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ABSTRACT

Co-design methods started to incorporate neural networks a few years ago when deep learning showed promising
results in computer vision. This requires the computation of the point spread function (PSF) of an optical
system as well as its gradients with respect to the optical parameters so that they can be optimized using
gradient descent. In previous works, several approaches have been proposed to obtain the PSF, most notably
using paraxial optics, Fourier optics or differential ray tracers. All these models have limitations and strengths
regarding their ability to compute a precise PSF and their computational cost. We propose to compare them in
a simple co-design task to discuss their relevance. We will discuss the computational cost of these methods as
well as their applicability.
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1. INTRODUCTION

Imaging systems are composed of several components : most notably a lens, a sensor and a software processing.
The interactions between these parts are tricky to model and understand. As such the most common way to
design an imaging system is to have experts from various fields design separately each of the components as best
as they can.

The process to design a lens starts with a design and optimizes it so that it is tuned for the desired application.
The initial design can be from a book, patent database or a generative model.! In any case an experienced
engineer is required to choose a design with relevant properties. Optical design software, such as Zemax or
CodeV, have the capability to propagate rays through the lens, compute a merit function which evaluates the
qualities of the lens, and optimize the optical parameters to improve this merit function. This workflow yield
good results however the heuristics used to choose a merit function are often unknown and it can be difficult to
come with a user defined merit function that take the processing into account.? Furthermore the optimization
process needs to be guided by the optical engineer to reach a satisfactory system.

Image processing algorithms can perform many tasks ranging from image quality improvement to semantic
analysis of images. Nowadays, most state of the art methods use deep neural networks. They need to be trained
using many samples from real world data which might need to be annotated. Instead of gathering images for
a specific lens design, neural networks are generally trained on existing datasets acquired using an off-the-shelf
camera producing sharp images. This means they generally don’t take into account the aberrations of a given
lens.

The idea of co-design is to design better imaging systems by jointly optimizing the lens and the image
processing. This method could yield processing algorithms that are better suited to exploit the aberrations
of simpler lenses and thus help design optical systems with smaller optics. This approach proved to be useful
for tasks such as extended depth of field® or depth estimation.* More recently some contributions were made
regarding the use of neural networks in co-design.’®

Jointly optimizing an optical system and a neural network using gradient descent requires the computation of
the PSF of the optical system as well as its gradients with respect to the optical parameters. To do so, previous



works have introduced several methods for PSF simulation. Each of them can get good results but most papers
focus only on one of them and don’t compare them. Here we compare the use of paraxial optics, Fourier optics
and ray tracing. We discuss their advantages and analyze their behavior in a simple co-design task.

2. DIFFERENTIABLE OPTICAL SIMULATION

Four methods were proposed to perform differentiable PSF computation. We present them in this section.

2.1 Paraxial optics

Paraxial optics is based on the thin lens model. For a lens composed of a single lens of focal length f and of
radius R, it is possible to compute the radius € of the image on a given plane of a point on the optical axis (see
Figure 1). Under the Gaussian approximation we have
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where z; is the sensor distance and z, the object distance. The PSF of the system can then be modeled as a
normal distribution of variance pe, with p a constant determined arbitrarily in the literature.*

; (1)

Figure 1. Relevant distances for the thin lens model.
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When the system is made of several lenses this model remains useful but it is applied to an optical system
with the same aperture and equivalent focal length that serves as a surrogate during the optimization. Those
parameters are known for commercially available lenses. If a description of the surfaces of the lens is available
they can be computed by tracing the path of a ray that enters the system parallel to the optical axis. This is
enough to compute the equivalent focal length and the position of the second principal plane of the system.

The paraxial optics is a simplified model. It computes PSFs without taking into account aberrations except
for axial chromatic aberrations. Furthermore it only has three parameters : the focal length, aperture and focus
distance.

2.2 Fourier optics

Fourier optics” models the light as a complex amplitude wave to compute its propagation through an optical
system. Fourier optics computes the phase shift induced by an optical system on the wave of light that passes
through it.

