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Our technologies have never ceased to evolve, allowing our lineage to expand its habitat all
over the Earth, and even to explore space. This phenomenon, called cumulative technological
culture (CTC), has been studied extensively, notably using mathematical and computational
models. However, the cognitive capacities needed for the emergence and maintenance of
CTC remain largely unknown. In the literature, the focus is put on the distinctive ability of
humans to imitate, with an emphasis on our unique social skills underlying it, namely theory
of mind (ToM). A recent alternative view, called the technical-reasoning hypothesis, pro-
poses that our unique ability to understand the physical world (i.e., technical reasoning; TR)
might also play a critical role in CTC. Here, we propose a simple model, based on the micro-
society paradigm, that integrates these two hypotheses. The model is composed of a simple
environment with only one technology that is transmitted between generations of individuals.
These individuals have two cognitive skills: ToM and TR, and can learn in different social-
learning conditions to improve the technology. The results of the model show that TR can
support both the transmission of information and the modification of the technology, and that
ToM is not necessary for the emergence of CTC although it allows a faster growth rate.
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Introduction

he increasing efficiency and complexity of tools over gen-

erations (ie., cumulative technological culture, hereafter

shortened as CTC) enables humans to be successful eco-
logically and demographically, allowing them to develop powerful
technologies that are too complex to have been invented by a
single individual (Boyd and Richerson, 1985; Derex et al., 2013;
Tomasello et al., 1993). Even though technological culture has
been observed in other animals, such as nonhuman primates
(Whiten and Boesch, 2001), corvids (Holzhaider et al., 2010), and
insects (Danchin et al, 2018), the cumulative component
resulting in products that could not be invented by a single
individual of human culture seems unique in the animal kingdom
(Reindl et al., 2020, but see also Reindl et al., 2018; Derex, 2022),
raising the question of the specific human cognitive skills
underlying CTC. Historically, CTC has been primarily investi-
gated through mathematical and computational modelling.
Numerous models of cumulative culture have been proposed,
which explore key factors, such as demographic factors (Henrich,
2004), social-learning strategies/copying biases (Acerbi and
Alexander Bentley, 2014; Boyd and Henrich, 2002; McElreath
et al,, 2005; Rendell et al., 2010), population structure (Kolodny
et al,, 2015c¢), language evolution (Kolodny et al., 2015b), number
of technological traits (Lehmann et al., 2011), migration (Creanza
et al, 2017), transmission fidelity (Lewis and Laland, 2012),
personality (Acerbi et al, 2009), or creativity (Kolodny et al.,
2015a). These models undoubtedly bring new insights into the
origins of CTC at a macroscale level. However, they leave open
the question of the role of cognitive skills such as theory of mind,
meta-cognition, technical reasoning and working memory (ie.,
microscale level, for a similar view, see Acerbi et al., 2011). As
Heyes (2018) stressed, integrating the two scales is essential to
move the field forward. The present article seeks to go in that
direction.

CTC is a specific form of cumulative culture, focusing on
technology. Hence, as cumulative culture, CTC arises from the
cultural transmission of knowledge and skills over time. Cultural
transmission is supported by social learning, defined as learning
about other conspecifics or the inanimate world that is influenced
by observation of, or interaction with, another conspecific or its
products (Heyes, 1994). Here, we borrow the terminology from
Heyes (2018) and call the individual who is learning the receiver
and the source from which it is learning the sender. Social
learning depends in part on the amount of information the
receiver gets from the sender (Osiurak and Reynaud, 2020). It can
be divided into different social-learning forms: reverse-
engineering (RE) where only the technology is present; observa-
tion (OBS) where a receiver witnesses a demonstration of the
building of the technology by a sender; and communication
(COM) with verbal interaction between a receiver and a sender.
These three forms of social learning differ in the amount of
information that is provided to the receiver, in ascending order of
amount of information transmitted (RE, OBS, and COM). On the
other hand, the learner-oriented dimension varies between two
processes: emulation (copying of “results”) and imitation (copy-
ing of “actions” and “results”), where imitation has higher fidelity
than emulation (Whiten et al., 2009).

One might wonder where teaching takes place in the three
social-learning forms. If we take the layman use of the term,
teaching is a form of communication that implies language and is
included here in the COM social-learning form. However,
teaching in the social sciences literature is defined as the mod-
ification of a behaviour that facilitates learning in others (Kline,
2015). In some cases, teaching can be based on communicative
behaviour (e.g., pointing to key features of the demonstration to
make them more salient, providing verbal or gestural feedback or
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information). However, teaching does not necessarily require
communicative behaviour between individuals (Franks and
Richardson, 2006; Thornton, 2006). Thus, teaching can also take
place in a context of observational learning, for instance when a
sender slows down or repeats a specific movement.

