the relation of transformation. We know 

that the transform of the spiral by the inversion is another spiral given here by 

 

𝑟 = 𝑎(1 + 𝑒)𝑒
−
𝑒′ sin 𝛽
1+𝑒′ cos𝛽

𝜃
 

 

It is interesting to note that the curves corresponding on the central value 𝑛 = 1 have consequently an 

unique property inside the class : they are the only curves whose nature isn’t modified by the relation of 

inversion. Moreover, they are the only curves to which correspond associated curves of the same nature.  

 

3. Dynamics 

 

As we have evoked it in the introduction, we adopt in this second part a physical point of view. Indeed, 

we consider now the previously curves as possible trajectories of a point particle submitted to a field of 

central force.  

 

3 .1 Law of central Forces 

 

Central forces can be determined using the laws of dynamics, but it is generally easier to determine the 

forces knowing the trajectory than the inverse. It exists several methods based on this approach.  In 

particular, historically, Newton detailed several methods based on geometrical considerations [11]. In 

the 19th the Italian mathematician and ballistician Siacci wrote a theorem [12] (recently generalized 

[13]), which provides that the central acceleration can be written  

 

𝑎𝑟ሬሬሬሬԦ = −
𝐶2

𝑝3
𝑑𝑝

𝑑𝑟
𝑒𝑟ሬሬሬԦ 

Where 𝐶 is the constant of area given by 

 

𝐶 = 𝑟2�̇� 

And  𝑝 is the pedal curve of the trajectory, given by 

𝑝 =
𝑟2

√𝑟2 + 𝑟′2
 

With 

𝑟′ =
𝑑𝑟

𝑑𝜃
 

 

We consider the polar curve corresponding on 

 

𝑟(𝜃) =
𝐶′1

(1 + 𝑒′ cos 𝜃(𝑛 − 1))
1
1−𝑛

 

Pedal curve is 

 

𝑝(𝜃) = 𝐶′1
(1 + 𝑒′ cos(𝑛 − 1)𝜃)

𝑛
𝑛−1⁄

√(1 + 𝑒′2 + 2𝑒′ cos 𝑛𝜃)

 

Using the relation 
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𝑑𝑝

𝑑𝑟
=
𝑑𝜃

𝑑𝑟

𝑑𝑝

𝑑𝜃
=
𝑝′

𝑟′
 

 

We obtain the central acceleration, which after reorganization of the terms, becomes 

 

𝐹𝑟ሬሬሬԦ = −𝐶
2𝐶′1

2𝑛−2
[(1 + 𝑛)

𝐶′1
1−𝑛

𝑟2+𝑛
− 𝑛

(1 − 𝑒′
2
)

𝑟2𝑛+1
]  𝑒𝑟ሬሬሬԦ   (13) 

 

And central forces (per mass unity) can finally be rewritten under the form  

𝐹 = [−(1 + 𝑛)
𝐴

𝑟𝑛+2
+ 𝑛

𝐵

𝑟2𝑛+1
(1 − 𝑒′2)]             (14) 

 

Where 𝐴 and 𝐵 are two positive constant. We see the value 𝑛 = 1 isn’t here forbidden and is 

corresponding to an inverse cubic force, which is natural because the logarithmic spiral is one of the 

curve of Cotes [14]. 
 

3.2 Particular cases 

The previously law of central forces seems not have been obtained until today, at least at our 

knowledge. It is interesting to note it is the sum of two central forces except for three fundamentals 

cases, corresponding on 𝑛 =-1, 𝑛 = 0  and 𝑛 = 1. Forces are thus conservative for these three cases, 

such we can write a power law of potentials using 

𝑉(𝑟) = −∫𝐹𝑑𝑟 

Thus 

𝑉(𝑟) = −
𝐴

𝑟1+𝑛
+
1

2

𝐵

𝑟2𝑛
(1 − 𝑒′

2
)         (15) 

Listing them for the three fundamental cases in tab 1. 

