

CONTENT

I. Context
II. State of the art
a. Intrusive reduced order model (ROM)
b. Data assimilation
III. Reduced location uncertainty models
a. Location uncertainty models (LUM)
b. Reduced LUM
IV. Numerical results
a. Uncertainty quantification (Prior)
b. Data assimilation (Posterior)

CONTEXT

Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow

 using strongly-limited computational resources \& few sensors

CONTEXT

Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow

 using strongly-limited computational resources \& few sensors

CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Few sensors

CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Few sensors

CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Estimation and prediction:

- Air flow
- Lift, drag, inflow
- ...

Wind

- Blade pitch
- Fluidic
 fluctuations

Few sensors

Which simple model? How to combine model \& measurements?

CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Estimation and prediction:

- Air flow
- Lift, drag, inflow
- ...

Few sensors

Which simple model? How to combine model \& measurements?

Scientific problem :

Simulation \& data assimilation under severe dimensional reduction

PART II

STATE OF THE ART

a. Intrusive reduced order model (ROM)
b. Data assimilation

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
\overline{v(x, t)} \approx \sum_{i=0}^{n} \underbrace{\left.\begin{array}{c}
\text { Resonved } \\
\text { modes } \\
b_{i}(t)
\end{array}\right)} \phi_{i}(x)
$$

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Projection of the "physics" onto the spatial modes
(POD-Galerkin)

$$
\int_{\Omega} d x \phi_{i}(x) \cdot(\text { Physical equation (e.g. Navier-Stokes)) }
$$

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
\left.v(x, t) \approx \sum_{i=0}^{n} \begin{array}{c}
\text { Resoved } \\
b_{i}(t)
\end{array}\right) \phi_{i}(x)
$$

- Projection of the "physics" onto the spatial modes (POD-Galerkin)
$\int_{\Omega} d x \phi_{i}(x) \cdot($ Physical equation (e.g. Navier-Stokes))
\rightarrow ROM for very fast simulation of temporal modes

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} \begin{aligned}
& \text { Resolved } \\
& \text { modes }
\end{aligned} b_{i}(t) \phi_{i}(x)
$$

Don't work in extrapolation for advection-dominated problem

- Projection of the "physics" onto the spatial modes (POD-Galerkin)

```
\mp@subsup{\int}{\Omega}{}dx\mp@subsup{\phi}{i}{}(x)\cdot(\mathrm{ (Physical equation (e.g. Navier-Stokes))}
```

\rightarrow ROM for very fast simulation of temporal modes

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}^{\text {Resolved }} \text { modes }
$$

Don't work in extrapolation for advection-dominated problem

- Projection of the "physics" onto the spatial modes
(POD-Galerkin)

```
\int
\(\rightarrow\) ROM for very fast simulation of temporal modes
```


INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n}\left[\begin{array}{c}
\text { Resolved } \\
\text { modes } \\
b_{i}(t)
\end{array}\right) \phi_{i}(x)
$$

- Projection of the "physics" onto the spatial modes (POD-Galerkin)

$$
\begin{array}{r}
\int_{\Omega} d x \phi_{i}(x) \cdot \\
\rightarrow \text { ROM for very fast simulation of temporal modes }
\end{array}
$$

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

> Spatial modes $$
\left(\phi_{i}(x)\right)_{i}
$$

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

$$
\int_{\Omega} d x \phi_{i}(x) \cdot \text { (Randomized Navier-Stokes) }
$$

\rightarrow ROM for very fast simulation of temporal modes

- Projection of the "physics" onto the spatial modes (POD-Galerkin)

DATA ASSIMILATION

= Coupling simulations and measurements y

Numerical
Simulation
(ROM)
\rightarrow erroneous

On-line measurements
 \rightarrow incomplete
 \rightarrow possibly noisy

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

PART III

REDUCED LOCATION UNCERTAINTY MODELS

a. Location uncertainty models (LUM)
b. Reduced LUM (Red LUM)

LOCATION UNCERTAINTY MODELS (LUM)

