Uncertainty analysis of digital elevation models by spatial inference from stable terrain

Romain Hugonnet, Fanny Brun, Etienne Berthier, Amaury Dehecq, Erik Schytt Mannerfelt, Nicolas Eckert, Daniel Farinotti

To cite this version:

HAL Id: hal-03719624
https://hal.archives-ouvertes.fr/hal-03719624
Submitted on 11 Jul 2022
Uncertainty analysis of digital elevation models by spatial inference from stable terrain

Romain Hugonnet, Fanny Brun, Etienne Berthier, Amaury Dehecq, Erik Schytt Mannerfelt, Nicolas Eckert and Daniel Farinotti

Abstract—The monitoring of Earth’s and planetary surface elevations at larger and finer scales is rapidly progressing through the increasing availability and resolution of digital elevation models (DEMs). Surface elevation observations are being used across an expanding range of fields to study topographical attributes and their changes over time, notably in glaciology, hydrology, volcanology, seismology, forestry and geomorphology. However, DEMs frequently contain large-scale instrument noise and varying vertical precision that lead to complex patterns of errors. Here, we present a validated statistical workflow to estimate, model, and propagate uncertainties in DEMs. We review the state-of-the-art of DEM accuracy and precision analyses, and define a conceptual framework to consistently address those. We show how to characterize DEM precision by quantifying the heteroscedasticity of elevation measurements, i.e., varying vertical precision with terrain- or sensor-dependent variables, and the spatial correlation of errors that can occur across multiple spatial scales. With the increasing availability of high-precision observations, our workflow based on independent elevation data acquired on stable terrain can be applied almost anywhere on Earth. We illustrate how to propagate uncertainties for both pixel-scale and spatial elevation derivatives, using terrain slope and glacier volume changes as examples. We find that uncertainties in DEMs are largely underestimated in the literature, and advocate that new metrics of DEM precision are essential to ensure the reliability of future Earth and planetary surface elevation assessments.

Index Terms—Geostatistics, error propagation, remote sensing, variogram, spatial correlation, surface height.

I. INTRODUCTION

DIGITAL elevation models (DEMs) are gridded, numerical representations of surface elevation. DEMs have a long history of interpolation from point measurements and digitized historical maps [1], [2]. Nowadays, DEMs are mostly generated from radar interferometry [3], [4], optical stereophotogrammetry [5], [6] or laser scanning [7], [8] of a planetary surface. When produced from these remote sensing techniques, DEM grid cells essentially represent surface elevations timestamped to the date of instrument acquisition. With the ever-improving coverage and precision of satellite and airborne sensors [9], land surface assessments based on DEMs are advancing towards estimates that are both more spatially and more temporally resolved [10], [11]. Additionally, the recent unlocking of historical optical archives has created unprecedented potential for studying half a century of Earth’s surface elevation [12]–[14].

Studies that harness elevation observations can generally be divided into two groups. The first group relies on single-acquisition and often gap-filled DEMs to extract essential topographic characteristics, e.g., in river discharge and flood modelling [15]–[17], geomorphological terrain analysis [18]–[21], tectonic monitoring [22]–[25], avalanche risk prediction [26], land classification [27], [28], onshore inundation and sea-level rise forecasting [29]–[31] and planetary surface characterization [32], [33]. The second group requires multiple acquisitions to study surface elevation changes over time, e.g., for landslide and rock avalanche detection [34]–[36], seasonal snow depth assessment [37]–[39], lava flow volume quantification [40], [41], canopy height evolution [42]–[44] and glacier, ice sheet and ice shelf mass balance estimation [45]–[47]. In both groups, and for all applications, the interpretation of results and its robustness are intrinsically intertwined with the accuracy and precision of the underlying DEMs.

Accuracy and precision are related to systematic and random errors. In the case of DEMs, they have been the focus of specific research [48]–[51], software development [52] and questioning [53]–[56] since the beginning of the numerical era. Yet, these efforts are dwarfed by the tremendous increase of studies that rely on DEMs [57] and the processing of ever larger data volumes [58]–[60]. Most critically, the analysis of many modern studies is still confined to simplified metrics for accuracy and precision (e.g., [61]–[63]) that mix systematic and random errors and fail to describe the strong spatial variations and correlations in errors observed in DEMs (e.g., [64]–[66]).

Here, we present a statistical workflow to robustly estimate and propagate uncertainties in DEMs; most specifically, we:

- perform a literature review of analyses dealing with DEM accuracy and precision;
- propose a framework based on spatial statistics to consistently address DEM accuracy and precision;
- present robust inferential methods to estimate elevation heteroscedasticity and spatial correlation of errors;
- analyze the impact on the uncertainty of elevation derivatives, using terrain slope and glacier volume changes as examples;
- provide access to our methods through the open, tested and documented Python package xDEM.
II. LITERATURE REVIEW

A. Mitigating poor DEM accuracy before studying precision

The term accuracy has been used to describe either systematic errors or, in some instances, both systematic and random errors, leading to some confusion. In the present article, we define accuracy as the description of systematic errors only, also known as "trueness" [67], which is related to elevation biases. Poor accuracy is common in DEMs and has been a major source of error in elevation assessments, particularly during the advent of space-borne DEMs. Limitations in instrument positioning, orientation, or post-processing often lead to erroneous horizontal referencing [66], [68], vertical shifts [69], [70] or tilts [71], [72] that propagate into elevation biases (Fig. 1b). By utilizing terrain with elevation assumed stable over time, methods performing 3-dimensional alignment of DEMs have flourished, relying on either generic registration methods [73]–[75], least squares approaches [71], [76] or specifically-developed DEM registration based on terrain constraints [77], [78]. These methods proved robust for aligning a DEM either to an external reference DEM, or to accurate geolocated point elevation data such as space-borne laser altimetry [79], [80]. The above registration methods are only successful at correcting elevation biases common to the entire DEM grid, however. Other biases remain present once 3-dimensional alignment is attained and can arise from resolution [81], [82], specific image deformations and instrument biases [13], [66] or physical properties of the observed terrain such as radar penetration into snow and ice [83], [84] or into forest canopy [43]. Most of these biases are instrument- or application-dependent and, therefore, require specific considerations. Notwithstanding those, poor DEM accuracy has been largely addressed by the robustness of registration methods that have become increasingly widespread, thereby shifting the focus towards the next limiting factor: better quantifying DEM precision.

