CONSERVATIVE STOCHASTIC REDUCED ORDER MODELS FOR REAL-TIME FLUID FLOW DATA ASSIMILATION

G. Le Pape, A. M. Picard, M. Ladvig, <u>V. Resseguier</u>, D. Heitz, L. Bessard

@Scalian 2019. All rights reserved.

CONTENT

- I. Context
- II. State of the art
 - a. Intrusive reduced order model (ROM)
 - b. Data assimilation
- III. Reduced location uncertainty models
 - a. Location uncertainty models (LUM)
 - b. Reduced LUM
- IV. Numerical results
 - a. Uncertainty quantification (Prior)
 - b. Data assimilation (Posterior)

PART I

CONTEXT : OBSERVER FOR WIND TURBINE APPLICATIONS

CONTEXT Observer for wind turbine application

CONTEXT Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources & few sensors

Which simple model? How to combine model & measurements?

CONTEXT Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources & few sensors

Scientific problem : Simulation & data assimilation under severe dimensional reduction typically, $10^7 \rightarrow O(10)$ degrees of freedom

PART II

STATE OF THE ART

- a. Intrusive reduced order model (ROM)
- b. Data assimilation

• <u>Principal Component Analysis (PCA)</u> on a *dataset* to reduce the dimensionality:

• <u>Approximation</u>: $v(x,t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)$

= Coupling simulations and measurements y

On-line measurements

→ incomplete
→ possibly noisy

= Coupling simulations and measurements y

→ incomplete
→ possibly noisy

= Coupling simulations and measurements y

PART III

REDUCED LOCATION UNCERTAINTY MODELS

- a. Location uncertainty models (LUM)
- b. Reduced LUM (Red LUM)

LOCATION UNCERTAINTY MODELS (LUM)

v = w + v' Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$	
Unresolved fluid velocity: $v' = \sigma \dot{B}$	Assumed (conditionally-)Gaussian & white in time (non-stationary in space)

LOCATION UNCERTAINTY MODELS (LUM)

LOCATION UNCERTAINTY MODELS (LUM)

LOCATION UNCERTAINTY MODELS (LUM), Randomized incompressible Navier-Stokes

v = w + v'

Resolved fluid velocity: *w*

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $abla \cdot w = 0$ and $abla \cdot v' = 0$)

Momentum conservation $\frac{Dw}{Dt} = F$ (Forces)

From Ito-Wentzell

with Ito notations

formula (Kunita 1990)

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

v = w + v'

- Resolved fluid velocity: *w*
- Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming
$$abla \cdot w = 0$$
 and $abla \cdot v' = 0$

$$\partial_t w + w^* \cdot \nabla w + \sigma \dot{B} \cdot \nabla w - \nabla \cdot \left(\frac{1}{2}a\nabla w\right) = F$$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

v = w + v'

Resolved fluid velocity: *w*

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $abla \cdot w = 0$ and $abla \cdot v' = 0$)

Advection

$$\partial_t w + w^* \cdot \nabla w + \sigma \dot{B} \cdot \nabla w - \nabla \cdot \left(\frac{1}{2}a\nabla w\right) = F$$

From Ito-Wentzell formula (Kunita 1990) with Ito notations

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity: *w*

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $abla \cdot w = 0$ and $abla \cdot v' = 0$)

$$\partial_t w + w^* \cdot \nabla w + \sigma \dot{B} \cdot \nabla w - \nabla \cdot \left(\frac{1}{2}a\nabla w\right) = F$$

From Ito-Wentzell formula (Kunita 1990) with Ito notations

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

v = w + v'

Resolved fluid velocity: *w*

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

(assuming $abla \cdot w = 0$ and $abla \cdot v' = 0$)

$$\partial_t w + w^* \cdot \nabla w + \sigma \dot{B} \cdot \nabla w - \nabla \cdot \left(\frac{1}{2}a\nabla w\right) = F$$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity: *w*

v = w + v'