$v=w+v^{\prime}$
Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}$

Assumed
(conditionally-)Gaussian \& white in time (non-stationary in space)

LOCATION UNCERTAINTY MODELS (LUM)

\qquad
$v=w+v^{\prime}$
Resolved fluid velocity:
$w=\sum_{i=0}^{n} b_{i} \phi_{i}$
Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}$

LOCATION UNCERTAINTY MODELS (LUM)

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:
$w=\sum_{i=0}^{n} b_{i} \phi_{i}$

$$
w=\sum_{i=0}^{n} b_{i} \phi_{i}
$$

Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}$

Mikulevicius \&
References:
Rozovskii, 2004
Flandoli, 2011

Memin, 2014
Resseguier et al. 2017 a, b, c, d Cai et al. 2017
Chapron et al. 2018
Yang \& Memin 2019

SALT
Crisan et al., 2017 Gay-Balmaz \& Holm 2017 Cotter and al. 2018 a, b Cotter and al. 2019

LOCATION UNCERTAINTY MODELS (LUM)

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:
$w=\sum_{i=0}^{n} b_{i} \phi_{i}$

$$
w=\sum_{i=0}^{n} b_{i} \phi_{i}
$$

Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}$

Memin, 2014
Resseguier et al. 2017 a, b, c, d Cai et al. 2017
Chapron et al. 2018
Yang \& Memin 2019

SALT

Crisan et al., 2017 Gay-Balmaz \& Holm 2017 Cotter and al. 2018 a, b Cotter and al. 2019

LOCATION UNCERTAINTY MODELS (LUM), Randomized incompressible Navier-Stokes

$v=w+v^{\prime}$
Resolved fluid velocity: w

Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}($ Gaussian, white wrt $t)$
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)

Momentum conservation
Dw
(Forces)

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$

$$
\partial_{t} w+w^{*} \cdot \nabla w+\sigma \dot{B} \cdot \nabla w-\nabla \cdot\left(\frac{1}{2} a \nabla w\right)=F
$$

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations
$\left(\operatorname{assuming} \nabla \cdot w=0\right.$ and $\left.\nabla \cdot v^{\prime}=0\right)$
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: w

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

$$
\partial_{t} w+\begin{gathered}
\text { Advection } \\
w^{*} \cdot \nabla w+\sigma \dot{B} \cdot \nabla w-\nabla \cdot\left(\frac{1}{2} a \nabla w\right)=F \\
\end{gathered}
$$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$v=w+v^{\prime}$
Resolved fluid velocity: w

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: w

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
$\left(\operatorname{assuming} \nabla \cdot w=0\right.$ and $\left.\nabla \cdot v^{\prime}=0\right)$
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

From Ito-Wentzell
formula (Kunita 1990) with Ito notations

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)
Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\left.\nabla \cdot v^{\prime}=0\right)$
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\left.\nabla \cdot v^{\prime}=0\right)$
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

Resolved fluid velocity:

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

FCALIAN
Symmetric negative

From Ito-Wentzell formula (Kunita 1990) with Ito notations

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order : $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+C(\sigma \dot{B}, w)+F(w)=F\right) d x
$$

Unresolved fluid velocity:
$v^{\prime}=\sigma \dot{B}($ Gaussian, white wrt $t)$

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

REDUCED LU (RED LU)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wit $\left.t\right)$

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+C(\sigma \dot{B}, w)+F(w)=F\right) d x
$$

$$
\frac{d b(t)}{d t}=c(b(t), b(t))+K(\sigma \dot{B}) b(t)+f b(t)=\cdots
$$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+C(\sigma \dot{B}, w)+F(w)=F\right) d x
$$

$\frac{d b(t)}{d t}=c(b(t), b(t))+K(\sigma \dot{B}) b(t)+f b(t)=\cdots$

Advection : $2^{\text {nd }}$ order polynomial

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
$\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+C(\sigma \dot{B}, w)+F(w)=F\right) d x$
Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

Advection : $2^{\text {nd }}$ order polynomial

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
$\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+C(\sigma \dot{B}, w)+F(w)=F\right) d x$
Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