At a cognitive level, a link has been repeatedly drawn between
CTC and a specific social-cognitive skill, namely theory of mind
(ToM) (Herrmann et al., 2007; Tennie et al.,, 2009; Tomasello
et al,, 1993). ToM refers to the ability to attribute mental states to
oneself and others (Harris, 1991; Mead and Mead, 1985; Piaget,
1932; Premack, 1988; Tomasello et al., 1993; Whiten, 1991). The
ability to share intentions allows the sender to orient the receiver
toward the relevant features of the technology, what O’Madagain
and Tomasello (2022) called intentional teaching. In addition, the
receiver can also pay more attention to what the sender attempts
to intentionally transmit. In sum, these social-cognitive skills
favour the faithful transmission of technical content (i.e., imita-
tion), which has been said to be the necessary condition for the
emergence of CTC (Dean et al.,, 2012; Reindl and Tennie, 2018;
Tennie et al., 2009; Tomasello et al., 1993, 2005; see also Reindl
et al,, 2020). As explained above, (intentional) teaching can take
place in the context of observational learning in which there is no
direct communicative behaviour between the sender and the
receiver. For this reason and as our model will be based on micro-
society studies in which the presence of teaching behaviour has
not been documented in the OBS condition, we preferred (1) to
keep the term “COM” for those conditions in which commu-
nication is allowed, and not to merge it with teaching although
(2) we acknowledge that the COM conditions reported in the
literature necessarily engaged more teaching behaviour than the
OBS condition. Thus, we will also assume that ToM is more
heavily involved in COM than OBS conditions.

A series of experimental studies using micro-society paradigms
reporting cumulative performance in reverse engineering condi-
tions, where the receiver can only scrutinize the senders’ tech-
nology (Caldwell and Millen, 2009; Derex et al., 2019; Osiurak
et al,, 2021a, 2022; Zwirner and Thornton, 2015) challenges the
social-cognitive view of CTC. Recently, it has been shown that
learners’ technical-reasoning skills are the best predictor of
cumulative performance in different social-learning conditions
(e.g., observation, communication; De Oliveira et al, 2019;
Osiurak et al., 2016, 2020, 2021b) and that the improvement of a
physical system is accompanied by an increase in its under-
standing (Osiurak et al., 2021a, 2022; see also Derex et al., 2019;
Harris et al., 2021). Given these results, it is proposed that CTC
can arise from the interaction between specific non-social cog-
nitive skills and less elaborated forms of social learning (ie.,
which do not require specific social-cognitive skills). This is the
technical-reasoning hypothesis (Osiurak and Reynaud, 2020).
This hypothesis does not exclude the role of social-cognitive skills
in CTC but considers it as a catalyst that will boost its growth,
without being necessary for its emergence. This catalyst might be
even more important in an opaque situation, where the receiver
has no direct access to the technology (Osiurak et al., 2020).
Before going deeper into the article, we want to give a quick
definition of technical reasoning (for a more complete definition,
see Osiurak, 2014; Osiurak et al., 2010). Technical reasoning (TR)
is the ability to reason about physical object properties (Osiurak,
2014; Osiurak et al., 2010). It is both analogical (i.e., transfer from
one situation to another e.g., using a knife to cut a tomato —
using a saw to cut a wooden board) and causal (i.e., predicting the
effects on the environment, e.g., the tomato is cut in half). It is
based on mechanical knowledge, i.e., the knowledge of physical
principles. It has been hypothesized that the lack of elaborated
forms of TR in nonhumans might explain their difficulties in
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understanding mechanical actions (Osiurak and Reynaud, 2020).
It is important to note that TR concerns only mechanical actions
(i.e,, tool-object relationships) and not motor actions (ie.,
hand-tool relationships), meaning it does not intervene in the
actual motor realization of an action. Finally, TR is not specific to
the use of familiar tools, but also concerns any situation in which
a physical problem has to be solved, such as when making tools or
during construction behaviour.

Understanding the specific cognitive skills involved in CTC is
fundamental to developing a computational model integrating both
the macroscale and microscale of CTC. The goal of this article is to
capitalize on existing literature to provide a computational model
focusing on TR and ToM. We are aware that other cognitive skills
might also influence CTC, such as metacognition or working
memory (Dean et al., 2012; Dunstone and Caldwell, 2018; Fay
et al., 2019; Osiurak and Reynaud, 2020), but we chose to focus on
the two main cognitive skills at play for now. To do so, we will first
replicate the classical results of the micro-society literature, which
have been obtained in contexts of close-ended solution space (ie.,
the presence of an optimal solution). The goal of this model is to
solidify the results observed in said literature. Using modelling
allows us to expand experimental results to a society of hundreds of
generations and to manipulate precisely the social-learning con-
ditions under which the individual will exchange information.
Above all, the interest of modelling is to go beyond the real-world
limitation of experimental paradigms. As recently pointed out by
Derex (2022, see also Mesoudi and Thornton, 2018; Whiten et al.,
2022), the potential of our CTC is endless due to both our capacity
to gradually improve technology and our unmatched ability to
innovate. This description of CTC implies the existence of an
open-ended solution space, which diverges from the type of CTC
observable in micro-society experiments (i.e., close-ended solution
space). Thus, we will build a second model that goes beyond what
is possible using the micro-society paradigm, namely, a model with
an open-ended solution space.