Unresolved fluid velocity:
$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming
$$abla \cdot w = 0$$
 and $abla \cdot v' = 0$

Variance tensor:

$$a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity: *w*

v = w + v'

Unresolved fluid velocity:
$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming
$$abla \cdot w = 0$$
 and $abla \cdot v' = 0$

Variance tensor: $a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$

LOCATION UNCERTAINTY MODELS (LUM),

Randomized Navier-Stokes

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

From Ito-Wentzell formula (Kunita 1990) with Ito notations

Resolved fluid velocity: *w*

v = w + v'

Unresolved fluid velocity:
$$v' = \sigma \dot{B}$$
 (Gaussian, white wrt t)

(assuming ${m
abla} \cdot w = 0$ and ${m
abla} \cdot v' = 0$)

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

$$\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + C(\sigma \dot{B}, w) + F(w) = F\right) dx$$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

dt

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

dt.

Variance tensor: $a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{[}$

$$\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + C\left(\sigma \dot{B}, w\right) + F(w) = F\right) dx$$

$$\int \frac{db(t)}{dt} = c\left(b(t), b(t)\right) + K\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + C\left(\sigma \dot{B}\right) b(t) + f b(t) = C\left(b(t), b(t)\right) + C\left(\sigma \dot{B}\right) b(t) + C\left(\sigma \dot{B}\right)$$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

v = w + v'

 $w(x,t) = \sum_{i=0}^{n} b_i(t) \phi_i(x)$

Resolved fluid velocity:

 $v'=\sigma\dot{B}$ (

Variance

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

New estimator

- $(\Delta t \rightarrow 0)$
- cs-based
 - rapolation

Unresolved fluid velocity:

$$v' = \sigma \dot{B} \text{ (Gaussian, white wrt t)}$$
Variance tensor:

$$a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$$

$$\frac{db(t)}{dt} = c(b(t), b(t)) + K(\sigma \dot{B}) b(t) + f b(t) = \cdots$$
Multiplicative
skew-symmetric noise

$$\rightarrow \text{ Covariance to estimate}$$

$$K_{ig}[\xi] = -f_0 \phi_i \cdot c(\xi, \phi_g)$$

 $\int \phi_i(x) \cdot (\partial_t w + C(w, w) + C(\sigma \dot{B}, w) + F(w) = F) dx$

Advection : 2nd order polynomial

v = w + v'

Resolved fluid velocity:

 $w(x,t) = \overline{\sum_{i=0}^{n} b_i(t)\phi_i(x)}$

Unresolved fluid velocity:

 $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

 $a(x,x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$

Variance tensor:

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Data-based & Physics-based
 - \rightarrow Robustness in extrapolation

 $\frac{db(t)}{dt} = c(b(t), b(t)) + K(\sigma \dot{B}) b(t) + f b(t) = \cdots$

 $\int_{\Omega} \phi_i(x) \cdot \left(\partial_t w + C(w, w) + C(\sigma \dot{B}, w) + F(w) = F\right) dx$

Multiplicative skew-symmetric noise

 \rightarrow Covariance to estimate

 $K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$

"Turbulent" diffusion

with $a(x) \approx \Delta t \ \overline{v'(v')^T}$

Resseguier et al. (2022). J Comp. Phys . hal-03445455

Resseguier et al. (2022). J Comp. Phys . hal-03445455

Resseguier et al. (2022). J Comp. Phys . hal-03445455

PART IV

NUMERICAL RESULTS

- a. Uncertainty quantification (Prior)
- b. Data assimilation (Posterior)

UNCERTAINTY QUANTIFICATION (PRIOR)

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

UNCERTAINTY QUANTIFICATION (PRIOR) Linearly unstable modes Mainly from Temporal mode 1 Temporal mode 2 Energy 5 the mean $\bar{v} = \phi_0$ $b_1(t)$ $b_{2}(t)$ 0 One realization v = w + v'-5 -5 10 15 10 15 5 5 Mean Time Time Resolved fluid velocity: Confidence $w = \sum_{i=0}^{n} b_i \phi_i$ interval Unresolved fluid velocity: Reference Temporal mode 3 Temporal mode 4 v'No closure $b_{3}(t)$ $b_4(t)$ -1 15 5 10 5 10 15