B. The inherent variability of vertical precision

Precision describes random errors [67] and is related to elevation variance. One aspect of DEM precision consists of the pixel-scale dispersion of elevations that we refer to as "vertical precision". DEMs are generated from acquisitions that possess intrinsic, random measurement errors. At the pixel scale, instrument resolution, spectral range, and encoding depth of optical sensors directly affect the quality of stereocorrelation [5], [6], [85], radar slant angle and height of ambiguity play an important role in interferometric coherence [86], [87] while laser wavelength, sunlight background radiation, target reflectivity, and backscattering properties modulate laser signal-to-noise ratio [88], [89]. Many instrument- or processing-related metrics constitute quality indicators of the estimated elevations. These indicators have been almost exclusively used for the filtering of observations of lesser quality, however, and only occasionally as a tool towards improved modelling of sensor-specific variability in vertical precision (e.g., [90]). Besides, the geometry of instrument acquisition can exacerbate random errors depending on the relief of the observed landforms (Fig. 1a). Vertical precision has indeed been long shown to decrease with terrain slope [48], [91]–[94]. Several assessments account for this variability by partitioning the elevation variance into categories of flat and steep terrain (e.g., [59]). Most studies use a single metric to describe vertical precision, however, often reporting a standard deviation (e.g., ±2 meters). Such simple metrics are insufficient in describing the heteroscedasticity of elevation measurements, i.e. the variability in vertical precision. Although some studies quantified and modelled this heteroscedasticity [64], [95], [96], this modelling was generally performed without validation of the underlying methodology and, most critically, without considering the effect of spatial correlations.

C. The correlated noises that plague DEMs

Another aspect of DEM precision concerns the inter-pixel spatial dependency of random errors, here referred to as "spatial correlations". Spatial correlations describe structures of noise that show a location-dependent pattern, which can often be traced back to limitations during acquisition or post-processing. Along-track undulations have been observed in many DEMs generated from air- and space-borne sensors (Fig. 1b), including the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [47], [66], the Satellite Pour l’Observation de la Terre (SPOT) [97], [98], Pléiades [39], [99] and the Shuttle Radar Topography Mission (SRTM) [88], [100], [101] (Fig. 1c). Processing noise is common in DEMs requiring image digitization including aerial photographs [102], [103], or historical satellite imagery such as Corona and Hexagon KeyHole-9 (KH-9) [11], [104] (Fig. 1c). To mitigate these correlated noises, DEM correction methods have emerged [82], [105] but are still burgeoning for specific...
types of errors [65], [106], [107], and their performance is highly dependent on the type of terrain. Furthermore, nearly all DEMs contain structural short-range correlation of errors. The degree to which a DEM grid spacing represents its native resolution [108], [109] and how that resolution has possibly been degraded through interpolation [110] determine the severity of these short-range correlations. When upsampled to a larger grid spacing, vertical precision improves directly as a function of the underlying spatial correlations [111]. Spatial correlations are generally quantified using an empirical variogram [112], [113] estimated either on the basis of differences with independent elevation observations [2], [114] or those with simulated elevation surfaces [115], [116]. Many studies have used variograms, but have almost exclusively used short range models (i.e. 5 to 20 times the pixel size). Few studies modelled longer-range correlations, that is, correlations that persist over distances several orders of magnitude larger than the pixel size [13], [47], [65]. The widespread occurrence of long-range noise in DEMs thus constitutes a critical limitation in the analysis of DEM precision, and one that directly affects uncertainty propagation.

D. Uncertainty propagation to elevation derivatives

To propagate elevation variance into uncertainties of elevation derivatives (i.e. variables that are derived from elevations), a large set of methods has been applied that generally relies on spatial statistics. Spatial statistics, also known as geostatistics [112], [113], [117], provide a large body of theories and methods that, among others, can address spatial uncertainty analyses [118]–[20] by characterizing spatial correlations that depend only on the distance between observations. These uncertainty propagation methods can be subdivided into two groups: (i) Monte Carlo techniques that simulate multiple random realizations of correlated error fields [112]–[123], notably including Sequential Gaussian simulation [117] and Fourier randomization [124]; and (ii) gradient techniques that analytically approximate the variance of a derivative through simplified equations, that can be either based on Taylor series expansion [121] for any derivative of elevation, or approximations of variogram integration [65] for spatial derivatives. The first group has been widely used for topographic variables, notably in hydrology [16], [57], [125], [126] and occasionally for spatial derivatives in glaciology [127]. The second group is used less frequently, both for Taylor series expansions developed in few applications [128], [131], and for variogram integration implemented mainly in glaciology and geomorphology [65], [132]. Although both groups are expected to perform similarly, Monte Carlo techniques are computationally expensive, especially at fine resolution. Analytical approximations, instead, require a theoretical description of variance propagation that can reach a high degree of complexity for some derivatives [133]. To our knowledge, few studies [132] constrained these propagation methods with estimates of heteroscedasticity and spatial correlation of errors into a single framework for DEMs, and none tested the underlying assumptions of spatial statistics. In the following, we propose such a framework, and later describe methods to robustly estimate its key components.

III. PROBLEM FORMULATION

A. Elevation bias and variance at each location

We consider the elevation observation \(\hat{h}(x, y, t) \) located at \((x, y)\) in space and \(t\) in time, and pertaining to the DEM \(D \). Annotating the true unknown elevation at the same location \(h(x, y, t) \), we can state that the elevation observation has a bias \(\delta h(x, y, t) \) if, over a large number of repeated measurements \(i \in I \) of elevation \(\hat{h}(x, y, t) \), at \((x, y)\), we have:

\[
\hat{h}(x, y, t) = h(x, y, t) + \delta h(x, y, t).
\]

The repeat elevation measurements around the bias \(\delta h(x, y, t) \) are subject to random measurement errors \(\epsilon_i(x, y, t) \) with variance \(\sigma^2_i(x, y, t) \), whose distribution is not necessarily normal and might depend on time and location:

\[
\hat{h}(x, y, t) = h(x, y, t) + \delta h(x, y, t) + \epsilon_i(x, y, t).
\]

In practice, acquiring a large number of repeat measurements at both the same location and time is not feasible, and we therefore turn towards inferential methods to estimate these biases and variance.