Our model thus implements a micro-society paradigm with
three social-learning forms—RE, OBS, and COM—and compares
their success (i.e., the quality of the technology yielded) in various
settings. To build a model that is consistent with the empirical data
of the literature, we conducted beforehand a synthesis of 9
experimental studies (more details in supplementary material SI:
Synthesis) using the micro-society paradigm. In these experiments,
receivers learn vertically (i.e., parents to offspring transmission)
from their senders to improve a single technology, under different
social-learning forms. An issue with the literature is that OBS is not
clearly defined and can change depending on the study, varying
from no access to the quality of a technology (Zwirner and
Thornton, 2015) to access to both the quality and the last two
technologies of the transmission chain (Caldwell and Millen, 2009).
Here, what we call “quality of a technology” refers to the overall
efficiency of a technology, for example, the distance of flight of a
paperplane (Caldwell and Millen, 2009, 2010b; De Oliveira et al.,
2019; Fay et al., 2019), the height of a tower (Caldwell and Millen,
2008, 2010a; Osiurak et al., 2020; Reindl et al., 2017, 2018) or the
number of rice grains a basket may contain (Zwirner and
Thornton, 2015). The definition of OBS on which we base our
analysis is as follows: a receiver observing a sender building its
technology, without the possibility to communicate, and having
access to the quality of the technology afterwards.

In the next section, we describe our model and simulations
under four conditions:

1. First, we use a model with refinement only. This means that
we are in a close-ended space (there exists a unique optimal
solution), where the maximum quality of the technology is fixed.
In this model, the individual can only refine the technology. This
model is the closest to the micro-society literature, where the

technology a participant may build is often limited either by the
material at its disposition or by the number of solutions. In this
regard, the technology either has a defined optimal solution (the
wheel system of Derex et al., 2019) or cannot exceed a certain
quality (the height of the tower is limited to the length and
number of spaghetti at disposition, Osiurak et al., 2016, 2020;
Reindl et al,, 2017, 2018). We expect the three social learning
forms to reach a different optimum quality, with RE, OBS, and
COM, in ascending order.

2. Then, we add innovation to the model. Contrary to the first
model, this model departs from experiments but is more ecolo-
gical, as humans’ CTC is made of refinement and innovation. We
predict similar results as with only refinement, with RE having
the lowest technology’s quality, followed by OBS and then at the
top COM. Notice that here we do not expect an optimum quality.
Indeed, adding innovation makes our solution space open-ended,
meaning there is no maximum quality or optimal solution. Fur-
thermore, we expect RE and OBS to achieve fewer innovations
than COM.

3. After that, we focus on a single transmission chain. Indeed,
in the two previous models, we will be looking at the mean results
of multiple transmission chains. This has the effect of reducing
the amount of randomness introduced into the model. But this is
at the cost of making the precise behaviour of a transmission
chain more opaque. Therefore, we need to focus on a single chain
to get a better grasp of the mechanisms underlying social trans-
mission. To control the randomness of the model, we used ran-
dom seeds to generate beforehand all its random values. In this
model, we expect RE and OBS to follow a linear growth in terms
of technology’s quality, whereas we anticipate COM to have brief
bursts of increases followed by long periods of stasis, something
that is often seen in our cultural lineage evolution (Henrich, 2004;
Klein, 2008; Kline and Boyd, 2010; Kuhn, 2012; Mesoudi, 2011;
Shennan, 2001).

4. Finally, we focus on the role of ToM in CTC. To test whether
ToM has an impact on the technology’s quality, we construct two
different models, one with ToM and one without ToM. We
expect both models to yield CTC with similar results in terms of
technology’s quality, hinting that ToM may not be a necessary
cognitive skill for the emergence of CTC.

The model

In our model, we assume an environment composed of a single
technology. We further assume that this technology can be
decomposed into components, called traits. For example, if the
technology represents a vehicle, traits represent the wheels, the
seating, the steering wheel, etc. At each generation, an individual
appears in the environment, intending to improve as much as
possible the technology. To do so, the individual beforehand learns
the technology’s traits from the previous individual using one of
three different social-learning forms (RE, OBS, COM). This learn-
ing phase depends on the cognitive skills (TR and ToM; depending
on the social-learning form) of both the sender and the receiver.
Afterwards, the individual tries to improve the technology by
refining its traits. Refining the technology’s trait equals increasing its
quality toward a fixed arbitrary limit. Subsequently, the individual
disappears from the environment and is replaced with a new one.
This process is repeated for N generations (N = 1000 if not stated
otherwise), creating transmission chains.

Technology and environment. Consider a single technology T
composed of n distinct traits, such that T'= {trait,, traity, -,
trait,}. Each trait has a quality and a limit. The quality represents
the overall efficiency of a trait, taking some value between 1 (the
minimal value, e.g., a coarse square-like stone wheel for our
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vehicle) and the limit, being the maximum quality that a trait may
achieve, set to an arbitrary natural number greater than 1. We
assume that each trait is semi-independent' (the quality of each
trait is independent of one another, but we will see later that
innovative traits will impact the overall limit of all existing traits)
and contributes equally to the overall quality of the technology
denoted quality(T), given by

n
quality(T) = > quality (trait;).
i=1

The same logic follows for the limit of each trait and the
technology, denoted limit(T).

