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I'"CONVERGENCE OF NONCONVEX UNBOUNDED INTEGRALS IN
STRONGLY CONNECTED SETS

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

ABSTRACT. We study I'-convergence of nonconvex integrals of the calculus of variations
in strongly connected sets when the integrands have not polynomial growth and can take
infinite values. Application to homogenization of unbounded integrals in strongly perforated
sets is also developed.
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2 I'-CONVERGENCE OF NONCONVEX UNBOUNDED INTEGRALS IN STRONGLY CONNECTED SETS

1. INTRODUCTION

Asymptotic analysis for boundary value problems in perforated sets was studied for the
first time by Cioranescu and Saint Jean Paulin (see [CSJP99] and the reference therein)
and Khruslov and Marchenko (see [MKO6] and the reference therein). The approach of
Cioranescu and Saint Jean Paulin is based upon multiscale methods like formal two-scale
asymptotic expansions, compensated compactness and oscillating test functions and two-
scale convergence (see [JKO94| [CD99, [CPSO7]) while the one of Khruslov and Marchenko
uses variational analysis like T-convergence (see [DM93, [BD9S§]). The common point of the
two approaches is the use of extension theorems for passing from perforated to non-perforated
sets (see [CP79, [ACPDMP92]). In this paper we consider the variational approach which
consists of computing the I'-limit as ¢ — 0 of integral functionals of type

Jo We(z, Vu(x))lo, (x)dx, (1.1)

where u € WH(O;R™) with p > 1 and, for each ¢ > 0, W, : O x M — [0,0] is a
not necessarily convex Borel measurable function with IM denoting the space of m x N
matrices and O\O, represents the holes at the scale ¢ in the bounded open set O < RY.
Following Khruslov and Marchenko, the I'-convergence is taken with respect to the L?(O,, O)-

convergence, i.e.
LP(O:,0) . e
u.  — w if and only if hr% lue — u| e mmy = 0,
E—

and our object is to deal with the problem of finding a I'(LP(O,, O))-limit of type
J Wiim (z, Vu(x))dz (1.2)
o)

with Wiy, : O x M — [0, 0] an integrand for which we wish to give a formula depending
on W.. When W, has p-growth, i.e. there exist «, f > 0, which does not depend on ¢, such
that for every (x,£) € O x M,

alg"Lo. (z) < We(z, §)Lo. (z) < B(1 + [€]") Lo.(2),
the problem was treated (for general periodic perforated sets) by Acerbi, Chiado Piat, Dal
Maso and Percivale in the scalar case (see [ACPDMP92]) and by Braides and Chiado Piat
in the vector-valued case (see [BCP94]). In the present paper we consider the case where
p > N and W, has G-growth, i.e. there exists a Borel measurable and p-coercive function

G : M — [0,00] and there exist a, f > 0, which does not depend on &, such that for every
(2,6) € 0 x I,

aG(§)lo.(z) < We(z,8)1o.(z) < B(1 + G(&))1o. (),

which allows to W, to take infinite values. Note that, as in the p-growth case, since G is p-
coercive, there exists C' > 0, which does not depend on ¢, such that for every (z,£) € O x M,

Such a unbounded case is of interest in nonlinear elasticity where a fundamental open problem
is to develop variational techniques to deal with energy densities that can take infinite values



I'-CONVERGENCE OF NONCONVEX UNBOUNDED INTEGRALS IN STRONGLY CONNECTED SETS 3

and verify the two basic conditions of nonlinear elasticity, namely the noninterpenetration
of the matter and the neccessity of an infinite amount of energy to compress a finite volume
into zero volume. The results of this paper give some improvments in this direction in the
framework of perforated nonlinear elastic materials.

The plan of the paper is as follows. In we recall the definition of L?(O,, O)-convergence
(see Definition and the one of strongly connected set (see Definition [2.3). Note that
a weaker notion of connected set exists (see [CSJP99, Chapter 1, §2.5 pp. 40] and [BD9Sg|,
Chapter 19 pp. 167] for more details). This weak notion allows to consider more general
perforated sets but it is not considered here due to the fact that our I'-convergence method
does not apply in such a situation. In fact, the I'-convergence of unbounded integrals in
weakly connected sets is an open problem. When O, is strongly connected, bounded se-
quences in WhHp (OE, R™) are relatively compact with respect to the LP(O,, O convergence

(see Theorem [2.4)). This makes that I'(LP(O,, O))-convergence (see Definition [2.5in
e 1

well adapted to deal with variational problems involving integral functionals of typ
satisfying (1.3 (see Proposition in

Our main result Wthh estabhshes the F(Lp (Og, O))-convergence of (L.1]) to (1.2), is stated in
T]and proved in §5.3] see Theorem [3.6) and also Proposition which makes more precise
the formula of the limit integrand Wy;, in . Classically, its proof is a consequence of
Proposition (the lower bound) and Proposition |3.5| (the upper bound).

The proofs of Prop0s1t10ns B.4and 3.5 are given in _ 5.1]and §5.2)respectively. In §2.3|we recall
the concept of (family of) ru-usd]integrand(s) and its main properties which are used in the
proof of both Propositions (3.4 ﬂ and (3 - (and in Proposition . The proof of Proposition
also needs the use of the Vitali envelope of a set function which is recalled in
Finally, application to homogenization of unbounded integrals in strongly perforated sets
is developed in see Theorem [3.11] This homogenization theorem is proved in by
using an extension theorem (see Theorem and a subadditive theorem (see Theorem

in .

Notation. Let IM be the space of m x N matrices, for A = M we denote the interior and
the closure of A by int(A) and A respectively.
The symbol § stands for the mean-value integral with respect to the Lebesgue measure &

on IR,N7 1.e. ‘S'Q = SZN;QQ)«SVQ

2. PRELIMINARIES
In what follows, m, N > 1 are two integers and p > 1 is a real number.
2.1. LP(O.,O)-convergence and strong connectedness. Let O = RY be a bounded

open set and, for each ¢ > 0, let O, < O be an open set. In what follows we consider the
following two conditions:

(C)) lim ZV(0\0;) =

IThe abbreviation ru-usc means radially uniformly upper semicontinuous.
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(Cy) there exists C' > 0 such that for all {u.}.o = WHP(O;R™) there exists {t.}.-0 <
WhP(O; R™) such that for all € > 0,

U, = u. on O,

||a€/H\Lp(O;R"L) < CHU€HLP(OEQRW)

|V | roirm) < CVte] oo, imm)-
The following two definitions are due to Khruslov and Marchenko (see [MKO06, Chapter 4,
Definition 4.5 pp. 114 and Definition 4.7 pp. 116]).

Definition 2.1. We say that {u.}.-o = LP(O;R™) is LP(O., O)-convergent if there exists
u e LP(O;R™) such that

lim HUE - u“Lp(O€~Rm) = 0, ie. lim ‘UE — U’pdiC =0.
e—0 ’ e=0 Jo
€
. LP(O¢,0)
We then write uv. — u

Remark 2.2. Under (Cy) if {uc}e=o < LP(O;R™) is LP(O., O)-convergent then its limit is
unique.

Definition 2.3. When (C;)—(Cs) hold we say that {O.}.~¢ is p-strongly connected.

Khruslov and Marchenko have also proved the following compactness result (see [MKO06,
Chapter 4, Theorem 4.8 pp. 116]).

Theorem 2.4. Assume that {O.}.~q is p-strongly connected. If {u.}cso0 = WHP(O; R™) and
if sup..q [ue|wiro.mmy < 0 then, up to a subsequence, there exists u € W'P(O; R™) such

LP(0.,0
that u, ©:0) u.