B. Inference from stable terrain

DEMs benefit from a great asset, largely uncommon to other remote sensing data, which is that large proportions of planetary surface elevations remain virtually unchanged through time. In fact, elevation changes caused by erosion, short vegetation growth, or continental drift are typically small compared to the precision of the measurement. Terrains such as bare rock or grasslands – later referred to as “stable terrain” – thus provide the means of analyzing multiple elevation measurements acquired at different points in time as if they were acquired from simultaneous measurements \(\hat{h}(x, y, t) \):

\[
\frac{dh(x, y, t)}{dt} \approx 0 \text{ for } (x, y) \in \text{stable terrain}.
\]

While this temporal consistency unlocks the potential to analyze elevation acquisitions independently of time \(t \), it is impeded by the number of required DEMs. For each location \((x, y)\), the number of samples to perform the statistical analysis would always be at best equal to the total number of independent acquisitions, requiring a large number of DEMs. Therefore, we investigate the spatial properties of elevation biases and variance.

C. Spatial homogeneity after affine alignment

Elevation biases and variance are inherent to instrumental limitations, to the physical properties of the observed terrain, as well as its topography (see previous Sections II-A and II-B). Among many types of location-specific biases, a general exception is that of grid misalignment to the true elevations \(h(x, y, t) \) that follows specific geometric distributions linked to the gridded nature of DEMs (Fig. 1b). In our framework, we therefore split elevation biases into two categories: affine biases \(\delta h_A \) that are common to the entire DEM (e.g., translation, rotation, scaling), and non-affine “specific” biases \(\delta h_S \)
that occur at the grid cell level and vary with instrumental and topographical effects (Fig. 2):

$$\delta h(x, y, t) = \delta h_A(x, y, t) + \delta h_S(x, y, t).$$ (4)

Once an alignment is attained by the affine transformation A giving $A(x, y, t) = \delta h_A(x, y, t)$, we assume that, for a single DEM D, specific elevation biases δh_S and elevation variance σ_h^2 have a spatial distribution that is homogeneous with the properties of the instrument and the observed terrain \mathcal{P}. We use this spatial homogeneity to substitute space for time. For example, we consider that elevations $h(x_1, y_1, t)$ and $h(x_2, y_2, t)$ of D acquired on the same surface type (e.g., bare rock), and under the same topographical attributes (e.g., flat) will have similar specific biases and variance:

$$\delta h_s(x_1, y_1) \approx \delta h_s(x_2, y_2) \quad \sigma_h^2(x_1, y_1) \approx \sigma_h^2(x_2, y_2) \quad \text{for } \mathcal{P}(x_1, y_1) = \mathcal{P}(x_2, y_2).$$ (5)

Combining the assumptions of Eqs. 3 and 5 and provided that we describe all the properties \mathcal{P} of spatial homogeneity, a large sample size can be used to infer δh_S and σ_h at each location (x, y) from a single difference between a DEM and an independent source of elevation data. The properties of spatial homogeneity \mathcal{P} could differ between biases and variance. In the following, we assume that specific elevation biases, if they exist, are independently corrected and focus on characterizing the elevation variance σ_h^2.

D. Elevation difference with an independent source

After performing affine alignment of elevations $\hat{h}_1(x, y, t_1)$ from a first source D_1 and elevation $\hat{h}_2(x, y, t_2)$ of a second source D_2, we subtract them to derive elevation differences $\hat{d}h_{1-2}(x, y)$. Assuming independence between the error of each elevation source, the variance of the difference is:

$$\sigma^2_{\hat{d}h_{1-2}}(x, y) = \sigma^2_{\hat{h}_1}(x, y) + \sigma^2_{\hat{h}_2}(x, y).$$ (6)

By selecting a second source to observe \hat{h}_2 that is of higher precision than the first source that observes \hat{h}_1, the analysis of the differences $\hat{h}_2 - \hat{h}_1$ will largely capture the variance of the first source. For example, if the second source is three times more precise than the first, Eq. 6 implies that about 95% of the variance of the elevation difference will originate from the first source, yielding:

$$\sigma_{\hat{h}_1}(x, y) \approx \sigma_{\hat{d}h_{1-2}}(x, y).$$ (7)

Alternatively, if \hat{h}_1 and \hat{h}_2 originate from independent acquisitions of the same instrument and processing, we have:

$$\sigma_{\hat{h}_1}(x, y) = \frac{\sigma_{\hat{d}h_{1-2}}(x, y)}{\sqrt{2}}.$$ (8)

Thus, we use elevation differences to infer on σ_h, which can be converted from either Eqs. 7 or 8.
E. Discriminating elevation bias from variance in spatial statistics

To further analyze elevation variance, we need to discriminate bias from variance. When analyzing elevation differences, what appears as a bias at the local scale could also be a form of long-range correlation at larger scales (Fig. 1b-c). This distinction is directly related to the assumption of second-order stationarity of spatial statistics. For elevation differences, second-order stationarity implies that the following assumptions should be fulfilled (see Supplementary Section II-A):

1) a first assumption of stationary mean, i.e. that the average of elevation differences $d_h(x, y)$ is constant over large areas;
2) a second assumption of stationary variance, i.e. that the variance of elevation differences $\sigma_{dh}(x, y)$ is constant over large areas; and
3) a third assumption of spatially consistent covariance, i.e. that the correlation between random errors of elevation differences only depends on the distance between observations.

Large areas here refer to areas slightly smaller than the size of the study domain, typically within an order of magnitude. As such, a correlated error with a correlation range that is orders of magnitude larger than the size of the study domain might be considered a vertical bias common to the entire DEM grid (Fig. 2). And, inversely, such a bias placed in the context of a larger study domain might be considered as a correlated error, if the elevation differences fulfill the above assumptions.