The quality of technology generally reflects the quality of the
technological environment to which this technology belongs. In
our model, only the technology T is present in the environment.
Thus, the quality of the environment is extrapolated from a noisy
representation of the technology T. Then

env = quality(T) + ¢,

where ¢ represents the noise, drawn from a uniform distribution

__ quality(T) qua.lity(T)i|
10 °

in the range [ T

Individual. Consider an individual I defined as I=
{cog,, cog,, ... ,cog,} where cog; represents the knowledge
about the mechanism underlying the trait; of the technology T,
taking some value between 0 (no knowledge at all) to the limit of
trait; (a total understanding of trait;).

Individuals also have two cognitive skills: TR and ToM. Each of
these skills is represented by a value, denoted Itg and Iton,
respectively. Ity is drawn from a gaussian distribution, such that
Itr belongs to [0, env]. We use env to compute It because TR
has been shown to be acquired through interaction with the
physical environment and, as a result, the technological
environment (Osiurak and Reynaud, 2020). It is important to
note that, with each generation, quality(T) may increase and may
therefore lead to an increase of env and Itg. This is not to say that
we consider that all new individuals can understand the entire
technology. However, we assume that their environment allows
them to understand the current state of the technology
sufficiently to improve it. Itoy is also drawn from a normal
gaussian distribution centred at 0.5 with s.d. = 05—5, such that Ity
belongs to [0, 1], with Itom =0 when the individual has no ToM
and I,y = 1 when the individual has perfect ToM.

The initial value of each cog; (i.e. before learning) depends on
Itr. Indeed, Ity acts as a pool of knowledge, from which we
randomly sample without replacement the quality of each cog;
(more details in Supplementary material S2: Random sampling of
cogs) until the pool of Ity is empty. At the end of this process

n
'21 cog; = Iry.
i=

Learning methods. Learning involves the receiver directly
interacting with various sources, for example, the technology T,
or the individual present in the environment at generation ¢—1.
We consider three forms of learning RE, OBS, and COM.

In RE, the receiver only interacts with the technology T present
at generation f. Thus, there is no impact of It because there is
no direct social interaction between the receiver and the sender.
Therefore

, I
cog; = cog; + (5RE*£)a

where cog; is the updated cog;, Org represents the information
that can be obtained by learning from the sender using RE,

4

obtained by computing difference quality trait;) — cog;, and g—i‘,
represents the impact of the receiver’s TR. Growing evidence
suggests that the receiver’s TR is the best predictor of cumulative
performance in transmission chains irrespective of the social-
learning form (Acerbi et al, 2009; Caldwell and Millen, 2009:
Derex et al., 2019; Osiurak et al., 2021b). This explains why TR
plays here a critical role in the learning process.

In OBS, the receiver directly observes its predecessor (the
sender) while the latter improves the technology. However, no
form of communication is permitted between them. Because of
the absence of communication, the receiver is not able to
explicitly access the sender’s knowledge. Nevertheless, the
receiver may notice the improvement in technology brought
about by the sender, by directly comparing the technology at
generation t—1 and the technology at generation . Given that the
receiver is watching someone improve the technology, it is logical
to consider that it is monitoring the technology itself, and
therefore it will be able to use RE. We consider that OBS
necessarily implies RE, which gives

) I I
cog; = cog; + <8RE*£> + (8035*ﬂ>7

env

where s = quality(T;) — quality(T;_,).

In COM, the receiver is in direct interaction with the sender
and can communicate with it. The sender, therefore, acts as a
teacher and tries to share their knowledge. It has been repeatedly
stressed that ToM (or ToM-like process) might play a critical role
in teaching situations (Herrmann et al., 2007; Tomasello, 1999;
Tomasello et al., 1993, 2005), and particularly the teacher’s ToM
(Osiurak et al., 2020) in the context of transmission chains,
therefore only Stoy (the sender Itoy) is included in the model
under COM. We also consider that since the sender and the
technology are present in the environment, the receiver can use
OBS and RE. This gives

I R

cog; = cog; + (511}5*:;) + <5035*21_]‘{,> + (‘Scom*gl_i*(smm + 1)>,
where 8y = sender.cog; — receiver.cog;. (Spoy + 1) represents
the impact of the ToM of the sender. We consider that the Stom
acts as a catalyst for the COM, enabling individuals to acquire
technical information more efficiently than through RE or OBS
(Osiurak and Reynaud, 2020). However, if Spom=0 (ie., a
teacher without any ToM), COM becomes similar to RE and OBS
and only depends on Irg. Therefore, if a receiver has a good TR, it
will be able to acquire all the technical information of the sender,
regardless of its ability to transmit them. However, in the opposite
case, no matter if the sender has a good ToM, he will not be able
to pass all its technical information to a receiver with low TR.
This assumption is directly derived from previous works using
micro-society paradigms that have shown that the receiver’s TR
(ITr) is the best predictor of cumulative performance (Acerbi
et al,, 2009; Caldwell and Millen, 2009; Derex et al., 2019; Osiurak
et al, 2021b) and that the sender’s ToM is only significant when
the task is too opaque (Acerbi et al., 2009).