2.2. I'(L*(O., O))-convergence. We begin with the definition of I'(L?(O,, O))-convergence.
(For more details on the theory of I'-convergence we refer to [DM93].)

Definition 2.5. By the I'(LP(O., O))-limit of I. : W' (O; R™) — [0, 0] as ¢ — 0 we mean
a functional Iy, : W'?(O; R™) — [0, o0] such that:
[-lim: for every u € W'?(O; R™), T'(LP(O., 0))-lim,_, I.(u) = ©jn(u) with

=20 te

e—0 e—0

P(L(Oc, 0))-lim I (u) := inf {h_m Io(ue) :ue {00 u} ,

or equivalently, for every u € WH?(0O; R™) and every {u.}.~o = W'?(O;R™) such

L?(0:,0
that u, (9:0) u,

h_mls(us> = Ihm(“)a
e—0

P-lim: for every u € W(O; R™), T'(LP(O., O))-1lim, o I.(u) < L (u) with

D(L(0-, 0))- T L(u) = inf {Eé Lu) : u, 057 u} ,

or equivalently, for every u € W'?(O; R™) there exists {u.}.~o = W'(O; R™) such
LP(0.,0)
that v, — "« and

lim 7, (u.) < Lim ().

e—0
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We then write I, = I'(LP(O,, O))-lim ..

e—0

Remark 2.6. It is easy to see that I'(LP(O., O))- lim
Is] with respect to the L”(O; R™)-convergence.

I. and T'(LP(O.,0))-lim, ¢ I. are

==22e—0

Theorem [2.4] makes that I'(L?(O., O))-convergence is well adapted to deal with variational
problems involving integral functionals of type (1.1)) satisfying (1.3]). This is summarized in
the following proposition whose proof is left to the reader.

Proposition 2.7. Assume that {O.}.~¢ is p-strongly connected, T'(LP(O,, O))-lim. ¢ I. =
Lim and there exists C > 0 such that for every € > 0 and u € W?(O; R™),

I (u) = CJ \Vu(z)Pdx.

Let f € L1(O; R™) with % + % =1 and, for each ¢ > 0, set

0. := inf {zg(u) -

Then, every minimizing sequence {u.}e=o for the variational problems 0. is relatively compact
with respect to the LP(O., O)-convergence, and every LP(O., O)-cluster point @ of {u.}e=q is
such that

hm9 = lim (W J f(x)u(r)dr = inf {Ihm J f(@)u(x)dr : ue WHP(O; Rm)}

f(x)u(z)dz : ue WHP(O; ]Rm)} .

Oc

2.3. Ru-usc property. We begin by recalling the concept of ru-usc function which was
introduced in [AHI0] (see also [AHM14] and [AHMI1l §3.1]).

2.3.1. Ru-usc function. Let O = RY be an open set and L : O x M — [0, 0] be a Borel
measurable function, where IM denotes the space of m x N matrices. For each x € O, we
denote the effective domainf] of L(x,-) by L, and, for each a € L} (0;]0,%]), we consider
A¢ 1 [0,1] —] — o0, 0] defined by

loc

A7 (t) := supsu . 2.1

L ) + 1) .

Definition 2.8. We say that L : O x M — [0, o0] is ru-usc if there exists a € Li..(O; ]0, o0])
such that

lim A% (t) <0. (2.2)

t—1—
The interest of Definition comes from the following theorem. (For a proof we refer to
[AHM11), Theorem 3.5] and also [AHM12, §4.2]) Let L : O x M — [0, 0] be defined by
L(z,€) == lim L(x,1€).

t—1—

2The abbreviation lsc means lower semicontinuous.
3Given a set X and a function f : X — [0,00], by the effective domain of f we mean the set of z € X
such that f(z) <
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Theorem 2.9. If L: O x M — [0, 0] is ru-usc and if for every x € O,
tL, < int(L,) for all t €]0, 1], (2.3)
then:
(a) L is ru-usc;

(b) L(z,§) = lim L(x, t€) for all (x,€) € O x M.

If moreover, for every x € O, L(x,-) is lsc on int(LL,) then:
L&) ifeint(Ly)
I = { lim L(z,t ' oL,
(c) L(z,§) = { lim L(z,t€) if€e
0 otherwise;
(d) for every x € O, z(a:, -) 1s the Isc envelope of L(x,-).
2.3.2. Family of ru-usc functions. The following definition generalizes Definition to the
case of a family of functions.

Definition 2.10. For each € > 0, let L. : O x M — [0, o] be a Borel measurable function.
We say that the family {L.}.~¢ is ru-usc if there exist {a.}.~o = L'(0;]0,]) and ay €
L'(0;]0, 0]) such that:

lim | a.(z)dx ao(x)dx for all A e O(0);

e—=0 J4 A
- ae

lim sup Af (t) < 0.
t—1 e>0

The following lemma will be useful for dealing with I'(L?(O,, O))-convergence. (For a proof
we refer to [AHM21], Lemma 2.21].)

Lemma 2.11. For eache > 0, let L. : O x M — [0, 00] be a Borel measurable function and,
for each p > 0, let ZP[L.] : O x M — [0, 0] be defined by

HP|L](x,§) ;= inf {J[Q ( )Lg(y,f + Vo(y))dy : v e Wol’p(Qp(m);]Rm)} (2.4)
with Q,(x) = x+] — £, 8[N. If {L.}cn0 is ru-usc with {a.}e=o < L'(0;]0,0]) and ay €
L*(0;]0,0]) then

Lo :=limim #Z”[L.] : O x M — [0, ]

p—0e—0
is ru-usc with the constant function |lag| .

For application to homogenization (see we will need the following result. (For a proof
we refer to [AHM21], Lemma 2.24].)

Lemma 2.12. Let L : RY x M — [0, 0] be Borel measurable function such that L(-,§) is
1-periodic for all £ € M, i.e. for every (x,z) € RN x ZN, L(x + z,€) = L(z,€), and, for each
e>0,let L. : O x M — [0,0] be defined by

Lo(@.8) = L(.€).

3
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Letae L}

loc

be defined by

(RN;]0, 0]) be a 1-periodic function and, for each e > 0, let a. € L

a.(x) :=a <§> :

If L is ru-usc with the function a then {L.}.~q is ru-usc with the family of functions {ac}.=o
and the constant function {a) := S]o )N a(y)dy.

(R™;]0, ])

3. MAIN RESULTS
3.1. The T'(LP(O.,O))-convergence result. Let O = RY be a bounded open set and, for
each € > 0, let O. < O be an open set and consider the following condition:
(Cp) for all e > 0 and all open cube Q = O, if Z¥ (0. " Q) > 0 then ZV~1(O. n Q) > 0;

Let M denote the space of m x N matrices and let G : M — [0, 0] be a Borel measurable
function satisfying the following conditions:

(Ag) 0 € int(G), where G denotes the effective domain of G, i.e. G :={¢ € M : G(§) < wo};
(A7) there exists v > 0 such that for every &, ¢ € M and every t €]0, 1],

Gt + (1 = 1)) < 7(1+ G(§) + G(Q));

(Ag) G is p-coercive, i.e. there exists ¢ > 0 such that for every £ € M,
G(&) = g’

Remark 3.1. If (A;) is satisfied then G is convex, but G is not necessarily convex (see
[AHMZ15| Sect. 9]). So, if moreover (Ag) holds then

tG < int(G) for all £ €]0, 1],

and there exists r > 0 such that
sup G(&) < oo,

§l<r

see [AHM12, Lemma 4.1].
Let Gy, : O x M — [0, 0] be defined by
Goo(x, &) = lim lim Z°[G1p,](z, ) (3.1)

p—0e—0
with Z*[G1o,] given by with L. = G1p, where Glg, : O x M — [0, 0] is defined
by Glo.(z,€) = G(§)1o.(x). Denote the effective domain of Gy (x,-) by Go, . We further
suppose that:
(Ag) for every u € WHP(O;R™), if §, Goo(, Vu(x))dr < oo and if Vu(z) € int(Gy ) for
FN-a.a. x €O, then §, G(Vu(zx))dr < oo;
(Ay) for every x € O, G(z,-) is Isc on int(G, ).