Thanks to the affine alignment of our elevation differences, we verify the first assumption of stationary mean. However, the heteroscedasticity of elevations (see Section II-B) invalidates the second and third assumptions, and therefore a non-stationary framework needs to be defined.

F. A non-stationary spatial framework for DEM analysis

To perform spatial statistics with a non-stationary variance, transformation of the data towards a stationary variance is necessary. The transformation depends on the nature of the spatial variability and correlations. In DEMs, we identify two types of correlation: short-range ones related to resolution, and long-range ones related to correlated noise or digitization artefacts. While the latter appear unrelated to the heteroscedasticity of elevation, the former are similarly linked to local instrument- and terrain-dependent variables (see Sections II-B and II-C). We thus subdivide elevation variance into elevation heteroscedasticity and spatial correlation of errors (Fig. 2) assuming that longer-range correlations are independent of elevation heteroscedasticity, which yields:

$$\sigma_{dh}^2(x, y) = \sigma_{dh, sr}^2(x, y) + \sigma_{dh, lr}^2,$$ \hspace{1cm} (9)

where $\sigma_{dh, sr}^2(x, y)$ is the variable short-range variance at (x, y), $\sigma_{dh, lr}^2$ is the constant long-range variance.

Using the variable spread $\sigma_{dh}(x, y)$, the elevation differences can be standardized into a standard score z_{dh} with unit variance, which fulfills the second assumption of second-order stationarity:

$$z_{dh}(x, y) = \frac{d_h(x, y)}{\sigma_{dh}(x, y)}.$$ \hspace{1cm} (10)

Additionally, the spatial covariance $C_{z_{dh}}$ of z_{dh}, related to the variogram $\gamma_{z_{dh}} = 1 - C_{z_{dh}}$, is also free of the influence of heteroscedasticity and now fulfills the third assumption of second-order stationarity:

$$\gamma_{z_{dh}}^2(d) = \left(\frac{\sigma_{dh, sr}}{\sigma_{dh}}\right)^2 \gamma_{sr}(d) + \left(\frac{\sigma_{dh, lr}}{\sigma_{dh}}\right)^2 \gamma_{lr}(d),$$ \hspace{1cm} (11)

where d is the spatial lag, i.e. the distance between two given observations, $\sigma_{dh, sr}$ is the average of $\sigma_{dh, sr}$ in the DEM D, and γ_{sr} and γ_{lr} are the short- and long-range variogram functions.

With all the assumptions in our framework fulfilled, we can now reliably use spatial statistics for uncertainty propagation. To this end, we require an estimate of the elevation dispersion $\sigma_{dh}(x, y)$ and of the variogram of the standard score $\gamma_{z_{dh}}(d)$, which describe the heteroscedasticity and the spatial correlation of errors, respectively. We also need to ensure that our assumption of spatial homogeneity remains valid when using stable terrain as an error proxy to infer heteroscedasticity and spatial correlations on moving terrain. In the following, we address these aspects by utilizing near-simultaneous data and implementing robust methods.

IV. DATA

A. Mont-Blanc case study: simultaneous DEMs

To demonstrate the methods associated with our proposed framework, we present a case study of two DEMs generated one day apart in the Mont-Blanc massif, French Alps (Fig. 3b, Table I). These DEMs were produced with a spatial posting of 5 m from SPOT-6 and Pléiades stereo images using the Ames Stereo Pipeline [134]. We utilize the temporal closeness of the two acquisitions to assess if stable terrain can be used as a proxy for moving terrain, considering a negligible elevation change on moving terrain.

We present an additional case study in the Northern Patagonian Icefield to illustrate the influence of the quality of stereo-correlation, a sensor-dependent variable, on elevation heteroscedasticity (Supplementary Section I-A with additional refs. [66], [135], [136]). This case study is based on simultaneously acquired ASTER [47] and SPOT-5 images. Furthermore, the DEMs used to illustrate noise patterns (Figs. 1 and 5) are described in the Supplementary Section I-B with additional refs. [137]–[139].

| Table I: Nearly-simultaneous Pléiades and SPOT-6 DEMs used for the Mont-Blanc case study. |
|---|---|---|
| Instrument | Acquisition time | Resolution of stereo-pair |
| Pléiades | 24/10/2017, 12:00 CET | 1.5 m |
| SPOT-6 | 25/10/2017, 12:30 CET | 0.7 m |
B. Inventory and land cover products

We define moving terrain as glacierized, forested and seasonally snow-covered terrain, and exclude water bodies from our analysis. The remaining terrain is assumed to be stable. We mask glaciers using the Randolph Glacier Inventory 6.0 (RGI 6.0) outlines [140], which are delineated from images with a typical resolution of 15–30 m. We mask forests and water bodies using the ESA Climate Change Initiative Land Cover version 2.0.7 [141] which has a resolution of 300 m. Forested terrain corresponds to either broadleaved, needle-leaved, evergreen, or deciduous tree cover classes.

We identify specific elevation biases over forested terrain between the SPOT-6 and Pléiades DEMs – likely owing to different native resolution, orientation and spectral bands (Fig. S3) – and thus exclude this terrain from our analysis. Our end-of-summer acquisitions contain little snow outside of glacierized surfaces. Therefore, we did not mask off-ice snow cover. Ultimately, in our analysis, moving terrain corresponds to glacierized terrain.

We estimate spatial correlations by sampling an empirical variogram \(\hat{\gamma} \) on the standard score \(z_{dh} \) using Dowd’s estimator [146], [147] (Fig. 5):

\[
2 \hat{\gamma}_{z_{dh}}(d) = 2.198 \cdot \text{median}(z_{dh}(x,y) - z_{dh}(x',y'))^2, \tag{13}
\]

where \(z_{dh} \) is the standard score of elevation differences, and locations \((x, y)\) and \((x', y')\) are separated by a spatial lag \(d \). Dowd’s estimator is based on median absolute deviations, and consequently more robust than the Matheron [148] or Cressie-Hawkins [149] estimators classically used (see Supplementary Section II-B based on additional ref. [150]).
Generally, the number of summed models can cause overfitting, particularly when using a larger number of models. We thus use three models to account for the different track lengths of low-amplitude undulations in the elevation range and two long-range correlations (Fig. S14, Table S2). This approach allows us to capture one short-range and three long-range correlations, which is substantially improved by our method to estimate the empirical uncertainties previously detailed (Fig. 5a):

\[\gamma_{z_{dh}}(d) = \sum_k V_k(s_k, r_k, d), \]

where \(s_k \) and \(r_k \) are the partial sills and ranges, respectively, of each variogram model.