 

𝑛 = −1 Harmonic 

oscillator 
𝑉(𝑟) =

1

2
𝐾𝑟2 𝑟(𝜃) =

𝑎

√(1 + 𝑒′ cos 2𝜃)
 

 

𝑛 = 0 
 

 

 

Keplerian 

orbit 

 

𝑉(𝑟) = −
𝐴

𝑟
 

 

𝑟(𝜃) =
𝑎

1 + 𝑒 cos 𝜃
 

 

𝑛 = 1 
 

 

 

Logarithmic  

Spiral 

trajectory 

 

𝑉(𝑟) =
𝐵

𝑟2
 

 

𝑟(𝜃) = 𝑎𝑒𝑘𝜃 

Tab 1. The three fundamental and conservative potentials  

 

Formulae (15) allows thus to link in only one relation these three fundamental potentials of Physics. In 

the others cases we know that, with respect for the Bertrand’s theorem [15], the combination of central 

forces is not conservative, except for 𝑒 = 1. Indeed, using (8.1) we see that in this case 𝑒′is also equal 

to 1 and the law of force becomes simply 
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𝐹 = −(1 + 𝑛)
𝐴

𝑟𝑛+2
           

 

In these limiting cases we can thus write the corresponding potentials 

 

𝑉(𝑟) = −
𝐴

𝑟1+𝑛
     (15) 

 

We reobtain here a well-known series of trajectories, where we can distinguish, for example, the 

cardioid, circle passing through the origin, Lemnicaste.. We can consider these cases as generalized 

parabola of the class of curves. Note that this time this law of potential was already known (formulae 

valuable except for limiting case 𝑛 = −1 [1]). 

 

 
 

𝐹 = −
𝐴

𝑟4
                                                           𝐹 = −

𝐴

𝑟4
+
𝐵

𝑟5
 

 

Fig 7.1  cardioîd and its genenalized form  (𝑛 = 2) 

 

 

 

 

            
 

𝐹 = −
𝐴

𝑟5
                                                              𝐹 = −

𝐴

𝑟5
+
𝐵

𝑟7
 

 

Fig. 7.2  Circular orbits passing through the point of attraction and its generalized form (𝑛 = 3). The 

solution was mentioned by Newton, in corollary 1 to proposition VII of the Principia. 
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𝐹 = −
𝐴

𝑟7
                                                                            𝐹 = −

𝐴

𝑟7
+
𝐵

𝑟11
 

 

Fig 7.3 Lemniscate of Bernouilli and its generalized form (𝑛 = 5) 

 

3.3 Associated curves 

 

We have also investigated the taw of central force corresponding on the associated curves define by 

relation (10), using again the Siacci’s theorem. The law of central we obtained can this time be written 

as follows: 

 

𝐹Ԧ = −
𝐶2𝐶′1

2𝑛−2

𝑛2
[(1 + 𝑛)

𝐶′1
1−𝑛

𝑟2+𝑛
− 𝑛

(1 − 𝑒′
2
)

𝑟1+2𝑛
(𝑛2 − 1) +

𝐶′1
2−2𝑛

𝑟3
] 𝑒𝑟ሬሬሬԦ        (16) 

 

That we can rewrite using three constants 𝐴′, 𝐵′, 𝐶′ linked together 

 

𝐹Ԧ = −
1

𝑛2
[(1 + 𝑛)

𝐵′

𝑟2+𝑛
− 𝑛(1 − 𝑒2)

𝐶′

𝑟1+2𝑛
+ (𝑛2 − 1)

𝐴′

𝑟3
] 𝑒𝑟ሬሬሬԦ        (17) 

 

This second law of central force excludes thus the value 𝑛 = 0, which is natural since there are no curves 

associated to the Keplerian orbit. Note that for 𝑛 = −1, we reobtain an attractive restoring force, which 

is an agreement with the results presented in section 2.5.1 (the associated curve of an ellipse defined 

with respect to its center, i.e. a two-dimensional harmonic oscillator, is another ellipse of same 

eccentricity). 

 

Moreover, having a look on previously law of central force (13), we note the difference is basically due 

to the addition of an inverse cubic force. 