Time

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Time

UNCERTAINTY QUANTIFICATION (PRIOR) c(b(t),b(t))Linearly unstable modes Mainly from Temporal mode 2 Temporal mode 1 Energy 5 the mean $\bar{v} = \phi_0$ $b_1(t)$ $b_{2}(t)$ 0 One realization v = w + v'-5 -5 10 15 10 5 5 15 Mean Time Time Resolved fluid velocity: Confidence $w = \sum_{i=0}^{n} b_i \phi_i$ interval Unresolved fluid velocity: Reference Temporal mode 3 Temporal mode 4 12' No closure $b_{3}(t)$ $b_4(t)$ -1 15 5 10 5 10 15

Time

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

Time

UNCERTAINTY QUANTIFICATION (PRIOR) c(b(t),b(t))Linearly unstable modes Mainly from Temporal mode 2 Temporal mode 1 Energy 5 the mean $\bar{v} = \phi_0$ $b_1(t)$ $b_{2}(t)$ 0 One realization v = w + v'-5 10 15 10 5 5 15 Mean Time Time Resolved fluid velocity: Confidence $w = \sum_{i=0}^{n} b_i \phi_i$ interval Linearly stable modes Unresolved fluid velocity: Reference Temporal mode 3 Temporal mode 4 12' No closure $b_{3}(t)$ $b_4(t)$ Mainly to Energy the mean $\bar{v} = \phi_0$ 15 10 5 10 5 15 Time Time

UNCERTAINTY QUANTIFICATION (PRIOR) c(b(t),b(t))Linearly unstable modes Mainly from Temporal mode 1 Temporal mode 2 Energy 5 the mean $\bar{v} = \phi_0$ $b_1(t)$ $b_{2}(t)$ 0 One realization v = w + v'-5 10 15 10 5 5 15 Mean Time Time Resolved fluid velocity: Confidence $w = \sum_{i=0}^{n} b_i \phi_i$ interval Linearly stable modes Unresolved fluid velocity: Reference Temporal mode 3 Temporal mode 4 12' No closure $b_{3}(t)$ $b_4(t)$ Mainly to Energy 15 10 the mean $\overline{v} = \phi_0$ 5 10 5 15 Time Time c(b(t), b(t))

UNCERTAINTY QUANTIFICATION (PRIOR) c(b(t),b(t))Linearly unstable modes Mainly from Temporal mode 1 Temporal mode 2 Energy 5 the mean $\bar{v} = \phi_0$ $b_1(t)$ $b_{2}(t)$ 0 One realization v = w + v'10 15 10 5 5 15 Mean Time Time Resolved fluid velocity: Confidence $w = \sum_{i=0}^{n} b_i \phi_i$ En (gy interval Linearly stable modes Unresolved fluid velocity: Reference Temporal mode 3 Temporal mode 4 12' No closure $b_{3}(t)$ $b_4(t)$ Mainly to Energy 15 the mean $\overline{v} = \phi_0$ 5 10 5 10 15 Time Time c(b(t), b(t))

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

n = 4 resolved degrees of freedom No data assimilation Known initial conditions b(t = 0)

UNCERTAINTY QUANTIFICATION (PRIOR)

n = 4 resolved degrees of freedom No data assimilation Known initial conditions b(t = 0)

UNCERTAINTY QUANTIFICATION (PRIOR)

n = 8 resolved degrees of freedom No data assimilation

Known initial conditions b(t = 0)

UNCERTAINTY QUANTIFICATION (PRIOR)

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity: v'

v'

v'