Modification of the technology and innovation. The individual
can modify the technology in two ways: improving it or dete-
riorating it. In addition to understanding the technology, TR is
also necessary when modifying the technology because it shapes
the mental simulation of the mechanical actions required
(Osiurak and Reynaud, 2020). Furthermore, the receiver’s TR is
the best predictor of cumulative performance in transmission
chain paradigms, as has been evidenced by several studies (De
Oliveira et al., 2019; Osiurak et al., 2016). Thus, the probability
Pimprove Of improving the technology is obtained by computing
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g—‘\‘,. It follows that the probability of deteriorating the technology
is given by paeteriorate = 1 —Pimprove- Furthermore, we assume that
individuals with Iy above average (i.e. Iyp > %Y%) have sufficient
TR to at least faithfully copy the technology, meaning that they
cannot deteriorate the technology. Indeed, we assume that, in a
random population possessing a range of technologies, an average
individual will be able to at least reproduce most of these tech-
nologies (i.e., only a worse than average individual will not be able
to reproduce any technologies present in their environment).
After the direction of the modification is determined, modifica-
tions for each trait are computed independently with

quality (trait;) B, ove if cog] > quality (trait;),

otherwise.

ualit (trait»)/z
Ay ' quality (trait; )

For the improvement, where fimprove is arbitrarily set at some
value >1, and

quality (trait;) *Bueeriorate if c0g; < quality (trait;),

quality (trait;) = { quality (trait;)

otherwise.

For the deterioration, where Bycteriorate i$ arbitrarily set at some
value <1.

Another way in which the technology can be modified is
through innovation. After modifying the technology using its
knowledge, the individual may have the opportunity to innovate.
Innovation is a different process compared to modification. The
latter is comparable to refinement: the individual changes the
quality of the trait (whether it is by improving or deteriorating it).
It is a small change of the pre-existing traits of the technology.
Innovating on the other end brings a great change in the
technology, adding a new trait while also increasing the limit of
the already existing ones (we will explain this phenomenon in
greater detail later). The innovation opportunity comes with a
probability pinnovation = 0.01. Once this opportunity appears, the
individual tries to seize it. To do so, the individual can either have
a good TR, allowing it to achieve the innovation by itself or have
an almost optimal technology, ready for innovation. As a result,
we assume that either It or quality(T) needs to be in the top 20%

(ie, 2t >0.8 or SRV
the technology is at its maximum, just a little tweak will bring it
up to the next step. In the case of an individual with low Ity
innovating, this represents serendipity. If not, it can simply be
interpreted as the logical consequence of the progress of time. But
if the technology is not at its maximum, we want to make sure
that an individual with high Ity (e.g., an expert) may still be able
to innovate right away, leaping directly to the next step. In our
model, innovation has two effects: the first is that it adds a brand-
new trait to the technology, which refers to as groundbreaking
innovation (Kolodny et al., 2015c). The second is that, because a
new trait appears, the limits of all the traits increase, an effect
called innovative combination (Kolodny et al., 2015¢). The value
by which the trait increases is called the strength of the innovative
combination, denoted by 6 and set to an arbitrary positive integer.

>0.8) for innovation to occur. Indeed, if

Results

To evaluate the performance of a transmission chain, we average
the quality of the technology over multiple simulation runs.
Below are the main results of the model. First, we run the model
with refinement only to investigate the impact of the different
social-learning forms in a space with a finite number of solutions.
Then, we extend the model by adding innovations to observe the
model’s results in a more ecological situation. Next, we examine a
single-run simulation to compare the effect of the different social-
learning forms. Finally, we compare the model with a version
without ToM to learn more about its importance for CTC.

Except when stated otherwise, the results discussed in this section
are obtained using simulations with the following parameters:
limit(tech) =2, n =2, =5, Bimprove = 1.2, Pdeteriorate = 0.8, and
Pinnovation = 0.01.