 

4. Discussion and Physical applications 

 

As we introduced it, the paper can be viewed as multidisciplinary and compatible with several areas of 

Physics, naturally mathematical Physics but also general Physics, classical and celestial Mechanics. In 
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particular, it presents advances in the field of geometry, with the presentation of a class of generalized 

conics and some of its properties. But some results can also be related to different physical concerns. In 

this discussion, we want consider a part of them and place them into the framework of modern 

investigations. 

 

4.1 Combinations of central forces 

 

The results we have obtained can in particular be linked to a popular problem of study, which led to 

the investigation of certain types of force laws for which differential equation is solvable in terms of 

known functions. We think in particular to the work of Whittaker [16], who have studied the cases of 

central forces given with 

𝐹 = 𝑎𝑟𝑛 

And who established that corresponding differential equations are solvable in terms of circular 

functions if 𝑛 ∈ {1,−2,−3} (that we also reobtain) and by elliptic functions if 

 

𝑛 ∈ {7,−5,−4,0,3,5,−
3

2
, −
5

2
,−
1

3
,−
5

3
, −
7

3
} 

 

Later, others works examined the question of linear combinations of this kind of central forces and, 

after a generalization of Whittaker’s results, obtained 6 combinations of forces which can be 

integrated in terms of known functions [17], [18]. The results which are presented in the paper can 

thus be linked to these classical studied, and provide the original result that the general law of 

combination of central forces given with  

𝐹 = −𝐶2𝐶′1
2𝑛−2

[(1 + 𝑛)
𝐶′1

1−𝑛

𝑟2+𝑛
− 𝑛

(1 − 𝑒′
2
)

𝑟2𝑛+1
] 

 

(where 𝐶′1 is a length, 𝐶 the constant of areas) leads to the class of generalized conic trajectories 

presented in (9). A large part of new solutions can thus be added to the already known solutions. See 

for example certain remarkable trajectories in the following tab 2. 
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𝑛 = −1.5 

𝑒 = 0.4 

 
 

𝐹 =
𝐴

√𝑟
− 𝐵𝑟2 

𝑛 = −1 3⁄  

𝑒 = 0.5 

 

𝐹 = −
𝐴

𝑟
5
3⁄
−
𝐵

𝑟
1
3⁄
 

 

𝑛 = 2.5 
𝑒 = 0.5 

 
 

𝐹 = −
𝐴

𝑟
9
2⁄
+
𝐵

𝑟6
 

𝑛 = 3.5 

𝑒 = 0.5 

 
 

𝐹 = −
𝐴

𝑟
11
2⁄
+
𝐵

𝑟8
 

 

 

Tab 2. Several closed generalized conic trajectories and corresponding central forces. 

 

Others solutions concern the second class of curves we have obtained, defined in relation (10) and (16).  

We present certain trajectories in following table: 
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𝑛 = −2 
𝑒 = 0.5 

 
 

𝐹 = −𝐴 + 𝐵𝑟3 −
𝐶

𝑟3
 

𝑛 = −1.5 

𝑒 = 0.5 

 
 

𝐹 = −
𝐴

√𝑟
+ 𝐵 −

𝐶

𝑟3
 

𝑛 = 2.5 

𝑒 = 0.5 

 
 

𝐹 = −
𝐴

𝑟
9
2⁄
+
𝐵

𝑟6
−
𝐶

𝑟3
 

𝑛 = 4 
𝑒 = 0.5 

 
 

𝐹 = −
𝐴

𝑟6
+
𝐵

𝑟9
−
𝐶

𝑟3
 

 

Tab 3. Several associated curves and central forces 

 

4.2 Astrodynamics  

 

The determination of central forces depending on the radial distance isn’t “only” a theoretical concern 

but is a major preoccupation of the astrodynamics. Indeed, the determination of exact analytical 

solutions making it possible to describe orbits represents progress in this field. For example, this kind 

of results is relevant for the determination of spacecraft trajectories propelled by thrust system. The 

thrust required to follow this trajectory can then, in certain cases, be computed. For this reason, works 

are regularly published in the literature devoted to astrodynamics. See for example, among them, 

references [17] but also [19] and [20]. 