Remark 3.2. (i) For every (z,€) € O x M, Gy (z,§) < G(§), and so G < Gy, for all
x e 0.
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(ii) Deﬁning .9, : WP(O;R™) — [0,0] by €(u) := §,G( ))dx and G, (u)
o Goo(z, Vu(z))dr and denoting their effectlve domams by dom(?) and dom(%,,),
we see that (Aj) means that

{u e dom(%y) : Vu(z) € int(Gy ) for FN-a.a. z € O} c dom(%).

(iii) If either dom (%) = dom(¥) or €(u) < oo for all u € W?(O; R™) such that Vu(z) €
int(Gy ) for £V-a.a. x € O, then (Az) can be dropped.

(iv) If G satisfies (A1) then G, verifies the same condition, i.e. for every z € O, every
&,¢ e M and every t €]0, 1],

Goo(, 16 + (1 = 1)¢) < Y(1 + Goo(2,§) + Go(2, (),
and so G, is convex for all z € O. Hence, under (Ag)—(A;), for every x € O,
tGo» < int(Gy ) for all ¢ €]0, 1].

(v) If G is convex then Gy (z,-) is convex for all x € O, and so (A4) can be dropped.
More Generally, if for every z € O, Gy (x,-) is quasiconvex, i.e. for every £ € M,
Go(,€) = inf { gy Goo (€ + Veo(y))dy = 0 € Wo (10, 1" Rm)}, then (A,) can
be dropped (see [Fon88]).

For each € > 0, let W, : O x M — [0, 0] be a Borel measurable function with the following
G-growth condition:
(Aj5) there exist «, 8 > 0 such that for every € > 0 and every (z,£) € O x M,

aG(§)lo. (x) < Welz, 1o, (z) < B(1 + G(£))1o. (2).
We further assume that
(Ag) {W.1p,}es0 is Tu-usc with {a.}.~o = L'(0;]0,0]) and ag € L*(0;]0,0]), where
W.lp. : O x M — [0, 00] is defined by (W.1p_)(x,&) := We(z,€)1o. ().
Remark 3.3. As A 4 (1) < max{0, Aj (¢)} for all € > 0 and all ¢ € [0, 1], if {W.}.g is
ru-usc with {a.}.~o = L'(0;]0,]) and ag € L*(0;]0, «0]), then also is {W.10_}c=0-

For each € > 0 and each p > 0, let Z*[W.1p.] : O x M — [0, 0] be defined by (2.4) with
LE = Ws]log, ie.

#"Welo,](z,§) = inf{ o )Ws(y7£ + Vo)) Lo. (y)dy : v e Wy (Qp(w); Rm)} (3.2)

and consider the following assumption:
(A7) for every x € O and every € € int(G »),
hm lim Z°[W.1o_](x,€) = Fnéﬁé%f’[wsﬂos](x,g).
p—0e—

0e—0

For each € > 0, let I, : W' (O; R™) — [0, 0| be defined by

I.(u) := ; W.(xz,Vu(z))dx = fo We.(z, Vu(x))lo,(z)dx.

Here are the main results of the paper.



I'-CONVERGENCE OF NONCONVEX UNBOUNDED INTEGRALS IN STRONGLY CONNECTED SETS 9

Proposition 3.4. Assume that p > N. Under (C1)—(Cs) and (Ag)—(Ag) we have

[(LP(O., 0))-lim I (u) > Jo lim lim lim %°[W.10.](x, tVu(z))dz

e—0 t—1- P—0:z=0
for all ue WHP(O; R™).
Proposition 3.5. Assume that p > N. Under (Cy)—(Cz) and (Ag)—(Ag) we have

F(LP(OE,O»—F%IE(U) < f lim lim lim %27[W.1o,](z, tVu(z))dx

0t P—0e—0
for all u e WHP(O; R™).

As a consequence of Propositions [3.4] and [3.5 we have

Theorem 3.6. Assume that p > N. Under (Co)—(Cs) and (Ao)—(A7) we have

D(L7(0..,0))-lim L.( f Wi (2, Vau(z))da

for all uw e WHP(O; R™) with Wiy, : O x M — [0, 0] given by
Wim (2, €) := lim lim lim Z°[W.10_](z, t£).

t—1— p—0e—0
Let Wy, : O x M — [0, 0] be defined by
We(x, &) = lim lim Z°[W.1o_](z, €).

p—0e—0
Let Wy : O x M — [0, 0] be given by
Wi (x,€) = lim Wi (a, 1€)

t—1—
and, for each x € O, let W (x,-) denotes the lsc envelope of W, (z, ). The following
proposition makes more precise the formula of the limit integrand Wiy, in Theorem [3.6]
Proposition 3.7. Assume that (Ag)—(A1) and (As)—(Ag) hold.
(i) For every x € O,

—~ lim Wy(x,t&) if € € Gy
T r.6) — i W) < | Wr(018) €T
t—1- o0 otherwise.
So, in Theorem we have Wiy, = Woo.
(ii) Suppose furthermore that for each x € O, Wy (x,-) is lsc on int(Gy, ;). Then

W (x,§) if £ € int(Goo z)
Woo(@,€) = Weo(x,6) = { lim Wos(2,88) if £ € 0Gury (3.3)
o0 otherwise.

In such a case, in Theorem Whim 18 given by (3.3)).
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Proof of Proposition 3.7} From (Ag) and Lemma [2.11] we can assert that W, is ru-usc.
Moreover, by (As) it is easily seen that for every x € O, the effective domain of Wy (z, )
is equal to G . So, taking (Ag)—(A;) (see Remark [3.2[(iii)) into account, Proposition
follows from Theorem 2.9, W

3.2. Homogenization of unbounded integrals in strongly perforated sets. Let Y :=
[0, 1[V, let H = Y be an open set with Lipschitz boundary, which represents the holes in Y,
such that

(Ho) HN Y = (&, i.e. the holes do not intersect the boundary 0Y’, and Y\ H is connected.
Let E := Y\H + Z~ and, for each ¢ > 0, we denote the e-homothetic set of E by E., i.e.

Eszz{xeRszeE},
€

and we set O, := O n E.. (Note that E is 1-periodic, i.e. for every (z,z) € RY x Z¥,
Ig(x + z) = 1g(x).) We further assume that

(Hy) for every ¢ > 0, (RV\E.) n 00 = (&, i.e. the holes do not intersect the boundary 00.

In this framework, it is clear that (C;) in and (Cp) in are satisfied. Moreover, we
have the following extension result due to Cioranescu and Saint Jean Paulin [CP79] (see also
[CSIP99, §2.3 pp. 25)).

Theorem 3.8. If (Hy)-(H;) hold then (Csy) in holds.

Let M denote the space of m x N matrices and let G : M — [0, 0] be a p-coercive convex
function and let Go, : O x M — [0, 0] be defined by (3.1). We suppose that:
(Hy) for every x € O, int(Gy,) < G;
(Hs) for every u € W' (O;R™), if §, Goo(z, Vu(z))de < o and if Vu(z) € int(G) for
FN-a.a. x €O, then §, G(Vu(z))dr < .
Remark 3.9. Under (Hy) we have int(Gy,,) = int(G) and G, = G for all z € O.