Model with refinement only. We define the optimized-technology
level as the maximum quality technology can theoretically achieve
(i.e., quality (T) =limit (7)) and a plateau of a learning form as
the maximum technology’s quality it achieves (see Fig. S3.1 in
Supplementary material for more information on the plateau).
Results for the model with refinement only are shown in Fig. 1A.
When there is no innovation, the learning forms differ in the
way they plateau, with RE and OBS reaching the optimized-
technology level after COM (RE: M =42.55, SD =2.92; OBS:
M =35.71,SD =22.68 and COM: M = 8.68, SD = 25.01). Once a
plateau is reached, the average quality of the technology remains
the same. However, this quality fluctuates for RE and OBS but not
for COM. Further investigations reveal that these fluctuations are
related to the capacity of the social-learning form to maintain
CTC (Supplementary material Table S3.1, Figs. S3.1 and S3.2).
While we are in a close-ended solution space, we argue that the
ability (through social learning) to maintain the optimized-
technology level is still crucial for CTC. Indeed, except for COM,
the quality of the technologies oscillates between limit(T) and the
minimum quality it can have, which explains why when taking
the average of 1000 simulations of RE and OBS (we will look at a
single transmission chain later), it does not reach the optimized-
technology level even after 1000 generations. Finally, in addition
to achieving lower quality of technology, RE and OBS plateau
after COM (see supplementary material Fig. $3.1). This result is
even stronger when increasing the limit (Fig. 1B). Taken together,
these results show that in addition to allowing the CTC to be
maintained over time, communication also allows an optimal
solution to be reached much more rapidly.

Model with refinement and innovation. Adding innovations to
the model allows for much higher technology quality in trans-
mission chains. As shown in Fig. 1C, all the learning forms yield
an initially exponential increase in technology quality. Notice that
both RE and OBS produce lower technology quality than COM,
the former both having very similar behaviours and results (at the
last generation: RE: M = 213.11, SD = 141.13; OBS: M = 266.39,
SD = 166.06; COM: M = 591.87, SD = 322.39), which agrees with
the classical results of the literature on transmission chains
(Fig. 1D; see also S1: Meta-analysis in supplementary material),
where RE has the lowest technology quality, closely followed by
OBS and then well ahead COM. When we decrease Bimprove SO
that an individual deteriorates more severely than it improves (i.e.
Bimprove = 1 <1 = Baeteriorate)> ©nly RE and OBS show a significant

drop in technology’s quality, although still exhibiting CTC (with
Bimprove = 1.2, Bacteriorate = 0.8: RE: M = 212.11, OBS: M = 266.39,
COM: M =591.87; with ﬁimprove =11 ﬁdeteriorate =0.8: RE:
M =24.67, OBS: M =45.41, COM: M = 601.87; see also Fig. S2.4
in Supplementary material). This result demonstrates that even in
an environment where the potential loss of information is greater
than the gain, communication may overcome this problem and
still leads to strong CTC. Conversely, increasing Bimprove
(ie. Bimprove = 1 >1 = Baeteriorare) increases the quality of the
technology for RE and OBS, but not for COM (with
Bimprove = 1.2, Bacteriorate = 0.8: RE: M = 212.11, OBS: M = 266.39,
COM: M =591.87; with PBimprove= 1.3, Pacteriorate = 0.8: RE:
M =1321.67, OBS: M =368.43, COM: M = 635.56; see Supple-
mentary material Fig. $3.3). This is simply because, for COM, the
limit of the technology is already reached, so an increase in
Bimprove has no impact.
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We also investigate the effect of the innovative combination
strength 0 on the quality of the technologies (see Supplementary
material Fig. S3.4). Increasing 6 effectively increases the limit(T),
thus improving quality(T) for all learning forms. However, the
social-learning form that benefits the most is OBS, because an
increase in 6 brings OBS closer to COM (with 8=5: OBS:
M =266.39, COM: M = 591.87, percentage change = 122.18; with
6=50: OBS: M=4602.15, COM: M =6161.22, percentage
change = 33.88). Moreover, we notice that the difference between
RE and OBS increases with 6. Further analyses indicate that it is
caused by the increase of limit(T), which has the direct effect of
decreasing the probability of having a technology good enough to
i
on It (Supplementary material Fig. S3.5). However, this effect is
not observed for RE because it lacks individuals with sufficient Ity
to innovate (Supplementary material Fig. S2.5), which explains this
difference with OBS. Furthermore, having better technology leads to
better Itg, which leads to better technology, and so on (ie., a
snowball effect), further explaining the increase in quality for OBS.

innovate (ie., >0.8), making the process more dependent

Single simulation run. We modify the model so that the random
parts of the model are fixed (for more detail, see S4: Non-random
model in supplementary material) to ensure that the only

6

difference between simulations is the social-learning form. The
result of a single simulation run is shown in Fig. 2A. First, we see
that for COM, a single simulation run alternates between long
periods of stagnation and periods of rapid growth. During periods
of stagnation, the technology has reached its limit, and therefore
cannot be improved before an innovation appears. Interestingly,
RE and OBS also reach this point, but later compared to COM
(RE: M =63.2, OBS: M =52.4, COM: M = 18.4). These results
are similar to those of the model with refinement only. Further-
more, neither RE nor OBS is characterized by a period of a very
rapid increase in the quality of the technology, which appears
only in COM. Conversely, the quality fluctuates for RE and OBS.
Other simulations show that RE and OBS never reach the
optimized-technology level, or do not exhibit CTC at all, whereas
COM always reaches the optimized-technology level after a brief
period of growth (Fig. 2B). It is these different simulations,
varying from no CTC at all to an optimized-technology level,
that, when averaged, gave poorer results for RE and OBS com-
pared to COM.