 

About our work, some trajectories present an interest in this field. Indeed, comparable trajectories have 

already been studied, for example the logaritmic spiral [21] and more generally the curves of Cotes and 

their generalization [19]. A study of another fundamental case, evoked in this paper, the generalized 

cardioïd, can be found in [20], But, if we have reobtained a part of these trajectories, we have, in addition, 
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presented a large number of other exact solutions. In particular, the trajectories we obtained offer a wide 

variety of possibilities. For example, they partly depend on the eccentricity of the initial conic and can 

therefore be quasi-circular or parabolic. Moreover, some of them are closed and are therefore periodic. 

For these reasons, This class of curves can present a progress in the field, despite the fact that we cannot 

know which trajectory exactly could be particularly interesting. 

 

4.3 Celestial Mechanics: Precession phenomenon 

 

Another interest concerns the precession of orbits of celestial bodies. The study of these precessions is 

naturally a major preoccupation of the celestial mechanics. For example, considering an historical point 

of view, the attempts to understand the precession of the Moon’s orbits led to the establishment of the 

famous revolving theorem, which is still a contemporary preoccupation of the scientific community [4]. 

Another classical example concerns naturally the precession of Mercury and the validation of General 

Gravity. More recently, this phenomenon remains crucial to test the large varieties of alternative theories 

of Gravity, which have been published these last decades. It is the reason for why, nowadays, papers are 

regularly published about this question. For example, references [18] concerns the modern 

investigations about consequences of alternative potential of gravity (for example logarithmic potential, 

or others) on trajectories, especially on precession phenomenon.  

 

This preoccupation is also present in our work. Indeed, we have showed that a precession around one of 

the foci of a Keplerian conic is due to a modification of the law of central force. For example, in Tab.4 

we present the precession corresponding on the progressive transformation of 𝑛  0 → −1: 
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𝑛 = 0 

 

 
 

Initial conic  - Keplerian 

orbit 

𝑎 = 1,   𝑒 = 0.7 

𝐹 = −
𝐴

𝑟2
 

 

 

𝑛 = −0.02 

 

 
 

precession around the foci of 

the ellipse under the action of 

modified central force 

 

 

𝑛 = −0.1 

 

 

 

𝑛 = −0.5 
 

 
 

𝐹 = −
𝐴

𝑟
3
2⁄
− 𝐵 

 

 

 

𝑛 = −0.9 

 
 

 

Precession this time around the 

center of the ellipse 

 

𝑛 = −1 
 

 
 

Harmonic oscillator 

𝐹 = −𝐴𝑟 

Eccentricity 𝑒𝐻 of the conic is 

linked to 𝑒 by (11) 

 

Consider now the expression of the force given by 

 

𝐹 = −𝐶2𝐶′1
2𝑛−2

[(1 + 𝑛)
𝐶′1

1−𝑛

𝑟2+𝑛
− 𝑛

(1 − 𝑒′
2
)

𝑟2𝑛+1
] 

 

And make a series for 𝑛 → 0 at the first order. We obtain an expression of the central force which can 

be written under the form 

 

𝐹 = −
𝐴

𝑟2
+ 𝑛

𝐵

𝑟2
[𝐿𝑛

𝑟

𝐶′1
+
𝑟

𝐶′1
(1 − 𝑒′2)] 

 

The expression is thus corresponding on the precession presented in the paper, when this kind of small 

perturbation is added to the classical inverse square force. 
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5. Conclusion and perspective 

 

Several original results have been established. Generalizing a property of an initial conic, we have 

obtained the mathematical expression of an original class of curves, among them certain well known 

cases. This class of curves presents interesting geometric properties, in particular an internal inversion 

relationship. Moreover, it is possible to define a family of associated curves, which describes the 

fundamental geometric properties of the curves. 

 

Knowing the mathematical expressions of the curves, we have extracted two laws of central forces which 

are, at our knowledge, unknown in the general case. One of them allows to link in only one formulae 

three fundamental potentials. These results contribute to improve the knowledge of the relationships 

between trajectories and central forces. They may have physical applications, particularly in the fields 

of celestial mechanics and astrodynamics. But more generally, they can represent progress in some 

fundamental areas such applied mathematics, geometry and general Physics. 