Advection : $2^{\text {nd }}$ order polynomial

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

\qquad

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+C(\sigma \dot{B}, w)+F(w)=F\right) d x
$$

$$
\frac{d b(t)}{d t}=c(b(t), b(t))+K(\sigma \dot{B}) b(t)+f b(t)=\cdots
$$

Multiplicative skew-symmetric noise
\rightarrow Covariance to estimate

Advection : $2^{\text {nd }}$ order polynomial

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

\qquad

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order : $n \sim 10$

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}($ Gaussian, white wrt $t)$

Variance tensor:

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+C(\sigma \dot{B}, w)+F(w)=F\right) d x
$$

(

$$
\frac{d b(t)}{d t}=c(b(t), b(t))+K(\sigma \dot{B}) b(t)+f b(t)=\cdots
$$

Multiplicative skew-symmetric noise
\rightarrow Covariance to estimate

$$
\text { Advection : } 2^{\text {nd }} \text { order polynomial }
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Data-based \& Physics-based
\rightarrow Robustness in extrapolation
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

\qquad

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$ Reduced order : $n \sim 10$

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}($ Gaussian, white wrt $t)$

Variance tensor:

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+C(\sigma \dot{B}, w)+F(w)=F\right) d x
$$

(

$$
\frac{d b(t)}{d t}=c(b(t), b(t))+K(\sigma \dot{B}) b(t)+f b(t)=\cdots
$$

"Turbulent" diffusion skew-symmetric noise
\rightarrow Covariance to estimate

$$
\text { with } a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Data-based \& Physics-based
\rightarrow Robustness in extrapolation
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

Advection : $2^{\text {nd }}$ order polynomial

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

\qquad

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order : $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$

Variance tensor:

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(\partial_{t} w+C(w, w)+C(\sigma \dot{B}, w)+F(w)=F\right) d x
$$

$$
\begin{aligned}
& \text { ₹ globally balanced } \\
& \text { energy fluxes }
\end{aligned}
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Data-based \& Physics-based
\rightarrow Robustness in extrapolation
 skew-symmetric noise
\rightarrow Covariance to estimate
"Turbulent" diffusion with $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

Advection : $2^{\text {nd }}$ order polynomial

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

\qquad

SUMMARY

Stochastic ROM + Data assimilation

On-line:

Simulation \& data assimilation

Resseguier et al. (2022). J Comp.Phys . hal-03445455

SUMMARY

Stochastic ROM + Data assimilation

SUMMARY

Stochastic ROM + Data assimilation

PART IV

NUMERICAL RESULTS

a. Uncertainty quantification (Prior)
b. Data assimilation (Posterior)

$n=4$ resolved degrees of freedom
 No data assimilation Known initial conditions $b(t=0)$

UNCERTAINTY QUANTIFICATION (PRIOR)

No closure

$n=4$ resolved degrees of freedom

No data assimilation Known initial conditions $b(t=0)$

$n=4$ resolved degrees of freedom

No data assimilation

UNCERTAINTY QUANTIFICATION (PRIOR)

Known initial conditions $b(t=0)$

$n=4$ resolved degrees of freedom

No data assimilation

UNCERTAINTY QUANTIFICATION (PRIOR)

$n=4$ resolved degrees of freedom

No data assimilation

UNCERTAINTY QUANTIFICATION (PRIOR)

No data assimilation
Known initial conditions $b(t=0)$

UNCERTAINTY QUANTIFICATION (PRIOR)

No data assimilation
Known initial conditions $b(t=0)$

UNCERTAINTY QUANTIFICATION (PRIOR)

\square Stabilized

Mainly from
the mean $\bar{v}=\phi_{0}$
$v=w+v^{\prime}$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity: v^{\prime}

Linearly unstable modes

by
turbulent diffusion
$f b(t)$

Mainly to the mean $\bar{v}=\phi_{0}$

Energy

$n=8$ resolved degrees of freedom

No data assimilation
Known initial conditions $b(t=0)$

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity: v^{\prime}

One realization	\square
Mean	\square
Confidence interval Reference No closure \square	