Let W : RY x M — [0, c0] be a Borel measurable function satisfying the following conditions:
(Hy) there exist a, 3 > 0 such that for every (z,&) e RN x M,
aG(§)lp(z) < W(z, §)lp(z) < B(1+ G(€))Le(x);
(Hj) for every £ e M, W(-,€) is 1-periodic, i.e. for every (z,2) € RY x ZV,
Wz +2,8) = W(z,);
(Hg) W1lg is ru-usc with a 1-periodic function a € LL (RY;]0,0]), where Wilg : RY x

loc

M — [0, 0] is defined by (W1lg)(z,§) := W(z,&)1g(x).

Remark 3.10. As for a family of functions (see Remark , if W is ru-usc with a 1-periodic
function a € L _(R";]0, «]), then also is Wlg.

loc

For each € > 0, let J. : W' (O; R™) — [0, 0] be defined by

Jo(u) = fo W <§, Vu(a:)) dr = fo W <§, Vu(x)) Lo, (z)dz.

As a consequence of Theorem and Proposition [3.7](i) we have the following homogeniza-
tion result.
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Theorem 3.11. Assume that p > N. Under (Hyo)—(Hg) we have
D(L(0.., 0))-lim J.(u f Whom(Vuu(z))dz

for all v e WHP(O; R™) with Whom : M — [0, 0] given by

T ) = { lim Waon(t) if £ G

0 otherwise,

where Wiom : M — [0, 0] is defined by

P m
Whom(§) := inf — inf J Wy, €+ Vo(y)dy : o € WyP(]0, k[V;R™) ¢ .
kelN* fi 10,k[NE

4. AUXILIARY RESULTS

4.1. Integral representation of the Vitali envelope of a set function. Let O ¢ RY
be a bounded open set and let O(O) be the class of open subsets of O. For each § > 0 and

each A € 0(0), we denote the class of countable families {Q; = Q,, (z;) := x;+] — &, %[V }ier

of disjoint open cubes of A with z; € A and p; €]0, 6] and such that £V (A\ U Q;) = 0 by
75(A).

Definition 4.1. Given & : 6(0) — [0, o], for each § > 0 we define §° : ©(O) — [0, 0] by

= inf {Z S(Qi) : {Qi}ier € %(A)}

el

By the Vitali envelope of & we call the set function §* : O(O) — [—o0, 0] defined by

8§*(A) := sup §°(A) = lim §°(A).

6>0 6—0

The interest of Definition comes from the following integral representation result. (For
a proof we refer to [AHMI8| §3.3] or [AHCM17, §A.4].)

Theorem 4.2. Let § : O(0O) — [0,00] be a set function satisfying the following two condi-
tions:

(i) there ezists a finite Radon measure v on O which is absolutely continuous with respect
to LN such that S(A) < v(A) for all A e 6(0);

(i) & is subadditive, i.e. S(A) < §(B)+ S(C) for all A,B,C € 6(0) with B,C < A,
BnC =g and ZY(A\(BuC)) =0

Then lim, o =% ( () e L1(O) and for every A € 6(0), one has

S*(A) = JA lim Mdm.

p—0 pN
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4.2. A subadditive theorem. Let 0,(RY) be the class of all bounded open subsets of RY.
We begin with the following definition.

Definition 4.3. Let & : 0,(RY) — [0, 0] be a set function.
(i) We say that & is subadditive if
S(A) <8(B)+S(0)

for all A, B,C € 0,(RY) with B,C c A, BnC = ¢ and ZV(A\(B u C)) =
(i) We say that & is Z"-invariant if

S(A+2z2)=38(A)
for all A€ O,(RY) and all z € Z".

Let Cub(RY) be the class of all open cubes in R. The following theorem is due to Akcoglu
and Krengel (see [AK81] and also [LM02] and [AHMI1l, Theorem 3.11}).

Theorem 4.4. Let S : 0,(RY) — [0, 0] be a subadditive and ZN -invariant set function for
which there exists C €]0, [ such that for every A € O,(RY),

S(A) < CZLY(A).
Then, for every @ € Cub(RY),

5. PROOFS

5.1. Proof of the lower bound. Here we prove Proposition
Proof of Proposition 3.4 Let u € W'?(O;R™) and let {u.}.~o0 = W' (O;R™) be such

that
e 2950 e, lim Jlu. = u]zr(o.mm) = 0. (5.1)
We have to prove that
lim 7. (u.) > f lim lim lim %7[W.1o_](x, tVu(x))dz. (5.2)
e—0 Ot—1— p—0:20

Without loss of generality we can assume that lim__, [ (u.) = lim._o I.(u.) < o0, and so

sup I (ue) < 0. (5.3)
e>0
From ([5.3) it follows that
Supf Wz, Vuo () o, (2)dz < . (5.4)
e>0 JO

From (j5.1)) and (5.4) together with (Ay) and the left inequality in (Ajz), we have

sup |te || Lo (0o mm)y < 0

5.5
S0 |Vt o 0nsmm) < 0. (5.5)
e>0
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By (C,) there exist C' > 0 and {@.}.~o = WP(O; R™) such that for every € > 0,

ae = Ug ON Oe (56>
and R
e oomm) < Cllue| Lro-mm) (5.7)
Ve | roirm) < CVe| e o.imm)-

From ({5.5)) and (5.7) we deduce that sup,.q Uz |w1r0rm) < 90, and so, up to a subsequence,
there exists @ € W1?(O; R™) such that:

tim [, — ] oyren) = 0 (5.8)
Vi, — Vu in LP(O; R™).
But (5.1), and implies that @ = u, and consequently
lim [z — ul o 0m) = 0; (5.9)
Vi, — Vu in LP(O;R™). (5.10)
As p> N, from and we can assert that, up to a subsequence,
lim . — ] e(omm) = 0.

On the other hand, taking (5.6) into account, from the left inequality in (A3) we deduce that

sup fo G(Vu.(z))lo.(z)dx < oo,

e>0

hence G(Vi.(z))lo.(z) < oo foralle > 0 and £V-a.a. z € O, and so, taking (Ag) into
account,

Vi (z)1o.(z) € G for all e > 0 and £N-a.a. 2 € O. (5.11)

As G is convex, see (A;) and Remark B.1] from (C), (5.10) and (5.11) it follows that
Vu(z) e G for ZN-a.a. v € O. (5.12)
Step 1: localization. For every € > 0, we define the (positive) radon measure p. on O by
e = W, Vi) 1o, ()2, (5:.13)

From (5.4) we see that sup.., u(O) < 0, and so there exists a (positive) Radon measure
on O such that, up to a subsequence, p. — p weakly. By Lebesgue’s decomposition theorem,
we have p = p®+ u® where u® and p° are (positive) Radon measures on O such that p® « £V
and p* L #V. Thus, to prove ((5.2) it suffices to show that

pt = lim lim lim Z°[W.10,](-, tVu(-)) £V, (5.14)

t—1— p~>0 e—0

From Radon-Nikodym’s theorem we have pu® = f(-) &Y with

Q)
3 o= lim eV e rvo: 10, o0f), 5.15
0 = tim B € 1203 0. ) (5.15)
and so to prove (5.14)) it is sufficient to establish that for £V-a.e. x4 € O,

Flow) = iy ooy > lim Flm V1o (oo (Vuen). (510
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Fix 2o € O\N where N < O is a suitable set such that ZV(N) = 0. As u(0) < oo, without
loss of generality we can assume that p(0Q,(x¢)) = 0 for all p > 0, which implies, by