CONCLUSION

CONCLUSION

- Unsteady CFD ROM with severe truncation $(O(10^7) \rightarrow O(10))$ degrees of freedom)
 - Intrusive ROM (Combine data & physics)
 - Conservative stochastic closure (LUM)
 - Stabilization of the unstable modes
 - o Maintain variability of stable modes
 - Efficient estimator for the conservative multiplicative noise
 - Efficient generation of prior / Model error quantification
- Data assimilation (Bayesian inverse problem) : to correct the fast simulation on-line by incomplete/noisy measurements
- First results at Re = 100 and 300 :
 - Quasi-optimal unsteady 3D flow estimation
 - Robust far outside the training set

CONCLUSION

- ▶ Unsteady CFD ROM with severe truncation $(0(10^7) \rightarrow 0(10))$ degrees of freedom)
 - Intrusive ROM (Combine data & physics)
 - Conservative stochastic closure (LUM)
 - Stabilization of the unstable modes
 - Maintain variability of stable modes
 - Efficient estimator for the conservative multiplicative noise
 - Efficient generation of prior / Model error quantification
- Data assimilation (Bayesian inverse problem) : to correct the fast simulation on-line by incomplete/noisy measurements
- First results at Re = 100 and 300 :
 - Quasi-optimal unsteady 3D flow estimation
 - Robust far outside the training set

NEXT STEP : Increasing Reynolds (ROM of LES, DDES)

- Hyperreduction
- Error quantification of hyperreduction

BONUS SLIDES

07/06/2022

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^7$ Reduced order : $n \sim 10$

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \sigma \dot{B}$ (Gaussian, white wrt t)

Variance tensor: $a(x, x) = \frac{\mathbb{E}\{(\sigma dB_t)(\sigma dB_t)^T\}}{dt}$ $\phi_i(x) \cdot (d_t w + C(w, w)dt + F(w)dt + C(\sigma dB_t, w) = dF) dx$

 $\frac{db(t)}{dt} = H(b(t)) + K(\sigma \dot{B}) b(t)$

$$K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

Full order : $M \sim 10^7$

Reduced order : $n \sim 10$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

REDUCED LUM (RED LUM) Multiplicative noise covariance

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t) Randomized Navier-Stokes

 $\overline{f} = \frac{1}{T} \int_{-T}^{T} f$

$$db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

(n+1) x (n+1)

- **Curse of dimensionality**
 - Since σdB_t is white in time,

$$\Sigma_{jq,ip} = \mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t \ \overline{K_{jq}(v') K_{ip}(v')}$$

- *K* is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x, t) at every time t
- Covariance of $\sigma dB_t \approx \Delta t^2 \overline{(v'(x,t))(v'(y,t))^T}$: $M \times M \sim 10^{13}$ coefficients \rightarrow intractable

Reduced order : $n \sim 10$ Number of time steps : $N \sim 10^4$

Full order (~ nb spatial grid points): $M \sim 10^7$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
 - \rightarrow Robustness in extrapolation

REDUCED LUM (RED LUM) Multiplicative noise covariance

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t) Randomized Navier-Stokes

 $\overline{f} = \frac{1}{T} \int_{-T}^{T} f$

 $db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$

(n+1) x (n+1)

- Curse of dimensionality
 - Since σdB_t is white in time,

$$\Sigma_{jq,ip} = \mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t \ \overline{K_{jq}(v') K_{ip}(v')}$$

- *K* is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x, t) at every time t
 - Covariance of $\sigma dB_t \approx \Delta t^2 \overline{(v'(x,t))(v'(y,t))^T}$: $M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- **Efficient estimator** $\Sigma_{jq,ip} \approx \Delta t K_{jq} \left[\frac{\overline{b_p}}{\overline{b_p^2}} \frac{\Delta b_i}{\Delta t} v' \right]$ (hybrid fitting & physics-based) requires only $O(n^2 M)$ correlation estimations and $O(n^2)$ evaluations of K

New estimator

Reduced order : $n \sim 10$

Number of time steps : $N \sim 10^4$

Full order (~ nb spatial grid points): $M \sim 10^7$

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
 - \rightarrow Robustness in extrapolation