For the Mont-Blanc study, we find no significant improvement in least-squares residuals when fitting more than three models, which is capable of capturing one short-range and two long-range correlations (Fig. S14, Table S2). The two long-range correlations match the along- and cross-track lengths of low-amplitude undulations in the elevation differences (Fig. 5b). We thus use three models to avoid overfitting of a larger number of summed models. Generally, \(k \) should be chosen to reflect the number of distinct ranges in the patterns of DEM noise. For instance, ASTER undulations are characterized by two wavelengths of 1–2 km and 5–10 km in the along-track direction, and a cross-track distance of 60 km (Fig. S1b), which better fits three distinct long-range models [47] for a total of four ranges.

To verify the increased robustness of Dowd’s estimator for the Mont-Blanc case study (Figs. S11 and S12), we introduce a pairwise subsampling method based on iterative subsetting of pairwise combinations between a disk and multiple rings centered on a random point (see Supplementary Section II-C). As variograms were historically sampled from point measurements [112], traditional sampling methods are less computationally efficient on large grids. Most critically, they are inefficient at sampling pairwise distances evenly across spatial scales, which is substantially improved by our method to estimate more reliably both short-range and long-range correlations (Fig. S13). Finally, we derive empirical variograms for 100 independent realizations with the same binning. We estimate our final empirical variogram by the mean of all realizations at each spatial lag with, as an empirical uncertainty, the standard error of the mean.

To derive a spatially continuous representation of the variogram, we calibrate an analytical model \(\gamma_{z_{dh}} \) with the empirical variogram \(\hat{\gamma}_{z_{dh}} \). We fit a sum of \(k \) variogram models \(V(s_k, r_k, d) \), optimizing their partial sills \(s_k \) (i.e. correlated variance) and ranges \(r_k \) (i.e. correlation length) simultaneously by weighted least squares, using as weights the squared inverse variance. We then de-standardize \(z_{dh} \) using Eq. 12, and add the resulting elevation error field to the studied DEM. For each of these DEM realizations with an added error field, we then compute the terrain attribute of interest (e.g., terrain slope or aspect), for which we can study the distribution of errors.
2) Theoretical approximation methods for spatial derivatives: For spatial derivatives such as the average \bar{dh} of elevation changes dh in an area A, we derive an exact analytical solution of the uncertainty in the spatial average $\sigma_{\bar{dh}}$:

$$\sigma_{\bar{dh}}^2 = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \rho_{ij} \sigma_{dh_i} \sigma_{dh_j},$$ \hspace{1cm} (17)

where N denotes the number of samples i falling in the area A, σ_{dh_i} is the vertical precision of pixel i, and $\rho_{ij} = (1 - \gamma_{zdh}(d))$ is the spatial correlation between pixel i and pixel j based on their distance d.

In practice, Eq. (17) raises the issue of scaling exponentially with the number of samples, possibly resulting in trillions of calculations. To remedy this, we propose an approximation for spatially contiguous areas, inspired by the approach of 65 that computes a single aerial integral by approximating the area A by a disk of the same area. Here, for each pixel k of a random subset of K pixels within the N pixels, we compute the single aerial integral of the variogram numerically. We then approximate the variogram integral by the average of these subset aerial integrations (see Supplementary Section II-D):

$$\sigma_{\bar{dh}}^2 \approx \frac{1}{N} \frac{1}{K} \sum_{k=1}^{K} \sum_{i=1}^{N} (1 - \gamma_{zdh}(x_k - x_i)),$$ \hspace{1cm} (18)

where $\sigma_{\bar{dh}}^2|_A$ is the average variance of the elevation differences of pixels i in the area A:

We show that our method improves the accuracy of the theoretical approximation of 65 by accounting for more complex area shapes than disks while maintaining computational efficiency (Fig. S16). Additionally, these formulations can be linked to a number of effective samples, which describes the number of samples among the N pixels in area A that are statistically independent based on the spatial correlations modelled by γ_{zdh} (see Supplementary Section II-D).

Once uncertainties have been integrated from a spatial support (e.g., pixels) to a larger spatially contiguous ensemble (e.g., glaciers), they can be propagated again to a larger ensemble (e.g., all glaciers in a region) following Krige’s relation of transitivity [112, 154]. For this, Eq. (17) can be applied for each pair of spatially contiguous ensembles i and j of area A_i with the same variogram γ_{zdh} composed of the k summed models $V_k(s_k, r_k, d)$:

$$\sigma_{\bar{dh}}^2 = \frac{1}{N} \sum_{s_k} \frac{K}{K} \sum_{r_k} \sum_{d_{i-j}} \left(\sigma_{\bar{dh}}^2|_A \right) A_i A_j,$$

where d_{i-j} is the distance between the centroids of ensemble i and j, and $\sigma_{\bar{dh}}^2|_A$ is the spatially integrated uncertainty.
of ensemble i associated to the variogram model V_k, partial sill s_k and range r_k with pixel pairs n and m (see Eq. [17]):
\[
\sigma_{dh,i}^2 = \frac{1}{N^2} \sum_{n=1}^{N} \sum_{m=1}^{N} \left(s_k - V_k(\ell, x_n - x_m) \right) \sigma_{dh,n} \sigma_{dh,m}.
\]

(21)

Furthermore, we use a Monte Carlo spatial sampling method to validate our uncertainties of spatially averaged elevations, thus indirectly verifying the robustness of our modelled spatial correlations (Fig. 5c). We randomly sample up to 10,000 circular patches of area A without replacement. We compute the mean \bar{dh} inside circular patches, keeping only those with more than 80% valid elevation differences dh to mitigate the effects of missing data. We use the NMAD of 10,000 realizations to empirically estimate the uncertainty of the spatially averaged dh of area A, and repeat this procedure for varying area sizes A and repeat this procedure for varying area sizes A. This method substitutes repeated correlated simulation of Fourier randomization or Gaussian simulation by a repeated spatial sampling, relying on the assumption of spatial homogeneity of variance on stable terrain (Section III-C). As it requires a large number of independent patches to produce a robust estimate, the area size A for which it can estimate an uncertainty is limited to sizes much smaller than that of the spatial domain. It is also highly dependent on the availability of stable terrain. Therefore, we use it only for validation purposes.