Alexandrov’s theorem, that p(Q,(zo)) = lim.—o p(Q,(x0)). Consequently, to prove ([5.16))
it suffices to show that

lim lim We(x, Vi, (z))1o,(z)dr > lim lim lim #Z°[W.10.](zo, tVu(zo)).  (5.17)

p=0e=0J o (o) t—1- =00

On the other hand, as G is convex, see (A7) and Remark and 0 € int(G), see (Ay), from
(5.11)) we can assert for every ¢ €]0, 1],

tVi(z)lp,(x) € G for all e > 0 and for £V-a.a. z € O.
Hence, given any t €]0, 1[, we see that for every € > 0 and every p > 0,

J[ W (z, tViu.(z))lo. (x)dr < (1+A(t))J[ We(z, Vi (x))lo, (x)dx
Qp (o) Qp(z0)

+A(t)J[ 0. (x)dz

Q@p(z0)

with A(t) := sup..q Ay.q,_(t), where Ajf ,  (t) is given by (2.1)) with L(x, &) = W.(z,§) 1o, ()
and a = a.. Letting ¢ — 0 and p — 0 we obtain

lim lim We(z, tVi.(z)) 1o, (z)dr < (1+ A(t))limlim W (z, Vi (x)) Lo, (z)dx

P00 J Qo(ao) P00 J Qpao)
+ MMA@)J[ a-(z)dx.
p=0e=0 Qp(z0)
But, from (Ag) (see also Definition [2.10]) we have:
lim lim a.(z)dr = lim ap(x)dx = ag(xo) € [0, o0[;
p=0e=0 Qp(zo) p=0 Qp(wo)
lim A(t) <0,
t—1—

hence

Tim MMA@)J[ 0. ()dz <0,
Qp(z0)

t—1— p—0e—0
and consequently
lim lim lim We.(z,tVu.(x))lo,. (x)dr < lim lim We.(z, Vi (x)) 1o, (x)dx.
t=17 P00 ) @, (wo) =000 Qp(a0)
Thus, to prove (5.17) it is sufficient to show that
lim lim lim W.(z,tVa,. (7))o, (z)dz = lim lim lim %2°[W.1o,_](z0, tVu(xo)). (5.18)

t—1— p—0e—0 Qp(@0) t—1- P00

Step 2: cut-off method. Fix any ¢ > 0, any ¢ €]0,1[, any o €]¢,1[, any A €]0,1[ and
any p > 0. Let ¢ € C*(O) be a cut-off function for the pair (O\Q,(x0), @,,(70)), ie.
¢(z) € [0,1] for all z € O, p(z) = 0 for all z € O\Q, (o) and p(x) = 1 for all z € Q,,(z0),
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such that |[Vy|re < ﬁ for some # > 0 (which does not depend on p and \). Define
v, € WHP(O; R™) by
Ve 1= ple + (1 — )y, = p(Ue — Ugy) + Uz,
with g, (-) := u(xg) + Vu(zg)(- — x). Then
to, — tug, € WP (Q,(x0); R™) (5.19)

and

v — tVﬁa in @)\p(x())_
tVo, { ﬁ(goUVﬁg + (1 - SO)UVU(.%())) + (1 — i) qj&p in Qp(xo)\Q)\p(l'o) (520)

with U, , = 5V ® (U — us,). Using the right inequality in (As) it follows that

1 J ~
- W.(xz, tVa.) 1o, dx
LY (Q,(x0)) Ja, (o) ( ©

oo
+—
ZN(Qp(%0)) JQu(x0)\@, (20)

< J[ W (x, tVi.) 1o dx + f(1 — \V)
Qp(0)

B
+$N(Qp(xo)) J@(az@\%(xo)

On the other hand, taking (5.20)) into account and using (C;) and the left inequality in (As),
we have

J[ We(z,tVu.) 1o, dx
Qp(z0)

W (z,tVu.)lo.dz

G(tVv)lp.dx. (5.21)

G(tVv:)lp. < ¢ (1+G(oVu.) + G(oVu(zy)) + G(¥.,)) Lo,
1
< o (1 + awg(az, oVi.)lo. + G(oVu(xg)) + G(\I/s,p)> (5.22)

with ¢; := 2(y +7?) > 0. Note that from (Ag) and (5.12) we can assert that oVu(zg) € G,
and so
G(oVu(zg)) < 0.

Moreover, it is easy to see that

o0t 1
Ve e @@y < Ty EHU = Uay | 22(Q, (@o)imm)
PR S—
p(L= DTN e
where
. o0t 1
}}i}% (1 — i)(l _ )\) ;H’LL - UIOHLOO(Qp(mo);]Rm) =0 (523)

. 1 .
because lim,, o 7 [t — tsy | 12 (Q, (wo);mm) = 0 since p > N, and

ot
! te — ul L2 (orm) = 0 5.24
M D T o (5.24)
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by (5.9). From (Ag) and (A;) there exists r > 0 such that
¢y :=sup G(§) < ©

|§l<r

(see Remark . By (5.23)) there exists p > 0 such that %%Hu—umonm@pm)mm) <5
for all p €]0, p[. Fix any p €]0, p[. Taking ([5.24]) into account we can assert that there exists
€, > 0 such that

G(¥.,) < ¢ for all € €]0,¢,]. (5.25)
Thus, from (5.21)), (5.22) and ([5.25)) we deduce that

J[ We(z,tVu.)lo.dx < J[ W.(z,tVa,)lo.dz + c3(o)(1 — AV) +
Qp(xo) Qp(=0)

Bes

r
€,0,\,0
a P

for all t €]0,t,[ with:

C1

c3(0) = Ber (1 L GVl + 02> €10, oo ;

1
F 9. 7A7o' : = J
=7 ZN(Qp(@0)) Jo, o)y, (o))

But, taking ([5.19) into account, we see that

We(z,0Vu.)1p.dz.

FP Wlo | (o, tVu(xg)) < J[ W (z,tVv.)1p, dz,
Qp(x())
hence, for every p > 0, every ¢ €]0,¢,[, every A €]0, 1], every t €]0, 1| and every o €]t, 1], we
have

ZP W1, |(xo, tVu(zg)) < J[ W (2, Vi) lo.dx + c3(0)(1 — AV) + %Fa,p«\,a- (5.26)

Qp(wo)

Step 3: passing to the limit. Lettinge - 0, p -0, A —- 17,0 -1  andt — 17 in
(5.26)), we obtain

lim lim lim Z°[W.:10.](xo, tVu(zg)) < lim lim lim W (z,tViu. )l dx
t—1-P—0:20 t=17p=0e=0 J 0 (z0)
Bcl _— T T
+— lim lim limlimT, ,,,. (5.27)

o o—1— A—1— p—0e—0

Substep 3-1: proving that lim,_;- limy_,;- Ep_,o lim._ Lepro = 0. Forevery e €]0,¢,],
we have
Qp(x(J)\@)\p(xO)))

Poppro < (1+A(0)) el ZN(Q,(x0))

1

Alo)
+A(o) gN(Qp(xo)) JQP($O)\Q)\;J(IO)

a.(z)dz. (5.28)
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But from (Ag) (see also Definition [2.10) we have lim,_;- A(¢) < 0 and