No data assimilation
Known initial conditions $b(t=0)$

UNCERTAINTY QUANTIFICATION (PRIOR)

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity: v^{\prime}

One realization
Mean
Confidence interval Reference No closure

$n=8$ resolved degrees of freedom

No data assimilation
Known initial conditions $b(t=0)$

$$
v=w+v^{\prime}
$$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity: v^{\prime}

One realization	\square
Mean	
Confidence interval Reference No closure \square	

DATA ASSIMILATION (POSTERIOR)

On-line estimation of the solution

From 10^{7} to 8 degrees of freedom
Single measurement point (blurred \& noisy velocity)

CONCLUSION

CONCLUSION

- Unsteady CFD ROM with severe truncation $\left(0\left(10^{7}\right) \rightarrow O(10)\right.$ degrees of freedom)
- Intrusive ROM (Combine data \& physics)
- Conservative stochastic closure (LUM)
- Stabilization of the unstable modes
- Maintain variability of stable modes
- Efficient estimator for the conservative multiplicative noise
- Efficient generation of prior / Model error quantification
- Data assimilation (Bayesian inverse problem) :
to correct the fast simulation on-line by incomplete/noisy measurements
- First results at $R e=100$ and 300 :
- Quasi-optimal unsteady 3D flow estimation
- Robust far outside the training set

CONCLUSION

- Unsteady CFD ROM with severe truncation $\left(O\left(10^{7}\right) \rightarrow O(10)\right.$ degrees of freedom)
- Intrusive ROM (Combine data \& physics)
- Conservative stochastic closure (LUM)
- Stabilization of the unstable modes
- Maintain variability of stable modes
- Efficient estimator for the conservative multiplicative noise
- Efficient generation of prior / Model error quantification
- Data assimilation (Bayesian inverse problem) :
to correct the fast simulation on-line by incomplete/noisy measurements
- First results at $R e=100$ and 300 :
- Quasi-optimal unsteady 3D flow estimation
- Robust far outside the training set

NEXT STEP : > Increasing Reynolds (ROM of LES, DDES)

- Hyperreduction
- Error quantification of hyperreduction

BONUS SLIDES

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$$
\frac{d b(t)}{d t}=H(b(t))+K(\sigma \dot{B}) b(t)
$$

REDUCED LU (RED LU)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order : $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wit $\left.t\right)$

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$$
\frac{d b(t)}{d t}=H(b(t))+K(\sigma \dot{B}) b(t)
$$

$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

REDUCED LU (RED LU)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order : $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wit $\left.t\right)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$2^{\text {nd }}$ order polynomial
Coefficients given by :

- Randomized Navier-Stokes

- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

REDUCED LU (RED LU)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}($ Gaussian, white wit $t)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$2^{\text {nd }}$ order polynomial
Coefficients given by :

- Randomized Navier-Stokes

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

REDUCED LU (RED LU)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}($ Gaussian, white wit $t)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$$
\frac{d b(t)}{d t}=H(b(t))+K(\sigma \dot{B}) b(t)
$$

$2^{\text {nd }}$ order polynomial
Coefficients given by :

- Randomized Navier-Stokes

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

REDUCED LU (RED LU)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$ Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}($ Gaussian, white wot $t)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$ Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}($ Gaussian, white wrt $t)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

Multiplicative skew-symmetric noise
$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$ Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}($ Gaussian, white wrt $t)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

Multiplicative skew-symmetric noise
Covariance to estimate
$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

Multiplicative skew-symmetric noise

Covariance to estimate

$$
\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t K_{j q}\left[\overline{\left.\left.\left.\frac{\overline{b_{p}}}{\overline{b_{p}^{2}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right] .\right] .\right] .}\right.
$$

Coefficients given by

- Randomized Navier-Stokes

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$2^{\text {nd }}$ order polynomial

Coefficients given by:

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}$ (Gaussian, white wrt $\left.t\right)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$2^{\text {nd }}$ order polynomial