VI. RESULTS AND DISCUSSION

In Section VI-A below, we discuss the use of stable terrain as an error proxy based on the methods applied to the Mont-Blanc case study. In Sections VI-B and VI-C we then analyze the impacts of heteroscedasticity and spatial correlations when propagating elevation variance into uncertainties of pixel-scale elevation derivatives such as terrain slope, or spatial derivatives such as glacier volume changes. In those two sections, we provide examples based on the Mont-Blanc case study and determine the impact of our methods for a set of assumptions on the variance properties during uncertainty propagation:

- either homoscedastic elevation (constant variance, shortened "homosc.") or heteroscedastic elevation (variable variance, "heterosc."); and
- either no spatial correlation (shortened "no corr."); or only short-range correlations ("short-range"), or both short- and long-range correlations ("long-range").

In this exercise, the most realistic case refers to the one that accounts for potential elevation heteroscedasticity and potential short- and long-range correlations. Uncertainties are reported as a symmetric confidence interval of 1σ (68% confidence level) or 2σ (95%), specified in each case.

A. Validation of stable terrain as an error proxy

We test the validity of using stable terrain as a proxy of elevation errors for moving terrain on the nearly simultaneous DEMs of the Mont-Blanc case study. We find that elevations on moving terrain exhibit the same heteroscedasticity with slope and curvature than those on stable terrain, with less than 1% of binned samples that differ by more than 30% (Fig. 4c). We additionally verify that this elevation heteroscedasticity is continuous between neighbouring bins when using robust estimators, thereby consolidating our assumption of spatial homogeneity (Section III-C, Eq. 5). By extending this assumption to the case of moving terrain, we infer a complete map of vertical precision (Fig. 4d).

We find similar spatial correlations of errors between stable and moving terrain (Fig. 5). Values of partial sills and ranges of the variogram models that describe these correlations are within the same orders of magnitude (Table II), despite greater differences at long ranges due to the limited pairwise samples available on moving terrain. Using our Monte Carlo sampling method, we validate the increased robustness of using multiple correlation ranges to estimate uncertainties across spatial scales (Fig. 5c). Our results indicate that using a short-range model alone underestimates elevation uncertainties by several orders of magnitude for areas larger than 0.1 km².

<table>
<thead>
<tr>
<th>Model parameters</th>
<th>Stable</th>
<th>Moving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sill of short-range model</td>
<td>93%</td>
<td>95%</td>
</tr>
<tr>
<td>Range of short-range model</td>
<td>30 m</td>
<td>38 m</td>
</tr>
<tr>
<td>Sill of 1st long-range model</td>
<td>2%</td>
<td>4%</td>
</tr>
<tr>
<td>Range of 1st long-range model</td>
<td>3,900 m</td>
<td>2,400 m</td>
</tr>
<tr>
<td>Sill of 2nd long-range model</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>Range of 2nd long-range model</td>
<td>11,200 m</td>
<td>10,800 m</td>
</tr>
</tbody>
</table>

For elevation heteroscedasticity, our results highlight the importance of elevation standardization to ensure an adequate scaling when inferring on another type of terrain (e.g., from steep, stable terrain to flat, moving terrain). Yet, our analysis only exemplifies snow- and ice-covered terrain with high-resolution stereophotogrammetric DEMs. The physical properties of the observed terrain in relation to the utilized sensor might in some cases invalidate our assumption of spatial homogeneity. For instance, we found that our standardization did not mitigate the larger errors of elevation over forested areas (Fig. 5a). In such a case, an upfront investigation of specific elevation biases is required. After these biases are corrected, a refined modelling of elevation heteroscedasticity based on sensor-dependent variables can help to reach a good description of the properties of spatial homogeneity. We indeed found a strong relationship with the quality of stereo-correlation for the case study of the Northern Patagonian Icefield (Figs. 56 and 57). The rougher resolution (15 m) and spectral range (8 bits) of the ASTER stereo images, compared to those of SPOT-6 and Pléiades (metric resolution and 12-bits), leads to a significant variability in elevation errors with terrain texture.
For spatial correlations, we highlight the value of standardization to reduce variability for empirical variogram estimation (Figs. S3b-d and S12). It is especially useful to deconvolve the long-range correlations with small magnitude to the short-range ones. Heteroscedasticity may indeed explain the short-range variogram anisotropy found by previous studies [155]. We nevertheless identify a slight difference in the well-constrained short correlation range between stable and moving terrain (30 m vs 38 m, respectively; Table II). This difference might be due to the rougher interpolation of stereophotogrammetric block-matching algorithms over bright, lower-texture glacierized terrain. In some cases, sensor properties or processing schemes influence not only the magnitude of spatial variability but also the scale of correlations. Developing a statistical framework that continuously includes these effects might be overly complex for most analyses that, instead, could adjust estimates of short-range correlation depending on the type of observed terrain.

We conclude that stable terrain is a valid proxy for error analysis, provided that elevation heteroscedasticity is taken into account. However, the quality of statistical inference from this error proxy depends directly on the number of stable terrain samples available. For some DEMs, these samples might be scarce in the proximity of continuous expanses of moving terrain (e.g., at the margins of ice sheets or large forests) and thus insufficient to perform robust inference. To address this, the stable terrain of independent DEMs, possibly located elsewhere, could be utilized if they are generated from the same instrument and processing chain. Many DEMs indeed have consistent error properties between segments acquired under similar conditions around the world (e.g., [47], [59], [156]). For instruments with correlated noise of varying amplitude, such as Pléiades or ASTER, long-range correlations might be overly complex for most analyses that, instead, could adjust estimates of short-range correlation depending on the type of observed terrain.