- 1 _
lim lim lim—f a.(r)dr < limlim a.(x)dx
A—1— p—0e—0 gN(Qp(l'o)) QP(IO)\@)\p(IO) c p—0e—0 Qp (o) €
= lim ao(x)dx = ap(zo) € [0, 0]
P70 J Qp(wo)

ith ——2L _
with Zxgmo; SQp(IO)\QAp(WO) as(x)dz = 0, hence

T Tim Tm T A (o) ———

__ a.(a)dz < 0. (5.29)
o—1~ A—1— p—0e—0 3N<Qp (xo)) JQp(fvo)\QAp(ﬂﬁo)

As p. — p weakly and Q,(20)\@Qxp(0) is compact, by Alexandrov’s theorem, we have

E#e (Qu(20)\Qxp(20)) < 1 (Q,(20)\Qrp(0)) »
hence
EME (Qp(a:O)\@)\p(mo)) S p (@p(mo)) — 1 (Qxp(0))

and consequently

mlu’s (Qp(ivo)\@m(xo)) < N@p(l’o» W 1 (@xp(20))

=0 INQy(x0)) ZNQ,(w0)) LN (Qrp(0))

It follows that
— He (Qp(l’o)\@,\p(%))

lim lim
p—)Oé‘ﬂO gN(Qp((L‘()))

with f e L*(O;[0,0[) given by (5.15)), and so
— 1 (Qp(0)\Qx,(20))

< (1= AY) f(zo)

lim lim [; =0.
AT 00 N (Q, ()
. e Qp T Q p\ T .
with £ ( Sf(v(gi(ajo)() 0) > 0. Consequently, by using (Ag),
. T T He (Qp(x())\@)\ (l’o))
lim lim limlim (1 4+ A £ <0. 5.30
UE{I— /\E{l— plgil) 00 ( " (g)) ZN(Qy(x0)) ( )
From ((5.28), (5.29)) and (5.30) we deduce that
lim lim ImlimT, ), = 0. (5.31)

o—1— A—=1— p—0e—0

Substep 3-3: end of the proof. Combining (5.31)) with (5.27]) we obtain ([5.18]), and the

proof of the lower bound is complete. B
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5.2. Proof of the upper bound. Here we prove Proposition [3.5
Proof of Proposition [3.5} In what follows, ©(O) denotes the class of all open subsets of
O. For each v e WP(O; R™), let m, : O(O) — [0, 0] be defined by

m,(A) := limm? (A).

e—0

with, for each £ > 0, m? : 6(0) — [0, 0] given by

m;(A) = inf{ o W.(z, Vo(z))dz : v —ue WP (A; Rm)}

— inf {L We(z, Vo(z))lo, (x)dz : v — u e Wy P(A; ]Rm)} . (5.32)

For each § > 0 and each A € 0O(0), we denote the class of countable families {Q; :=
Q,, () }ier of disjoint open cubes of A with z; € A and p; €]0, d[ such that Y (A\U;e;Q;) =0
by 7;(A), and we consider m° : ©(O) — [0, 0] given by

el
and we define m? : 6(0) — [0, 0] by
m*(A) := supm,(A) = limm’ (A).
6>0 6—0
The set function m? is called the Vitali envelope of m, (see §4.1)).
Step 1: link between I'-lim and Vitali envelope. Let u € W'?(0O;R™). We are going
to prove that .
[(LP(O., 0))- ling I.(u) <1 (0). (5.33)
Without loss of generality we can assume that m}(0) < o. Fix any § > 0. By definition of
m? (O) there exists {Q;}ic; € Z5(0) such that
)
> m,(Q) <m)(0) + 5 (5.34)

i€l
Fix any € > 0. For each i € I, by definition of m¢(Q;) there exists v € W1P(O; R™) such
that v — u € Wy?(Q;; R™) and
J We (2, Vul(z)) de < m3(Q;) +
O:nQ;

Define u¢ : O — R™ by

0L (Q:)
—. 5.35
2N(0) (5.35)
0 u' in O\i\eJIQi

c ?J;: in Qz
Then u® —u € Wy ?(O; R™). Moreover, we have Vul(z) = Vvi(z) for ZN-a.a. z € Q;. From
(5.35)) we see that

0
L(ul) < ZmZ<Qz) +t 5

iel
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hence lim._o I (ul) < m3(O) + d by using (5.34), and consequently
(1511’1(1) hH(l)I ( ) < m*(0). (5.36)

On the other hand, we have

[ul —ul?, (O-Rm) = J u) — ufdz = ZJ vl — ul'dz.

iel

Taking (Cy) into account and since p; €]0, d[ for all ¢ € I, by Poincaré’s inequality (see [DD12,
Exercise 2.9 pp. 106]) we have

ZJ —ufdr < C(SPZJ — Vul'dx

el el

with C' > 0 (which only depends on p) and so

e =l o,y < 2700 (3 |
Lr(OcRm) S ; 0.0,
Taking the left inequality in (A3), (5.35)) and (5.34)) into account, from ([5.37)) we deduce that
— - L,
ll_I)I(l) |ul — Ul ommy < 2° tosr (a (M(0) +6) + fo |Vu|pd:v)

with « > 0 given by (A3), which gives

|Vl Pdx + f ’Vu\%x) : (5.37)
OcnQ;

lim hm ud — ul?, ©O.rmy =0 (5.38)

d—0e—0

because lims_o ™3 (0) = m*(0) < o0 and u € WP(O; R™). According to and (5.38),
by diagonalization there exists a mapping € — 0., with 6, — 0 as ¢ — 0, such that

ll_{% wa uHLP O ]Rm) = 07 (539)

@Is(wg) <mi(0) (5.40)

with w. := ul. By (5.39) we have I'(LP(O,, O))-lim._q I.(u) < lim._q I.(w.), and ( -
follows from ([5.40)).

Step 2: differentiation with respect to ZV. Let u e W'?(O; R™) be such that € (u) :=

So ))dx < o0. We are going to prove that

According to Theorem , to prove ‘D it suffices to establish that m, is subadditive and
there exists a finite Radon measure v on O which is absolutely continuous with respect to
ZN such that

m,(A) < v(A) (5.42)
for all A € 0(0O). For each € > 0, from the definition of m¢ in (5.32)), it is easy to see that
for every A, B,C € 6(0) with B,C < A, Bn C = & and &V (A\(B u C)) = 0, one has

mg,(A) < my(B) +mg (C),

u
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and so
limm¢ (A) < Timm?(B) + limmé(C),

e—0 e—0 e—0
l.e.
m,(A) < m,(B) +m,(C),
which shows the subadditivity of m,. On the other hand, given any € > 0, by using the right
inequality in (As) we have

m; (A) < L‘ﬁ(l + G(Vu(zx)))dx

for all A e 6(0). Thus (5.42)) holds with the Radon measure v := 3(1+ G(Vu(-)))ZY which
is necessarily finite since € (u) < .

Step 3: cut-off method. Let t €]0,1[, let o €]¢, 1] and let u € W'?(O; R™) be such that
€ (ou) < c0. We are going to prove that for #V-a.e. v € O,

T mtu(Qp(x)) = My, (Qp(x))
P ZNQ,) = 1 ZNQ,@)

with u,(-) := u(z) + Vu(z)(- — z).

Remark 5.1. For #N-a.e. x € O, one has

Ty G o) = oy T 77 [0, ) o 19 u).

Remark 5.2. If €(tu) < oo then €(tu,) < o for #VN-a.a. x € O, and so, by the step 2,
Q) | WuQe) (@) W, (Qy()
(Q,(x

(5.43)

lim ———— = and lim

0 PN(Q(x)  p=0 ZN(Q, (1) 1 20 PN (Q,(w) om0 PN(Q,(x))

Fix any € > 0, any A €]0,1[, any p > 0 and any ¢ > 0. By definition of mj, (Qx,(2)) in
(5.32)), there exists w € WHP(O; R™) such that

tw — tu, € Wy P (Qap(2); R™) (5.44)
and
L WL V) < i (@3 0) 402 (@) (5.45)

Let ¢ € C*(0O) be a cut-off function for the pair (O\Qp(a:),@)\p(x)), ie. p(y) € [0,1] for all
ye O, ¢(y) =0forall ye O\Q,(z) and p(y) =1 for all y € @Ap(x), such that

0
p(1=A)
for some @ > 0 (which does not depend on p and \). Define v € W'?(O; R™) by

IVl e <

vi=@u, + (1 — p)u = p(u, —u) + u.