In the paraxial approximation the amplitude and phase of a wave that goes through a thin lens is modified
(at the point (z,y)) by a factor

A(z,y) exp <Z;f (22 + y2)> : 2)



where A is the aperture function of the lens, A the wavelength considered and f the focal length of the lens. For
an object at distance z, from the lens, the phase shift at coordinates (x,y) on a plane at z; from the lens is
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where R is the radius of the lens, F the Fourier transform and
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Then the PSF is expressed as
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PSF(z,y) = ’]-' {A (z,y) exp (iw il y2> } (5)
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The value ofyy indicates the amount of defocus of the system.

This model also uses only three parameters that can be obtained as explained in Sec. 2.1. However Fourier
optics can simulate diffraction and previous works have shown that this model can be used to co-design a phase
mask and a neural network for extended depth of field, super-resolution®” or depth estimation.® Aberrations
could be introduced in this model by describing them in the Seidel or Zernike polynomial basis and adding them
to the phase shift function.

2.3 Differentiable ray tracing

Differentiable Ray Tracing (DRT) models the light as rays that go through the system from a point source. The
optical system is described as a sequence of surfaces. Each surface is defined as a geometrical shape (for instance
a conic) described by parameters such as its curvature, its eccentricity or its distance to the next surface. The
path of a ray is described by the intersection of the ray with every surface in the sequence. The trajectory of a
ray is computed one surface at a time. Knowing the path of the ray until the surface n, its position after the
surface n+1 can be found by first computing the intersection of the ray with the surface n+1 and then applying
Snell law to compute how it is refracted. Computing the intersection of the ray and the surface can be tricky
if a complex surface is used : for conics an analytic solution can be found but iterative methods are used for
more complex surfaces. The paths of multiple rays coming from a point source with various directions can be
computed to get a spot diagram of the lens. The PSF can then be obtained by integrating the energy of rays
that reach each pixel. The PSF of an object away from the optical axis can also be computed with this method
as it only requires to change the position of the point from where the ray start.

The method described above can compute a PSF, it relies on automatic differentiation'® to get the gradient
of the PSF with respect to the optical parameters.

Given an initial lens description, this model can optimize all of its parameters for sources at any distance
on and off the optical axis. This method was used to design imaging systems with extended depth of field'! or
extended field of view.'?

2.4 Gaussian approximation

DRT is a powerful way to compute the PSF of an optical system both on and off axis. This makes it an interesting
choice for co-design. However it needs to propagate many rays to precisely compute the PSF and thus tend to
be slower than other models. To get a simulation time more suitable to the optimization of an imaging system
it is possible to assume that the PSF is a Gaussian distribution. In this case less rays are required to estimate
the parameters (center and covariance) of the PSF resulting in a faster simulation. This approach was used to
design an imaging system with an extended depth of field.®



3. COMPARISON OF DIFFERENTIABLE OPTICS MODELS

Previous works have introduced multiple models to compute the PSF of an optical system. However, these
models are never compared directly and it is unclear which one should be used for co-design. We first compare
how the physical description of light used in each model limits their applicability. Then we compare the results
obtained with each one of the four models on a simple co-design problem : the optimization of a double Gauss
lens and neural network system for extended depth of field.

3.1 Benefits and limitations of each optical model

The four models described in the above section can all compute an approximation of the PSF of an optical
system. However they are derived using assumptions that simplify their description.

The four models are all differentiable and applicable to co-designing an optical system and a neural network.
The paraxial model relies on many approximations regarding both the shape of the PSF and the number of
relevant optical parameters : it can be used to dimension the main parameters of an optical system without
taking into account aberrations and diffraction. Fourier optics introduces diffraction in its modeling of PSFs and
can account for some aberrations using classical polynomial decompositions of the phase function.'® Ray-tracing
methods can optimize all the parameters of a lens for point sources located anywhere in the field. However
these models are more computationally expensive : they need to compute and store the path of many rays
whereas paraxial and Fourier optics apply simpler operations to a small set of parameters. DRT with a Gaussian
approximation trades precision for computation time by reducing the number of rays and interpolating the PSF.
Finally, ray-tracing method need a precise description of the optical system and thus an initial starting point
which has to be chosen with insight.

Table 1 gather these comparisons.

Table 1. Applicability of the various differentiable optics methods.

