Kernel-based quadrature applied to offshore wind turbine damage estimation
Elias Fekhari, Bertrand Iooss, Vincent Chabridon, Joseph Muré

To cite this version:
hal-03713013

HAL Id: hal-03713013
https://hal.archives-ouvertes.fr/hal-03713013
Submitted on 4 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Kernel-based probabilistic integration

Industrial context & Problem statement

- EDF Renewables operates ~10 000 MW of wind turbine (WT) worldwide
- New technologies (e.g., offshore floating WT), wind farms reaching end-of-life
 ➔ Need probabilistic tools to optimize safety margins and asset management

1. Select integration nodes ➔ \(E[g(X)] \approx \frac{1}{N} \sum_{i=1}^{N} g(x^{(i)}) \)

Candidate set: \(\mathcal{S} \) is a fairly dense finite subset of \(\mathbb{R}^n \) with size \(N \gg n \) that emulates the target distribution (e.g., a large Sobol’ sequence, available data as in Fig.4).

2. Compute optimal weights for integration ➔ \(E[g(X)] \approx \sum_{i=1}^{N} w_i g(x^{(i)}) \)

Optimal weights for quadrature ➔ for a given DoE \(X_n \) and a given kernel \(k \)

\[
 w_i = P(X_i | K_n) \]

with potentials \(P(X_n) = \left\{ \int k(x, x^{(i)}) f(x) dx \right\} f(x) dx \)
and variance-covariance matrix \(\left[K_n \right]_{ij} = k(x^{(i)}, x^{(j)}) \)

Conclusions & Perspectives

- Combining kernel herding with optimal weights is an efficient integration method
- This method is sensitive to the chosen kernel and its hyper-parameters

Environmental measured data

SCADA data collected over a period of four years at the Teesside (UK) offshore wind farm

Numerical results: DEL estimation by kernel herding

References