 

In this general paper, we have not study these trajectories comprehensively. Later works should 

develop the mathematical study of the class of curves, with likely a particular attention to the 

geometric transformation. The study of the dynamics of trajectories could also be deepened, with 

particular attention to the possible physical applications. 

 

References 

 

[1] D.Lynden-Bell, S.Jin, Analytic central orbits and their transformation group MNRAS on. Not. R. 

Astron. Soc. 000, 1–12 (2002) ; [ 

[2] R.W.Hall, K.S.Josi, Planetary Motion and the Duality of Force Laws, SIAM Review, Vol 42 N°1 

pp.115-124 (2000) 

[3] P.Collas, Equivalent potentials in classical Physics  Journal of mathematical Physics  22, 2512 

(1981) 

[4] D.Lynden-Bell, S.Jin, On the shapes of Newton’s Revolving Orbits  Not. R. Astron. Soc., 51 (2) 195-

198 (1997) 

[5] T.M.Apostol, M.A.Mnatsakanian, New Horizons in Geometry. The Mathematical Association of 

America. (2012) 

[6] C. lebossé, C. Hémery , Géométrie, classe de mathématiques, Fernand Nathan, 1965, 23e leçon : 

foyers et directrices, propriétés diverses, n° 603 page 409 

[7] Cardioide (mathcurve.com) 

[8] Construction de la tangente en un point – GeoGebra   
[9] Lemniscate de Bernoulli (mathcurve.com) 
[10] Construction à la règle et au compas de la tangente à une ellipse, sans utiliser les 

foyers(pagesperso-orange.fr)  http://alain.pichereau.pages.perso-orange.fr 
[11] M.Nauenberg, « Newton’s graphical method for central force orbit » American Journal of Physics 

86, 765 (2018) 
[12] Siacci.F. moto per linea piana  Atti. R. Accad. Sci. Torino Vol.14 750 – 760,  946 – 951  (1879) 

[13] Casey J. Siacci’s resolution of the acceleration vector for a space curve Meccanica 46: 471–476 

(2011) 

[14] Fundamental of celestial mechanics J.M.A Danby.MacMillan, New York 1962 

[15] [1] Bertrand J C.R.Acad. Sci. Paris (1873) 77 849 

[16] Whittaker, E. T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, fourth 

edition, Dover, New York, 1944. 

https://mathcurve.com/courbes2d/cardioid/cardioid.shtml
https://www.geogebra.org/m/uQUTjSvP#material/mvvQjNVj
https://mathcurve.com/courbes2d/lemniscate/lemniscate.shtml
Construction%20à%20la%20règle%20et%20au%20compas%20de%20la%20tangente%20à%20une%20ellipse,%20sans%20utiliser%20les%20foyers(pagesperso-orange.fr)
Construction%20à%20la%20règle%20et%20au%20compas%20de%20la%20tangente%20à%20une%20ellipse,%20sans%20utiliser%20les%20foyers(pagesperso-orange.fr)


Dynamics of Generalized Conic Trajectories                             E.Guiot                   

 

 

31 
 

[17] R. Broucke « Notes on the central forces 𝑟𝑛  » Astrophysics and Space Science 72 : 33 – 53 (1981) ; 

[18] F.M. Mahomed, F. Vawda, « Applications of Symmetries to Central Force Problems »  Nonlinear 

Dynamics 21 : 307 – 315 (2000)  

[19] Roa, J., Pelàez J., Senent, “New analytic solution with continuous thrust: Generalized 

logarithmic spirals” Journal of Guidance, Control, and Dynamics, 39 (10), 2336-2351 (2016) 

[20] Roa, J., ‘ Nonconservative extension of Keplerian integrals and a new class of integrable system’ 

MNRAS, Vol. 463, Issue 3, Pages 3204–3219 (2016) 

[21] Ralph Hoyt Bacon “Logarithmic spiral: An ideal trajectory for the interplanetary vehicle with 

engines of low sustained thrust”, American Journal of Physics 27, 164 (1959) 

[22] G. S. Adkins and J. McDonnell ``Orbital precession due to central-force perturbations'', Phys. 

Rev. D75 (2007), 082001 ;  

 

 

 

 

 