Then
tv —tu e WyP(Q,(x); R™) (5.46)
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and

o {2 g
%(QOO'VU(I‘) + (1 - gp)aVu) + (1 — ﬁ) U, in Q,(0)\Qy,(70)

with ¥, := -5V ® (u, — u). From (5.44) and (5.46) we have

to + (tw — tu,) — tu e WyP(Q,(x); R™),

(5.47)

and so, noticing that V(tw — tu,)(y) = tVw — tVu, = 0 for #V-a.a. ye Qp(x)\@/\p(:z),

L C/IC0) R S
LN(@Qap(2))  — LV(@Qa(2) o,
1

W. (y,tVv + tVw — tVu,) 1o_(y)dy

s — f We (y,tVu(z) + tVw — tVu(z)) Lo, (y)dy

ZN(Qx(2)) Jg,, @)
o
LN (Qx0(2)) Jo, @)@y, )
1

G Jg T B0

We(y, tVu)lo, (y)dy

1

+—— WE y7tvv :[I‘ € y dy
LN(Qxp(1)) J@,;(cc)\czx,,(m ( v

From (j5.45)) and the right inequality in (Aj) it follows that

WE(Qy() _ Q) _ mi, Q@) B AY)

LN(Qp()) ~ LN(Qu(2)) T ZV(Qrol@)) AN
b5

"IN Q@) sz(x)\czw)

On the other hand, taking into account and using (A;), we have

G(tVv) < ¢ (1+ G(oVu(z)) + G(oVu) + G(¥,))

with ¢; := 2(y + +?) > 0. Moreover, it is easy to see that

ot 1
\IJ S z): < — — Ug||L® z):R™

with
ot

1
1. - — Uyg o0 z):R™ :0
P I D w T e

G(tVv)dy.

(5.48)

(5.49)

(5.50)

because lim, g %Hu—umHLw(Qp(@;Rm) = 0 since p > N. From (Ag) and (A;) there exists r > 0

such that
¢y :=sup G(§) <

|gl<r
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(see Remark . By ((5.50) there exists p > 0 such that u_gﬁiﬂu — Uy 0@, (2)Rm) < T
for all p €]0, p|. Fix any p €]0, p[. We then have

G(¥,) < co. (5.51)
From ([5.49) and (5.51)) it follows that

B

J 1= \N
LN (Qx0(2)) Jo, @)@, )

)\N

G(tVuv)dy < Bei(1+ G(oVu(z)) + )

Bey

"IN Q@) J@Aw)\%(z) Flovuly)dy

But
J  GaVuy)dy < LY(Q,(x)T |G(oVu(y)) — G(oVu(z))|dy
Qp(@)\Qx,(2) Qp(x)
+ZM(Qp(2)\Qy,(2))G (o Vu(x)),
hence

5
LN (Qxp())

11—V
J _ G(tVo)dy < Ber(1+2G(oVu(z)) + c2) v
Qp(@)\Q,(z)

Be
+>\—Nl:fQ (L)G(aVu(y)) — G(oVu(x))|dy. (5.52)
From ((5.48) and ([5.52)) we deduce that

mi, (Qp(r)  _ iy, (Qx(@))

INQ@) S PV Qo)) T

_\N
+ B¢ (1 + C—ll + 2G(oVu(z)) + 02> %
+B—(;\}J[ |G(oVu(y)) — G(oVu(z))|dy. (5.53)
A Q@
As @(ou) < 0, i.e. G(oVu(-)) € LY(O), we can assert that:
G(oVu(zx)) < oo (5.54)
hH(l) |G(cVu(y)) — G(eVu(x))|dy = 0. (5.55)
e Qp(z)
Moreover, we have:
g MG (Qp(2) o M (@p())
M ZNQ,0) B ZYQ,) (5.56)
Tmom fu, (@p(7)) < Tim Tim my,, (Qp(z — Tm My, (Qp()) (5.57)

=00 N (Qup(a)) =00 ZV(Q (1)) 0 LN(Q, (1))
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Letting ¢ — 0, p — 0 and A — 17 in (5.53)) and using (5.54)), (5.55)), (5.56]) and ((5.57) we

conclude that
—— My (Qp(7) _ = My, (Qp(T))
lim ———— 2 < lim —=2~>2— 22
=0 LN(Qy(x)) =0 ZN(Q)(7))
and (5.43)) follows by letting § — 0.

Conclusion of the steps 1, 2 and 3. As a direct consequence of (5.33)), (5.41]) and (/5.43))
together with Remarks [5.1] and we have the following lemma.

44,

Lemma 5.3. For every t €]0,1[ and every u € WYP(O;R™) such that €(tu) < o and
E(ou) < oo for some o €|t, 1|, one has

P(LP(OE,O))—F%L:(W) <J lim lim Z°[W. 10, (2, tVu(z))dz.

19 p—0e—0
Step 4: end of the proof. Let u € W' (0O; R™). We have to prove that

(IO, 0))-Tm I.(u) < L lim Tim Tim 29[, 1o, | (&, Vu(x))da. (5.58)

e—0 t—1— P—0e—0

Without loss of generality we can assume that

J lim lim lim %2°[W.10_](z, tVu(z))dz =: i (u) < o0, (5.59)
o

11— p—0e—0
Then, by Proposition .7](i) we have
Vu(r) € Gy, for FN-aa. 1€ 0 (5.60)
and, for ZV-a.e. €O,

lim lim lim %°[W.10.](z,tVu(z)) = lim lim lim %°[W.10.](z, tVu(z)). (5.61)

t—1— P—0e—0 t—1— p—0e—0

Substep 4-1: proving (5.58) under the constraint Vu(z) € int(Gy ) for £N-a.a.
x € O. Assume that

Vu(z) € int(Go ) for FN-a.a. € O. (5.62)
Then, since (Ag)—(A1) (see Remark [3.2(iii)) implies that tVu(z) € int(Ge ) for all ¢ €]0, 1]
and for ZN-a.a. x € O, by (A4) we have

lim Go(z,tVu(z)) = Go(z, Vu(z)) for FV-a.a. z € O. (5.63)

t—1—

Using ((5.63)) and the left inequality in (As) we see that

é]hm(u) > Jo lim Gy (z,tVu(x))de = fo Go(x, Vu(x))dr =: Gy (u),

t—1—

hence, by (5.59)), €, (u) < o, and so taking (A3) into account, from ([5.62)) it follows that
@ (u) < 0. (5.64)
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But, by (A;) we see that for every ¢ €]0, 1[, & (tu) < vZ™(0)(1 + G(0)) + v€(u), hence, by
(Ag) and (5.64)), €(tu) < oo for all ¢ €]0, 1[, and so, by Lemma [5.3| we have

D(L(0..,0)-Tnn L (t) < J T T 927 [1V. Lo, (2, (¥ () for all £ €]0, 1], (5.65)
£— oP—0e—

On the other hand, from the right inequality in (A5) we see that for every t €]0, 1],
lim lim 77 [W.10.](z,tVu()) < B(1+ Gu(z, tVu(-)))

p—02—0
< B(1+G(tVul(+)),
and consequently, by using (A;),
lim lim Z°[W.1o_](z, tVu(-)) < B(1 + G(0) + G(Vu(-)) := f(-) for all ¢ €]0, 1]

p—0e—0

with f e L'(O) by (Ag) and (5.64)). Taking (5.61)) into account, from Lebesgue’s dominated

convergence theorem we deduce that
lim [ Tm m 20 [Wello, | (x, tVu(z) )de — f Jim T T 927 [V, 1o, |(z, £V u(x))dz.
t—1-Jo P00 0 t—1- p—0e=0
From ([5.65)) we conclude that
lim D(L(0.,0))- T L. (tu) < f lim T T 29[ W0, |(x, £V u(x))dz,
E—> 10}

t—1— t—1— p—0e—0
and (5.58) follows because I'(LP(O.,0))-lim; . I. is Isc with respect to the LP(O;R™)-
convergence and tu — u in LP(O;R™) ast — 17.