B. Impact on pixel-scale derivatives of elevation: example with terrain slope and aspect

We illustrate the propagation of elevation uncertainty to the slope and aspect in a 4 km² area around the Mont-Blanc summit (Fig. 6a). We select this area due to its wide range of slopes and aspects, and its small extent facilitating computationally expensive simulations. To avoid the circularity of the aspect variable when assessing uncertainty, we divide it into northness (i.e. cosine of the aspect) and eastness (i.e. sine of the aspect) which denote, respectively, the north-south and east-west tilt of the slope.

We propagate uncertainties in the Pléiades DEM by simulating random elevation error fields (see Section V-D) for every set of assumptions (Fig. S17). For this example, we assume that SPOT-6 and Pléiades have random errors of similar amplitude, and estimate the random errors of the Pléiades DEM following Eq. 8. We generally note a strong deviation from normality and asymmetry in the simulated uncertainty distribution of terrain attributes (Fig. S18). While this asymmetry requires specific considerations for in-depth terrain analysis, we here provide a simplified picture by estimating a symmetric 1-σ uncertainty derived from the half-difference between the 16th and 84th percentiles of the simulated slope, northiness or eastness of each pixel.

Our analysis reveals that elevation heteroscedasticity plays a major role in the spatial distribution of uncertainties in slope and aspect. In particular, it exacerbates errors in steep and rough terrain. Spatial correlations moderately affect uncertainties by slightly reducing their amplitude (Fig. 6b-c). We interpret the latter to be due to an increase in the spatial coherence of terrain derivatives when the elevation errors are spatially correlated. Since topographical attributes are derived over a 3x3 pixel window, the closer the short-range spatial correlations are to a 3-pixel length, the larger the impact on the amplitude change (Fig. S19).

By aggregating uncertainties into slope categories, we show that uncertainties in flat terrain are overestimated when assuming homoscedasticity and no spatial correlation, while those in steep terrain are underestimated by up to a factor.
of 10 (Fig. 5c). Slope uncertainties decrease near slopes of 90 degrees, likely because elevation errors tilt the terrain in different orientations while generally maintaining a steep slope, which translates into aspect uncertainties. We reach similar conclusions when aggregating uncertainties by maximum absolute curvature categories, our second variable that describes elevation heteroscedasticity (Fig. S20).

C. Impact on spatial derivatives of elevation: example with glacier volume changes

![Graph](image)

Fig. 7. Uncertainty propagation to glacier mean elevation changes at glacier volume changes

We consider 84 glaciers in the Mont-Blanc massif that have at least 85% of their area covered by valid elevation differences. We analyze the mean elevation changes within the outline of each glacier, which can be converted to volume changes after multiplication by the glacier area, and propagate uncertainties for each set of assumptions.

We find that spatial correlations strongly hamper the decrease in uncertainty with increasing glacier area (Fig. 7c). Long-range correlations are the main contributor to uncertainty for large areas, mirroring the validation of Fig. 5c. While our case study has long-range correlations of only 7% of the variance, uncertainties of mean elevation changes for glaciers larger than 10 km² are underestimated by a factor of about 25 when based solely on short-range correlation. This is striking, and even more so when realizing that the underestimation is nearly by a factor of 150 when totally omitting spatial correlations. This dramatic increase is explained by the fact that long-range correlations essentially correspond to local biases.

Heteroscedasticity has a moderate influence on the uncertainty of each glacier, impacting its amplitude by a factor of 1 to 3. The uncertainty of glaciers located in flat areas is overestimated when using a homoscedastic assumption due to the larger average variance over rougher, stable terrain. On the contrary, the uncertainty of the steepest glaciers is underestimated (Fig. 7d). Using the empirical comparison provided by the nearly simultaneous volume changes (Fig. 7d), we show that the uncertainties for the mean elevation change are most realistic when accounting for long-range spatial correlation. In such a case, 89% of the ranges intersect zero (the true volume change) at the 2σ level (i.e. 95% confidence), in contrast to only 30% for short ranges and 7% for no correlation. Yet, our uncertainties are slightly too low.

We identify the cause of this underestimation as the omission of a longer-range correlation close to the size of the DEM and thereby difficult to constrain. This longer-range correlation arises from the fact that along-track undulations are fully correlated in the cross-track direction with 20 km swath. Directional variography could help characterize such correlations, but would lead to a more difficult uncertainty propagation, with exacerbated complexity when combining several DEMs. Instead, we maintain an omnidirectional variogram to describe correlations, but assess a conservative estimate based on artificial undulations (Fig. S21). This results in the replacement of the 11.2 km correlation with a 20 km one (DEM swath width) and a partial sill twice larger. We then find that 93% of the uncertainties for glacier larger than 0.2 km² intersect zero at the 95% confidence level, confirming the increased robustness with these considerations. Only 87% do so for smaller glaciers, however. This discrepancy might be explained by unaccounted heteroscedasticity from landform-projected shadows that particularly affects small glaciers in steep and north-facing slopes.

We analyze the mean elevation changes within the outline of each glacier, which can be converted to volume changes after multiplication by the glacier area, and propagate uncertainties for each set of assumptions.

We find that spatial correlations strongly hamper the decrease in uncertainty with increasing glacier area (Fig. 7c). Long-range correlations are the main contributor to uncertainty for large areas, mirroring the validation of Fig. 5c. While our case study has long-range correlations of only 7% of the variance, uncertainties of mean elevation changes for glaciers larger than 10 km² are underestimated by a factor of about 25 when based solely on short-range correlation. This is striking, and even more so when realizing that the underestimation is nearly by a factor of 150 when totally omitting spatial correlations. This dramatic increase is explained by the fact that long-range correlations essentially correspond to local biases.