REDUCED LUM (RED LUM) Multiplicative noise covariance

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt *t*) Randomized Navier-Stokes

 $db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$

- (n+1) x (n+1) Curse of dimensionality
- Since σdB_t is white in time,

$$\Sigma_{jq,ip} = \mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t \ \overline{K_{jq}(\nu') K_{ip}(\nu')}$$

- *K* is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x, t) at every time t
 - Covariance of $\sigma dB_t \approx \Delta t^2 \left(v'(x,t) \right) \left(v'(y,t) \right)^T : M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- **Efficient estimator** $\Sigma_{jq,ip} \approx \Delta t \frac{K_{jq}}{b_p^2} \left[\frac{\overline{b_p}}{\Delta t} \frac{\Delta b_i}{\nu'} \right]$ (hybrid fitting & physics-based) requires only $O(n^2 M)$ correlation estimations and $O(n^2)$ evaluations of K
- **Consistency of our estimator** (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K)

 $\Delta t \ K_{jq} \left[\overline{b_p \frac{\Delta b_i}{\Delta t} v'} \right] = \Delta t \ \overline{b_p \frac{\Delta b_i}{\Delta t} K_{jq}[v']} \approx \frac{1}{T} \int_0^T b_p \ d < b_i, \\ K_{jq}(\sigma B) > = \frac{1}{T} \int_0^T b_p \sum_{r=0}^n b_r d < K_{ir}(\sigma B), \\ K_{jq}(\sigma B) > = \sum_{r=0}^n \sum_{jq,ir} \overline{b_p b_r} = \sum_{jq,ir} \overline{b_p^2} \ \text{(orthogonality from PCA)}$

Full order (~ nb spatial grid points): $M \sim 10^7$ Reduced order : $n \sim 10$ Number of time steps : $N \sim 10^4$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
 - \rightarrow Robustness in extrapolation

REDUCED LUM (RED LUM) Multiplicative noise covariance

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t) Randomized Navier-Stokes

 $\overline{f} = \frac{1}{T} \int_{-T}^{T} f$

$db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$

- (n+1) x (n+1) Curse of dimensionality
- Since σdR , is white in time

$$\Sigma_{jq,ip} = \mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t \ \overline{K_{jq}(v') K_{ip}(v')}$$

- *K* is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x, t) at every time t
 - Covariance of $\sigma dB_t \approx \Delta t^2 \overline{(v'(x,t))(v'(y,t))^T}$: $M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- **Efficient estimator** $\Sigma_{jq,ip} \approx \Delta t \frac{K_{jq}}{E_p^2} \left[\frac{\overline{b_p}}{\Delta t} \frac{\Delta b_i}{\nu'} \right]$ (hybrid fitting & physics-based) requires only $O(n^2 M)$ correlation estimations and $O(n^2)$ evaluations of K
- **Consistency of our estimator** (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K)

 $\Delta t \ \frac{K_{jq}}{K_{jq}} \left[\overline{b_p \frac{\Delta b_i}{\Delta t} v'} \right] = \Delta t \ \overline{b_p \frac{\Delta b_i}{\Delta t} K_{jq}[v']} \approx \frac{1}{T} \int_0^T b_p \ d < b_i, \\ K_{jq}(\sigma B) > = \frac{1}{T} \int_0^T b_p \sum_{r=0}^n b_r d < K_{ir}(\sigma B), \\ K_{jq}(\sigma B) > = \sum_{r=0}^n \sum_{jq,ir} \overline{b_p b_r} = \sum_{jq,ir} \overline{b_p b_r} = \sum_{jq,ir} \overline{b_p b_r} = \sum_{r=0}^n \sum_{jq,ir} \overline{b_p b_r} = \sum_{r=0$

Optimal time subsampling at Δt needed to meet the white assumption

Full order (~ nb spatial grid points): $M \sim 10^7$ Reduced order : $n \sim 10$ Number of time steps : $N \sim 10^4$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
 - → Robustness in extrapolation