Paraxial | Fourier DRT Gaussian DRT
Aberrations No Yes Yes Yes
Off axis No No Yes Yes
Diffraction No Yes No No
Number of parameters 3 3 All All
Number of rays required Hundreds Dozens

Figure 2 shows the PSF obtained on the optical axis with each model for a double Gauss lens of focal length
100mm.

3.2 Practical comparison on a simple example

The various differentiable optical simulations model light differently and thus could lead to different results. As
far as we know, no one compared them on a co-design task.

In order to analyze the choice of either paraxial, Fourier optics and Gaussian DRT models for lens and neural
network co-design, we optimize optical parameters of a lens using these three models separately for the same
use-case. DRT, that provides the most precise PSF simulation, is only used to simulate the actual lens PSF for
these three settings, so that we can compare their final performance.

Extended depth-of-field is a problem often used to demonstrate the effectiveness of co-design. We set up a
co-design task to produce the best possible images for objects at various distances. To keep all models relevant
we only optimize the system for objects on the optical axis. We start the optimization with a Gauss doublet and
a state of the art neural network for deconvolution. The sensor position is the only variable optical parameter:
it sets which object distances will have the most defocus blur. The network processes the images to cancel this
defocus blur and restores sharp images. The optimization is done in two steps:

1. The lens and the network are jointly optimized. During this step the PSF is simulated using either paraxial
optics, Fourier optics or Gaussian DRT. This first step yields an optical system and a trained neural network
for each model.



Figure 2. PSF obtained with each model (from top to bottom : DRT, gaussian DRT, paraxial, Fourier) for an object at
various distances (from left to right : 10m, 20m, 30m, 40m, 50m). 256 rays were used to compute the PSF with DRT.

2. To evaluate the real-world performance of the optical system we compute its PSF using ray tracing to get
a more precise estimation of the actual PSF of the physical system. Then the optical parameters are fixed
to the value found during the first step and only the neural network is trained to fine-tune it and evaluate
the real-world performance of the optical systems designed with each of the PSF simulation.

3.2.1 Optimization details

The lens design starts with a Gauss doublet of focal length 100mm (see Appendix A). The initial sensor plane is
located so that the image of an object at 25m is focused. The sensor position is then updated using the Adam
optimizer with a learning rate of 0.001. A Gaussian noise of variance 0.01 (for images in the range [0, 1]) is added
after the optical simulation. The co-design is done for a monochromatic light at 530nm. The PSF is computed
on an area of size 105um divided into 21 pixels.

For the processing we use the RedNet!* architecture. The Adam optimizer is used to minimize the L' loss of
the imaging system. The learning rate is set to 0.001 and the batch size to 32. We train the model on patches
of size 64 x 64 pixels in order to have a local processing that uses clues from optical aberrations to perform the
restoration instead of relying on semantic information. The model is trained using 80% of the 22600 images from
the Describable Textures Dataset;'® the remaining 20% are used for validation.

3.2.2 Experimental results

The configurations obtained after training with each model are shown in Table 2. After the first optimization
step, Fourier and paraxial optics are focused at roughly the same distance of around 35m whereas the Gaussian
DRT model puts the focus distance closer to the center of the range at 27m. This shows that it is not necessary
to take diffraction into account for this simple task as Fourier and paraxial optics converged to the same focus
distance. The first step of the optimization process gets close to these final values fairly quickly (see Figure 4).

The focus distances obtained with each model correspond to compromises made between performances for
objects at different distances from the lens. We use Gaussian DRT to estimate roughly the amount of defocus
of the optimized systems : Figure 5 shows how the defocus blur changes with the object distance for the
optical systems optimized using each of the models. This helps understand what is the trade-off made by the
optimization. Fourier and paraxial optics focus distances are around 35m. The defocus for such an optical system



Table 2. Optimization results obtained with the different models. The first two columns show the validation loss reached
when optimizing with each model as well as the loss obtained after fine-tuning the neural network with the ray-traced
PSFs of the optimized optical systems. The last column provides the focus distance of each of the optimized systems.