Coefficients given by:

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}($ Gaussian, white wrt $t)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

Multiplicative skew-symmetric noise
Covariance to estimate
$2^{\text {nd }}$ order polynomial
Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}($ Gaussian, white wrt $t)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

Multiplicative skew-symmetric noise
Covariance to estimate
$2^{\text {nd }}$ order polynomial
Coefficients given by:

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\sigma \dot{B}($ Gaussian, white wrt $t)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$2^{\text {nd }}$ order polynomial
Multiplicative skew-symmetric noise
Covariance to estimate

Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation

REDUCED LUM (RED LUM)
 Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$v=w+v^{\prime}$
Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt t)

Randomized Navier-Stokes
PCA modes
PCA residual v
from synthetic data

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
d b(t)=H(b(t)) d t+\underset{(\mathrm{n}+1) \times(\mathrm{n}+1)}{K\left(\sigma d B_{t}\right)} b b(t) \text { with } K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

- Curse of dimensionality

- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation
- $\quad K$ is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time t
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable

REDUCED LUM (RED LUM)
 Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$v=w+v^{\prime}$
Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt t)

Randomized Navier-Stokes
PCA modes
PCA residual v
from synthetic data

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation
- $\quad K$ is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time t
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- Efficient estimator $\Sigma_{j q, i p} \approx \Delta t K_{j q}\left[\overline{\overline{b_{p}}} \overline{\overline{b_{p}^{2}}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}\right] \quad$ (hybrid fitting \& physics-based) requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of K

REDUCED LUM (RED LUM)
 Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$v=w+v^{\prime}$
Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt t)

Randomized Navier-Stokes
PCA modes
PCA residual v^{\prime}
from synthetic data

$$
d b(t)=H(b(t)) d t+\underset{(\mathrm{n}+1) \times(\mathrm{n}+1)}{K\left(\sigma d B_{t}\right)} b(t) \text { with } K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

- Curse of dimensionality

- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation
- K is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time t
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- Efficient estimator $\Sigma_{j q, i p} \approx \Delta t K_{j q}\left[\frac{\overline{b_{p}}}{\overline{b_{p}^{2}}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}\right] \quad$ (hybrid fitting \& physics-based) requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of K
- Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K) $\left.\left.\Delta t K_{j q}\left[\overline{b_{p} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]=\Delta t \overline{b_{p} \frac{\Delta b_{i}}{\Delta t} K_{j q}\left[v^{\prime}\right]} \approx \frac{1}{T} \int_{0}^{T} b_{p} d<b_{i}, K_{j q}(\sigma B)\right\rangle=\frac{1}{T} \int_{0}^{T} b_{p} \sum_{\mathrm{r}=0}^{\mathrm{n}} b_{r} d<K_{i r}(\sigma B), K_{j q}(\sigma B)\right\rangle=\sum_{\mathrm{r}=0}^{\mathrm{n}} \sum_{j q, i r} \overline{b_{p} b_{r}}=\Sigma_{j q, i p} \overline{b_{p}^{2}}$ (orthogonality from PCA)

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

REDUCED LUM (RED LUM)
 Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt t)

Randomized Navier-Stokes
PCA modes
PCA residual v^{\prime}
from synthetic data

$$
d b(t)=H(b(t)) d t+\underset{(\mathrm{n}+1) \times(\mathrm{n}+1)}{K\left(\sigma_{t} \mathrm{M} \times 1 B_{t}\right)} b(t) \text { with } K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