Theory of Mind. The comparison between COM without ToM
and COM with ToM shows that there is very little difference
between the two, demonstrating a limited impact of ToM (Fig. 2C).
Further analyses indicate that ToM has an impact only during the
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ToM is calculated as follows: impact = aualy (T without ToM

first generations, indicating that its effect may be to accelerate the
acquisition of an optimal technology (Fig. 2D). However, once this
optimum is reached, ToM has a limited impact because, as seen
above, it is only innovations and Ity that allow CTC.

Discussion

What are the cognitive skills underlying CTC? Although essential
to understand the origin of our culture and our evolution (Seife,
2005), this question remains insufficiently explored. Two answers
have been put forward to address this question. The first one
focuses on the imitation part of CTC and posits that faithful
social transmission (Dean et al., 2012; Reindl and Tennie, 2018;
Tennie et al., 2009; Tomasello et al., 1993, 2005), is potentially
supported by ToM (Herrmann et al, 2007; Tomasello et al.,
1993, 2005), is necessary for the emergence of CTC. The second
proposes that CTC arises from TR, the ability to reason about
physical object properties (Osiurak and Reynaud, 2020). TR
might support both imitation and innovation (the dual engine of
culture, see Legare and Nielsen, 2015) in CTC. It is important to
note that neither side neglects the importance of both TR and
ToM but disagrees on their role and significance for CTC.
Although many models are investigating CTC, to date there is a

lack of models focusing on the micro-scale level of CTC, and, in
particular, cognitive skills underlying it.

Here, we propose a modelling framework integrating cognitive
skills in the transmission of information. We base our model on
the micro-society paradigm frequently used to study CTC and its
different social-learning forms to investigate the impact of ToM
and TR on CTC. It consists of a single micro-society, where
receivers learn vertically from their senders to improve a single
technology. The model results are qualitatively similar to those
seen in the micro-society literature. Indeed, in both our model
and the literature, RE and OBS conditions yield similar trans-
mission chain scores (albeit OBS is often ahead by a small step),
and both are significantly lower than COM.

Without innovation, our model exhibits a period of rapid growth
of technology quality and then plateaus around a specific value.
This result is alike those found in the literature (in replicator-
dynamics, Boyd and Henrich, 2002; environmental learning,
Henrich, 2001; the number of tools, Kolodny et al., 2015¢; tool
complexity, Mesoudi, 2011). However, the value at which they
plateau differs between social-learning forms: RE plateaus at the
lowest value, followed by OBS plateauing at a barely higher value,
and COM plateaus at a significantly higher value, near the
optimized-technology level. This is also in accordance with the
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transmission-chain literature, where communication conditions
often outperform non-communication ones (Caldwell and Millen,
2009; De Oliveira et al, 2019; Lucas et al, 2020; Osiurak et al.,
2020, 2021b). Further analysis shows that this difference in the
value at which the social-learning forms plateau is in fact due to the
capacity of the social-learning form to maintain a high-quality
technology over time, something that only COM achieves con-
stantly. This result is consistent with the idea that communication
(and presumably teaching) is a very effective way of transmitting
information (Kline, 2015; Thornton and Raihani, 2008). However,
our results also show that CTC can emerge without communica-
tion. Indeed, all social-learning forms achieve a gradual increase in
technology’s quality. While they might not reach the optimized-
technology level due to greater variation in technology’s quality, all
social-learning forms exhibit CTC behaviour. This pushes the role
of the communication more towards a catalyst of CTC than
towards a necessary cognitive skill for its emergence.

When the possibility of innovating is added to our model, we
observe an exponential growth of the technology’s quality, some-
thing that is also observed in our cultural evolutionary history
(Lehman, 1947). We posit that this exponential growth is due to a
snowball effect: an increase in technology’s quality is accompanied
by an increase in the understanding of this technology, thus
increasing in return the capacity of the individual to increase the
technology’s quality and so on. This snowball effect occurs because
TR supports both the transmission of information and the mod-
ification of the technology. This effect of both the understanding
and the technology’s quality improving together is something that
we have already shown in a recent study using transmission chains,
where an increase in the speed at which a wheel rolls down an axis
is correlated to the increase in the understanding of how mass
repartition affects this movement (Osiurak et al., 2021a, 2022). An
interesting case emerging from our model is that a single micro-
society has a completely different pattern, where bursts of rapid
increases in technology’s quality alternate with long periods of
stasis. This pattern is also observed in another model (Kolodny
et al, 2016) and archaeological records (Henrich, 2004; Kline and
Boyd, 2010; Kuhn, 2012; Mesoudi, 2011; Shennan, 2001), with
known historical stasis phases such as in the Acheulean (Schick
and Toth, 2017; Shipton, 2010, 2018). This result suggests that in a
population composed of multiple micro-societies all following this
pattern of rapid increases and stasis, the overall score of the
population will follow an exponential trend.