Heteroscedasticity has a moderate influence on the uncertainty of each glacier, impacting its amplitude by a factor of 1 to 3. The uncertainty of glaciers located in flat areas is overestimated when using a homoscedastic assumption due to the larger average variance over rougher, stable terrain. On the contrary, the uncertainty of the steepest glaciers is underestimated (Fig. 7d). Using the empirical comparison provided by the nearly simultaneous volume changes (Fig. 7d), we show that the uncertainties for the mean elevation change are most realistic when accounting for long-range spatial correlation. In such a case, 89% of the ranges intersect zero (the true volume change) at the 2σ level (i.e. 95% confidence), in contrast to only 30% for short ranges and 7% for no correlation. Yet, our uncertainties are slightly too low.

We identify the cause of this underestimation as the omission of a longer-range correlation close to the size of the DEM and thereby difficult to constrain. This longer-range correlation arises from the fact that along-track undulations are fully correlated in the cross-track direction with 20 km swath. Directional variography could help characterize such correlations, but would lead to a more difficult uncertainty propagation, with exacerbated complexity when combining several DEMs. Instead, we maintain an omnidirectional variogram to describe correlations, but assess a conservative estimate based on artificial undulations (Fig. S21). This results in the replacement of the 11.2 km correlation with a 20 km one (DEM swath width) and a partial sill twice larger. We then find that 93% of the uncertainties for glacier larger than 0.2 km² intersect zero at the 95% confidence level, confirming the increased robustness with these considerations. Only 87% do so for smaller glaciers, however. This discrepancy might be explained by unaccounted heteroscedasticity from landform-projected shadows that particularly affects small glaciers in steep and north-facing slopes.

TABLE III

<table>
<thead>
<tr>
<th>Glacier area (km²)</th>
<th>Griaz and Bourgeat</th>
<th>Bossons and Taconnaz</th>
<th>All glaciers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.027</td>
<td>0.006</td>
<td>0.002</td>
</tr>
<tr>
<td>0.25</td>
<td>0.027</td>
<td>0.006</td>
<td>0.002</td>
</tr>
<tr>
<td>0.5</td>
<td>0.061</td>
<td>0.049</td>
<td>0.024</td>
</tr>
<tr>
<td>1</td>
<td>0.9</td>
<td>16.3</td>
<td>131.1</td>
</tr>
</tbody>
</table>

When uncertainties of volume change of several glaciers are propagated into that of the massif, correlations also come into play. We illustrate the propagation at different spatial scales.
We highlight the genericity of our spatial framework for uncertainty analysis and of our estimation methods for dense and outlier-prone grid data. Our framework holds the potential to be extended to other geospatial data. Gridded surface displacement, for instance, profit from the same error proxy of stable terrain and are increasingly used in a variety of applications. To describe the precision of such spatially structured data, we advocate for the use of additional metrics. These metrics should describe potential heteroscedasticity and spatial correlation of errors, reported, for example, in a tabular manner — parameters of variogram models; discrete categories of heteroscedasticity. Ultimately, the adoption of such new metrics is critical to progress towards a realistic description of error structure in geospatial data, and a robust propagation of uncertainties in Earth system science assessments.

DATA AND CODE AVAILABILITY STATEMENT

AUTHOR CONTRIBUTIONS

R.H., F.B. and E.B. designed the study. F.B. performed an early analysis of spatial correlation for the Mont-Blanc case study. R.H. developed and tested non-stationary spatial statistics methods for DEs with inputs from N.E., A.D., F.B. and E.B. R.H. implemented the methods in the Python package xDEM with main inputs from A.D. and E.M. All authors interpreted the results. R.H. performed the literature review and led the writing of the paper, and all other co-authors contributed.

ACKNOWLEDGMENTS

We thank Dorde Masovic for realizing Fig. 2 with vector graphics. We thank Alexandre Wadouf for insightful exchanges on spatial statistics and Simon Gascoin for discussions on along-track undulations in Pléiades DEs. We also thank Eyjólfr Magnússon and Joaquín Belart for providing insights into Gaussian simulations for DEs. We thank Jonathan Bamber, César Deschamps-Berger and Matthias Huss for comments on early versions of the manuscript. SPOT6/7 data were obtained from GEOSAT (ANR-10-EQPX-20, programme ‘Investissements d’Avenir”). INRAE is a member of Labex OSUG. R.H. acknowledges a fellowship from the University of Toulouse. R.H., A.D., E.M and D.F. acknowledge funding from the Swiss National Science Foundation, grant number 184634. E.B. acknowledges support from the French Space Agency (CNES) through ISIS and TOSCA programmes.

REFERENCES

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
SUBMITTED TO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

[12] opportunist scientific tools to routine monitoring over the last deca-

[14] N. Galiatsatos, D. N. M. Donoghue, and G. Philip, “High resolution elevation data derived from stereoscopic CORONA imagery with

[18] P. LeFavour and D. Alsford, “Water slope and discharge in the amazon river estimated using the shuttle radar topography mission digital elevation

[22] B. Szekely and D. Karatson, “DEM-based morphometry as a tool for

Nicolas Eckert received his Ph.D. degree in 2007 from Agroparistech. Since 2008 he is researcher at INRAE Grenoble, co-head of the mountain risk team since 2018. He is also task officer in charges of Environmental risks for the AQUA department at INRAE, and for the ALLENGI research federation. He serves as Associate Chief Editor for Journal of Glaciology and as Scientific Editor for Cold Regions Science and Technology. His research is at the crossroads between geosciences and statistical modeling, with applications to mountain risks, mountain climatology and glaciers. Additional interests in the socio-historical component of risk makes him involved in interdisciplinary research addressing all dimensions of mountain risks.

Daniel Farinotti received his doctoral degree in 2010 from the Swiss Federal Institute of Technology in Zurich (ETH Zurich). Since 2016 he leads the Professorship of Glaciology at ETH Zurich’s Laboratory of Hydraulics, Hydrology and Glaciology (VAW), a position jointly affiliated to the Swiss Federal Institute for Forest, Snow and Landscape Research WSL. His research focuses on the evolution of glaciers and the implications for water resources, notably including the estimation of glacier ice thickness from surface characteristics, the long-term modelling of glacier mass budgets, the estimation of the runoff contributions from glacierized catchments, or the implications for water resource management in high-mountain environments.