- Curse of dimensionality

- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation
- $\quad K$ is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time t
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- Efficient estimator $\Sigma_{j q, i p} \approx \Delta t K_{j q}\left[\overline{\overline{b_{p}}} \overline{\overline{b_{p}^{2}}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}\right] \quad$ (hybrid fitting \& physics-based) requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of K
\rightarrow Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K) $\Delta t K_{j q}\left[\overline{b_{p} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]=\Delta t \overline{b_{p} \frac{\Delta b_{i}}{\Delta t} K_{j q}\left[v^{\prime}\right]} \approx \frac{1}{T} \int_{0}^{T} b_{p} d<b_{i}, K_{j q}(\sigma B)>=\frac{1}{T} \int_{0}^{T} b_{p} \sum_{\mathrm{r}=0}^{\mathrm{n}} b_{r} d<K_{i r}(\sigma B), K_{j q}(\sigma B)>=\sum_{\mathrm{r}=0}^{\mathrm{n}} \sum_{j q, i r} \overline{b_{p} b_{r}}=\sum_{j q, i p} \overline{b_{p}^{2}}$ (orthogonality from PCA)
- Optimal time subsampling at Δt needed to meet the white assumption

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

REDUCED LUM (RED LUM)
 Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$v=w+v^{\prime}$
Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt t)

Randomized Navier-Stokes
PCA modes
PCA residual v^{\prime}
from synthetic data

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
d b(t)=H(b(t)) d t+\underset{(\mathrm{n}+1) \times(\mathrm{n}+1)}{K\left(\sigma d B_{t}\right)} b(t) \text { with } K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

- Curse of dimensionality

- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation
- $\quad K$ is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time t
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- Efficient estimator $\Sigma_{j q, i p} \approx \Delta t K_{j q}\left[\frac{\overline{b_{p}}}{\overline{b_{p}^{2}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right] \quad$ (hybrid fitting \& physics-based) requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of K
- Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K) $\Delta t K_{j q}\left[\overline{b_{p} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]=\Delta t \overline{b_{p} \frac{\Delta b_{i}}{\Delta t} K_{j q}\left[v^{\prime}\right]} \approx \frac{1}{T} \int_{0}^{T} b_{p} d<b_{i}, K_{j q}(\sigma B)>=\frac{1}{T} \int_{0}^{T} b_{p} \sum_{\mathrm{r}=0}^{\mathrm{n}} b_{r} d<K_{i r}(\sigma B), K_{j q}(\sigma B)>=\sum_{\mathrm{r}=0}^{\mathrm{n}} \sum_{j q, i r} \overline{b_{p} b_{r}}=\sum_{j q, i p} \overline{b_{p}^{2}}$ (orthogonality from PCA)
- Optimal time subsampling at Δt needed to meet the white assumption
- Additional reduction for efficient sampling :
diagonalization of $\Sigma \rightarrow K\left(\sigma d B_{t}\right) \approx \alpha\left(d \beta_{t}\right)$ with a n -dimensional (instead of ($\left.\mathrm{n}+1\right)^{2}$-dimensional) Brownian motion β

UNCERTAINTY QUANTIFICATION (PRIOR)
 $b_{i}(t) \vee S$ reference

From 10^{7} to 8 degrees of freedom No data assimilation
Known initial conditions $b(t=0)$

Reference
Temporal mode 1

Temporal mode 6

UNCERTAINTY QUANTIFICATION (PRIOR)

Error on the reduced solution w
$v=w+v^{\prime}$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity: v^{\prime}

Reynolds number $($ Re $)=100 / 2 \mathrm{D}$ (full-order simulation has 10^{4} dof)

Time

$n=8$

From 10^{7} to 8 degrees of freedom
No data assimilation
Known initial conditions $b(t=0)$
 (full-order simulation has 10^{7} dof)

UNCERTAINTY QUANTIFICATION (PRIOR)

Error on the reduced solution w
$v=w+v^{\prime}$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity: v^{\prime}

From 10^{7} to 8 degrees of freedom No data assimilation Known initial conditions $b(t=0)$

DATA ASSIMILATION (POSTERIOR)

Error on the solution estimation
$v=w+v^{\prime}$

Resolved fluid velocity:
$w=\sum_{i=0}^{n} b_{i} \phi_{i}$
Unresolved fluid velocity: v^{\prime}

Reynolds number (Re) $=100 / 2 \mathrm{D}$
(full-order simulation has 10^{4} dof)

State of the art

Reynolds number (Re) = 300 3D (full-order simulation has 10^{7} dof)