Model L' loss | L' loss with DRT PSF || Focus distance (m)
Paraxial 0.0415 0.0504 33.9
Fourier 0.0408 0.0509 35.7

Gaussian DRT || 0.0429 0.0430 27.3

decreases with the position of the object. This configuration increases the depth of field at the cost of blurrier
close objects. This results in a better average performance. On the other hand the Gaussian DRT model reaches
a shorter focus distance. This yields an optical system with a larger defocus for far objects but smaller overall.
This also results in less variations of the amount of defocus blur across the distance range which should be easier
to process for the neural network. It can reach this configuration because its PSF is impacted by aberrations. In
Figure 2 one can see that for objects after the focus plane the DRT PSF is more concentrated due to spherical
aberrations. It means that Gaussian DRT can lead the optimization toward a configuration that better focuses
close objects while having less defocus for far objects thanks to aberrations.

Figure 6 shows how the reconstruction error varies with the object distance. It compares the results of the
imaging systems obtained after the two optimization steps. For a given optical system, sharper objects have a
smaller loss and thus give better reconstructed images. However, the optical system obtained using Gaussian
DRT have less defocus variation and as a result the processing can accommodate for both close and far objects.
This yield an imaging system with a processing adapted to the entire range that can achieve better loss for all
the object distances and significantly better loss between 20 and 30 meters. Note that the loss being lower for
object at 10m compared to object at 15m comes from the fact that the PSF is computed for a 21 x 21 pixels area
which is too small for the PSF of close objects. Regardless of this, the optical system optimized with Gaussian
DRT remains better as the three systems would still be too blurry for close objects.

Table 2 provides the loss achieved by each model after the joint optimization of the lens and the neural network
and when evaluated using ray-traced PSFs. After the first step of the optimization, Fourier have the best loss at
0.0408 whereas the paraxial and Gaussian DRT models reached 0.0415 and 0.0429 respectively. However, after
freezing the optical system and optimizing only the neural network using fully ray traced PSFs, we can see that
the performance of the systems optimized using Fourier or paraxial optics degrades more significantly (their loss
increases by around 25%) than the ray-traced one (whose loss only increased by 1%). From all of this we can
deduce that the two simpler models can be used for coarse adjustments of the focus distance but their results
aren’t optimal for an actual system. On the other hand, Gaussian DRT estimate the performance of an optical
system more precisely and thus reaches better optical parameters.

4. CONCLUSION

We compared the models most often used in optics/neural-network co-design literature. They are based on
different models of light propagation through a lens, thus each of them has its advantages and limitations.
Fourier and paraxial optics are easier to simulate and can help solve simple problems such as determining the
optimal focus distance for a lens described only by its aperture and focal length. However they don’t work for off-
axis objects and don’t model aberrations. As a result they yield systems that aren’t as good as what the Gaussian
DRT model can produce. The Gaussian DRT model appears as a good trade-off between computation load and
accuracy in a co-design perspective. It will be interesting to see if this two step optimization approach also work
for off-axis objects or if it is necessary to use a fully ray-traced PSF computation for all the optimization. In
this settings, the two simple models can still be useful to optimize the global parameters of the optical system
to get a starting point more suitable for co-design before using ray-traced methods.

APPENDIX A. DETAILED INFORMATION ABOUT THE EXPERIMENTS

Our experiments were carried starting from the system described in the Zemax format in Table 3.



Figure 3. Evolution of the evaluation loss at each epoch of the training.
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Figure 5. Size of the defocus blur as a function of the object distance for the lenses optimized with each model. The size
of the defocus is computed using Gaussian DRT.
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Figure 6. Variation of the loss with respect to the object distance after the second step of optimization of the neural
network.
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Table 3. The optical starting point for our experiment on co-design.

Surface Curvature Thickness | Material
Sphere 1 0.0184661976 | 8.74664 SK2
Sphere 2 0.0065564346 0.5
Sphere 3 0.027815929 14.0 SK16
Plan 4 3.77696 F5
Sphere 5 0.04490361 14.253
Aperture 12.4281
Sphere 6 -0.03893318 3.777 F5
Plan 7 10.834 SK16
Sphere 8 -0.027041482 0.5
Sphere 9 0.0050912 6.8581 SK16
Sphere 10 | -0.014892576 58.5
Image plan
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