Substep 4-2: proof of (5.58]). First of all, from (Ag) and Lemma we can assert that

W i=lim, o lim. o Z*[W.10.] is ru-usc with the constant function |ag|z=. Moreover, by
(As) we see that for every x € O, the effective domain of W (x,-) is equal to G . Taking
(Ag)—(A1) (see Remark [3.2(iii)) into account, from Theorem [2.9(ii) it follows that

—~

Wy = lim @E%%”[Ws]log] is ru-usc with the constant function |ag| . (5.66)
t—1- P20

From (5.59) we see that Vu(z) € Woo,m for #N-a.a. z € O, where Woo,m denotes the effective
domain of W (x, ). Hence, for every ¢ €]0, 1],

% laol o T
Jo We(z, tVu(z))de < (1+ AVAVOO (t)) fo Wy (z, Vu(z))dx

+AZ (1) |ao |1 2N (0)

. a o0 WOO l',t —‘//[7@ xX, :
with A!?/iu () := SUP,co SUP., Hao(HLoflww(ig), ie.
Tim(f10) < (1 4+ A2 () By () + AR (1) Jao] = 2™ (0) (5.67)

for all ¢ €]0, 1[. Using (5.59)) we see that
Lim (tu) < oo for all ¢ €]0, 1]. (5.68)



I-CONVERGENCE OF NONCONVEX UNBOUNDED INTEGRALS IN STRONGLY CONNECTED SETS 25
On the other hand, from (5.60) and (Ag)—(A;) (see Remark [3.2(iii)) we deduce that
V(tu)(x) € int(Gy ) for all ¢ €]0, 1] and FV-a.a. x € O. (5.69)
According to and , from the substep 4-1 we can assert that
I(L*(O., O))—Els(tu) < D (tu)
for all ¢t €]0, 1[, and so, taking into account,
[(L7(0-,0))-m L (tu) < (1+ AZ*1 (1)) T (u) + AF" = (1) ]ao] 1= ZN(0) - (5.70)

for all ¢ €]0, 1[. Moreover, by ([5.66]) we have lim,_,,- A%OHLOO (t) < 0. Hence, letting ¢t — 1~
in (5.70) we conclude that

lim T'(LP(O., O))-@Ig(tu) < Lim (),

t—1—
and (5.58) follows because I'(LP(O,, O))-lim._q I. is lsc with respect to the LP(O;R™)-

convergence and tu — w in LP(O;R™) ast — 17. B

5.3. Proof of the I'(L?(O., O))-convergence theorem. Here we prove Theorem
Proof of Theorem [B.6. By (Aj5) we see that
aGy(z,€) < @)h_m%ﬂ[waﬂoe](x,g) < F%@%p[wgﬂos](x,g) < B(1+ Gu(z,))
p—0:—0 p—0e—

for all (z,£) € O x M. So, for every x € O, one has

dom <Fr(1)li_m%”[Ws]loa](a:, )) = dom <Fr(1)@%p[we]l@a](a:, )) = Guwu, (5.71)
p—0:"0 p—0e—

where dom (lim, o lim__, #*[W.10_](z, ")) and dom (lim,_o lim._ Z°[W.10_](, -)) denotes

the effective domain of lim, o lim._, #Z°[W.10_](z, ) and lim, o lim._o Z°[W.10_](z, -) re-

spectively. Let (z,£) € O x M. If £ ¢ Gy, then there exists t¢ €]0, 1[ such that ¢ ¢ Gy,

for all ¢ € [t¢, 1[. Hence:

o if 5 ¢ Goo,x thena by "
lim lim Z°[W.10_](x, t€) = lim lim Z°[W.10_](x, t€) = oo for all t € [te, 1[;

p—0 .0 p—0e—0
o if { € Gy, then, from (Ag)—(A;) (see Remark (iv)), we have t¢ € int(G, ) for all
t €]0,1[, and so, by (A7),
@)li_m%’p[ws]log](x,tg) > lim lim Z°[W. 10, ](z, t€) for all ¢ €]0, 1.
p—

e—0 p—0e—0

It follows that
lim lim lim %°[W.10.](x,t€) = lim lim lim %2°[W.10_](z, t€)

t—1- P00 t—1- P00
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for all (z,&) € O x M. From Propositions and |3.5| we deduce that

I'(LP(O.,0))-lim I.(u) = Jli_mmli_m%p[nglos](x,tVu(x))da:
o

e—0 t—1- P00

> f lim Trm T 92[W. 1o, |(z, £Vu(x))dz
O

t—1— pP—0e—0

A\

I'(LP(O., 0))-@15(@.
for all u e W1P(O; R™). Hence
F(LP(OE,O))—lir%IE(u) = J Wi (2, Vu(x))dx
E— le)

for all w e W'?(O;R™). B
5.4. Proof of the homogenization theorem. Here we prove Theorem |3.11

Proof of Theorem 3.1l Taking (Ho)-(H;) and Theorem into account, we see that
(Cop)—(Csq) hold. Since G is p-coercive convex function satisfying (Hs)-(Hj), it is clear that
(Ag)—(A4) hold. For each € > 0, let W, : O x M — [0, 0] be defined by

x
Wa<m7€) =W <g7§> .
From (H4) we can assert that for every e > 0 and every (z,&) € RY x M,

x x x x
aG(§)lg (g) W (;5) Ig (g) < B+ G(E))1E (g) ;
ie.
aG(§)lg. (x) < We(z,§)1p. () < B(1 + G(£))1E. (2),
and so (As) is verified. By (Hjs) we see that for each £ € M, 2 +— W (x,{)1g(z) is 1-periodic
because, by assumption, 1p is 1-periodic. Hence, taking (Hg) into account, from Lemma

we deduce that (Ag) holds. So, it remains to prove that (A7) is satisfied, i.e. according
to (Hy), for every z € O and every ¢ € int(G),

. S (%Qp(x)) > Tim T S$* (%Qp(x))
p—0_g LN (%Qp(x)) " =020 PN (%Qp(x))

with &% : 0,(RY) — [0, 0] defined by
8§4(A) := inf {J W (z, & + Vo(z)lp(z)dz : o € WyP(A; Rm)} ,
A

where 0, (RY) denotes the class of all bounded open subsets of RY. Fix z € O and £ € int(G).
First of all, it is clear that &* is subadditive. Then, by using (Hs) and the fact that 1 is
1-periodic, it easy to see that & is Z"-invariant. Finally, from the right inequality in (Hy)
we deduce that for every A € 0,(RY), $4(A) < CeLN(A) with C¢ 1= B(1 + G(§)) < @
because ¢ € int(G). From Theorem it follows that for every p > 0,

S Q) 40, k[Y)
v (10,@) T

(5.72)
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which implies (5.72)). Thus (Co)% and (Ag)—(Ar) are satisfied, and the theorem follows
7

from Theorem 3.6{and Proposition (1) (with Remark ) in noticing that infy, % =

Whom (5) . B
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