Our results show that ToM has little to no impact on CTC. Our
model without ToM predicts the same result in terms of technol-
ogy’s quality compared to the one incorporating it. This result
seems surprising because ToM can only impact learning positively.
However, further analysis showed that ToM has an impact early on
in our model, acting as a catalyst for the first burst of increases in
technology’s quality. In this regard, we consider the impact of ToM
as a launching pad for the snowball effect described earlier, being
neither necessary nor sufficient for the emergence of a CTC. Having
ToM equates to having better transmission of information. While
we argue that this is not needed for the emergence of CTC, we posit
that in its early stage ToM helps reducing the variance in infor-
mation transmission. This helps carrying improvement to the next
generation, thus reaching an optimal technology quality faster. In
the later stage of CTC, ToM has less of an impact as TR can
maintain and enhance CTC alone. These findings challenge the idea
that faithful transmission of information (i.e., teaching) must be
supported by ToM to be effective. In addition to these findings, our
model predicts that micro-societies with COM are less susceptible
to cultural losses, even in an unfavourable environment where
losses are stronger than gains. This might be because when a cul-
tural loss occurs (an individual deteriorates the technology), its
successor could realize what went wrong, and then correct the

8

damage. We suggest that it is because their TR allows this individual
to grasp the mechanical mechanisms underlying the damage of its
predecessor (Osiurak and Reynaud, 2020). This might not be pos-
sible in OBS and RE because of the lack of information exchange
between the individual and its direct predecessor.

Recently, Derex (2022) challenged the classical definition of
cumulative culture. He distinguished cumulative culture that
only optimizes cultural traits exploiting a finite set of natural
phenomena (named Type I) from cumulative culture that not
only optimizes cultural traits but also expands the said set of
natural phenomena, giving rise to an “infinite” solution-space
(Type II). He proposed a dynamics underlying the improve-
ment of technology, with long phases of technology refinement
toward an optimal solution (i.e., a close-ended space solution or
Type I CTC), punctuated by innovation that shatters this ceil-
ing, only to bring another long phase of refinement toward an
even higher point. Following these definitions, it is clear that
our model with refinement falls into Type I CTC and that the
model with refinement and innovation falls into Type II CTC.
However, we want to point out that our second model merely
implements innovation and the individual means of enacting it
without diving deeper into the cognitive mechanisms under-
lying innovation. More modelling and experimental work are
needed to explore the origin of innovation and the cognitive
capacities behind it.

Like all models, ours is a simplification of reality and has limits.
First, we modify the three social-learning forms seen in the
micro-society paradigm to make them more appropriate, as we
do not think that teaching can be dissociated from RE and OBS in
a real setting. This is also motivated by the numerous variants of
these social-learning forms encountered in the literature (Cald-
well and Millen, 2008; Wasielewski, 2014; Zwirner and Thornton,
2015). Second, we focus on ToM and TR only. This is a sig-
nificant simplification that allows us to investigate more closely
the role of these two cognitive skills in CTC. However, this
neglects other cognitive abilities that may have an impact on
CTC, such as altruism (Dean et al, 2012), creativity (Gabora,
2019), or memory (Lotem et al., 2017). Third, as indicated earlier,
implementing OBS is challenging as its definition is unclear in the
literature, and there are certainly different ways of implementing
it. Fourth, our environment is composed of a single technology.
Overcoming this limit may require, for example, multiple distinct
parallel micro-societies all having their specific technology, which
combined would make up the environment. All these simplifi-
cations are justified as our goal was to replicate the micro-society
paradigm but extending our model to include multiple popula-
tions and technologies is an important goal for future research.

Human technological culture has been essential to our success
as a species and our results suggest that TR has been at the origin
of this difference with our closest relative. Cumulative technolo-
gical culture could have happened in the absence of ToM skills
and language with other simple forms of social learning such as
reverse-engineering or observation. However, our results also
show that ToM skills, although not essential, may have been a
major catalyst for the development of technologies by stabilizing
the transmission of knowledge between individuals. An important
outstanding question is why humans would have developed TR
and no other non-human primates.

Data availability

A detailed methods description, the codes, and extended results are
available in the online electronic supplementary material and at
https://osf.io/g7uer/?view_only=338d7a86a8754414b37d39b1d7fcd
86d.
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Note

1 This assumption is critical to our model. Adding traits dependence would not only be
innovative (very few models have done it before, for an example see Buskell et al.,
2019; Kolodny et al., 2015¢) but also more realistic (indeed, it seems logical to think
that any trait of a technology is needed to meet its purpose). However, this would
make the analysis of the model much more ambiguous concerning what we are
interested in (i.e., social-learning form and the impact of TR and ToM on CTC) as it
introduces a higher level of complexity (Buskell et al., 2019). Note that this assumption
has already been made for similar reasons in other models, although these models have
not focused on technological traits (Lehmann et al., 2011; Strimling et al., 2009). We
also believe that both types of models are complementing each other (a view shared by
Buskell et al., 2019) and that both are needed to grasp the complex phenomenon that is
CTC. All things considered, we certainly agree that implementing traits dependence in
a model of micro-society would bear interesting results and that future work should try
to do so.
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