REDUCED LUM (RED LUM) Multiplicative noise covariance

v = w + v'

Resolved fluid velocity: $w(x,t) = \sum_{i=0}^{n} b_i(t)\phi_i(x)$

Unresolved fluid velocity: $v' = \frac{\sigma dB_t}{dt}$ (Gaussian, white wrt t) Randomized Navier-Stokes

 $\overline{f} = \frac{1}{T} \int_{0}^{T} f$

$$db(t) = H(b(t)) dt + K(\sigma dB_t) b(t) \text{ with } K_{jq}[\xi] = -\int_{\Omega} \phi_j \cdot C(\xi, \phi_q)$$

- (n+1) x (n+1)
- Curse of dimensionality
 - Since σdB_t is white in time,

$$\Sigma_{jq,ip} = \mathbb{E}\left(K_{jq}(\sigma dB_t) K_{ip}(\sigma dB_t)\right)/dt \approx \Delta t \ \overline{K_{jq}(\nu') K_{ip}(\nu')}$$

- *K* is a matrix of integro-differential operators \rightarrow cannot be evaluated on v'(x, t) at every time t
 - Covariance of $\sigma dB_t \approx \Delta t^2 \overline{(v'(x,t))(v'(y,t))^T}$: $M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- **Efficient estimator** $\Sigma_{jq,ip} \approx \Delta t \frac{K_{jq}}{b_p^2} \left[\frac{\overline{b_p}}{\Delta t} \frac{\Delta b_i}{\nu'} \right]$ (hybrid fitting & physics-based) requires only $O(n^2 M)$ correlation estimations and $O(n^2)$ evaluations of K
- **Consistency of our estimator** (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K)

 $\Delta t \ K_{jq} \left[\overline{b_p \frac{\Delta b_i}{\Delta t} v'} \right] = \Delta t \ \overline{b_p \frac{\Delta b_i}{\Delta t} K_{jq}[v']} \approx \frac{1}{T} \int_0^T b_p \ d < b_i, \\ K_{jq}(\sigma B) > = \frac{1}{T} \int_0^T b_p \sum_{r=0}^n b_r d < K_{ir}(\sigma B), \\ K_{jq}(\sigma B) > = \sum_{r=0}^n \sum_{jq,ir} \overline{b_p b_r} = \sum_{jq,ir} \overline{b_p b_r}$ (orthogonality from PCA)

- Optimal time subsampling at Δt needed to meet the white assumption
- Additional reduction for efficient sampling : diagonalization of $\Sigma \rightarrow K(\sigma dB_t) \approx \alpha(d\beta_t)$ with a n-dimensional (instead of (n+1)²-dimensional) Brownian motion β

Full order (~ nb spatial grid points): $M \sim 10^7$ Reduced order : $n \sim 10$ Number of time steps : $N \sim 10^4$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
 - \rightarrow Robustness in extrapolation

24

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

UNCERTAINTY QUANTIFICATION (PRIOR) $b_i(t)$ VS reference

From 10^7 to 8 degrees of freedom No data assimilation Known initial conditions b(t = 0)

UNCERTAINTY QUANTIFICATION (PRIOR) Error on the reduced solution w

From 10^7 to 8 degrees of freedom No data assimilation Known initial conditions b(t = 0)

v = w + v'

Unresolved fluid velocity: 12'

UNCERTAINTY QUANTIFICATION (PRIOR) Error on the reduced solution *w*

From 10^7 to 8 degrees of freedom No data assimilation Known initial conditions b(t = 0)

DATA ASSIMILATION (POSTERIOR) Error on the solution estimation

v = w + v'

Resolved fluid velocity: $w = \sum_{i=0}^{n} b_i \phi_i$

Unresolved fluid velocity: 12'

> Reynolds number (Re) = 100 / 2D (full-order simulation has 10^4 dof)

10 20 30 40 50 60

Reynolds number (Re) = 300 3D (full-order simulation has 10^7 dof)

Resseguier et al. (2022). J Comp. Phys . hal-03445455