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Scientific problem : 
Simulation & data assimilation under severe dimensional reduction

typically, 107 → 𝑂(10) degrees of freedom 1
0



PART I I

STATE OF THE ART

a. Intrusive reduced 
order model 
(ROM)
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LOCATION UNCERTAINTY MODELS (LUM)

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid velocity: 
𝑣′ = 𝜎 ሶ𝐵
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& white in time
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Momentum conservation

𝐷𝑤

𝐷𝑡
= 𝐹 (Forces)

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420
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From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 
𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡
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𝑑𝑡
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PART IV

NUMERICAL RESULTS
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Energy

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid velocity: 
𝑣′

Reference
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Mean

Confidence
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Linearly unstable modes
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Variability
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energy
transfert

𝐾 𝜎 ሶ𝐵 𝑏 𝑡Energy

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid velocity: 
𝑣′

Reference

No closure

Mean

Confidence
interval

One realization

𝑐 𝑏 𝑡 , 𝑏 𝑡

𝑐 𝑏 𝑡 , 𝑏 𝑡

Energy



𝒏 = 𝟖 resolved degrees of freedom

No data assimilation

Known initial conditions 𝑏 𝑡 = 0
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Reference

No closure

Mean

Confidence
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𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid velocity: 
𝑣′
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Resolved fluid velocity: 
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Unresolved fluid velocity: 
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Reference

No closure

Mean

Confidence
interval

One realization

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid velocity: 
𝑣′
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energy
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𝑐 𝑏 𝑡 , 𝑏 𝑡

Random
energy

transfert

𝐾 𝜎 ሶ𝐵 𝑏 𝑡
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DATA ASSIMILATION (POSTERIOR)

On-line estimation of the solution

Resseguier et al. (2022). J Comp.Phys . hal-03445455
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 Unsteady CFD ROM with severe truncation (O 107 → 𝑂 10 degrees of freedom)

▪ Intrusive ROM (Combine data & physics)

▪ Conservative stochastic closure (LUM)

o Stabilization of the unstable modes

o Maintain variability of stable modes

▪ Efficient estimator for the conservative multiplicative noise

▪ Efficient generation of prior / Model error quantification

 Data assimilation (Bayesian inverse problem) :
to correct the fast simulation on-line by incomplete/noisy measurements

 First results at 𝑅𝑒 = 100 and 300 :

▪ Quasi-optimal unsteady 3D flow estimation

▪ Robust far outside the training set
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 Unsteady CFD ROM with severe truncation (O 107 → 𝑂 10 degrees of freedom)

▪ Intrusive ROM (Combine data & physics)

▪ Conservative stochastic closure (LUM)

o Stabilization of the unstable modes

o Maintain variability of stable modes

▪ Efficient estimator for the conservative multiplicative noise

▪ Efficient generation of prior / Model error quantification

 Data assimilation (Bayesian inverse problem) :
to correct the fast simulation on-line by incomplete/noisy measurements

 First results at 𝑅𝑒 = 100 and 300 :

▪ Quasi-optimal unsteady 3D flow estimation

▪ Robust far outside the training set

 Increasing Reynolds (ROM of LES, DDES)

▪ Hyperreduction

▪ Error quantification of hyperreduction
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𝑑𝑏 𝑡

𝑑𝑡
= 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes
Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
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න
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𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



𝑑𝑏 𝑡

𝑑𝑡
= 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
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𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



𝑑𝑏 𝑡

𝑑𝑡
= 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1
n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

23

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



𝑑𝑏 𝑡

𝑑𝑡
= 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1
n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

23

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



𝑑𝑏 𝑡

𝑑𝑡
= 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1
n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957
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න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



𝑑𝑏 𝑡

𝑑𝑡
= 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1
n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

23

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



𝑑𝑏 𝑡

𝑑𝑡
= 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1
n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′
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23

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



𝑑𝑏 𝑡

𝑑𝑡
= 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

from synthetic data

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1
n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

23

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



𝑑𝑏 𝑡

𝑑𝑡
= 𝐻 𝑏 𝑡 + 𝐾 𝜎 ሶ𝐵 𝑏 𝑡

2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

from synthetic data

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1
n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

23

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ = 𝜎 ሶ𝐵 (Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



 Curse of dimensionality

▪ Since 𝜎𝑑𝐵𝑡 is white in time,

Σ𝑗𝑞,𝑖𝑝 = 𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞 𝑣′ 𝐾𝑖𝑝 𝑣′

▪ 𝐾 is a matrix of integro-differential operators → cannot be evaluated  on 𝑣′ 𝑥, 𝑡 at every time t

▪ Covariance of 𝜎𝑑𝐵𝑡 ≈ Δ𝑡2 𝑣′ 𝑥, 𝑡 𝑣′ 𝑦, 𝑡
𝑇
∶ 𝑀 × 𝑀 ∼ 1013 coefficients → intractable

REDUCED LUM (RED LUM)

Multiplicative noise covariance

𝑓 =
1

𝑇
න
0

𝑇

𝑓

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡 with  𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

(n+1) x (n+1)

M x 1

Full order (∼ nb spatial grid points): 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
Number of time steps : 𝑁 ∼ 104

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

from synthetic data

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

24

New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation
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 Curse of dimensionality

▪ Since 𝜎𝑑𝐵𝑡 is white in time,

Σ𝑗𝑞,𝑖𝑝 = 𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞 𝑣′ 𝐾𝑖𝑝 𝑣′

▪ 𝐾 is a matrix of integro-differential operators → cannot be evaluated  on 𝑣′ 𝑥, 𝑡 at every time t

▪ Covariance of 𝜎𝑑𝐵𝑡 ≈ Δ𝑡2 𝑣′ 𝑥, 𝑡 𝑣′ 𝑦, 𝑡
𝑇
∶ 𝑀 × 𝑀 ∼ 1013 coefficients → intractable

REDUCED LUM (RED LUM)

Multiplicative noise covariance

𝑓 =
1

𝑇
න
0

𝑇

𝑓

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡 with  𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

(n+1) x (n+1)

M x 1

Full order (∼ nb spatial grid points): 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
Number of time steps : 𝑁 ∼ 104

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

from synthetic data

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

24

New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation

▪ Efficient estimator Σ𝑗𝑞,𝑖𝑝 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′ (hybrid fitting & physics-based)

requires only 𝑂 𝑛2𝑀 correlation estimations and 𝑂 𝑛2 evaluations of 𝐾
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 Curse of dimensionality

▪ Since 𝜎𝑑𝐵𝑡 is white in time,

Σ𝑗𝑞,𝑖𝑝 = 𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞 𝑣′ 𝐾𝑖𝑝 𝑣′

▪ 𝐾 is a matrix of integro-differential operators → cannot be evaluated  on 𝑣′ 𝑥, 𝑡 at every time t

▪ Covariance of 𝜎𝑑𝐵𝑡 ≈ Δ𝑡2 𝑣′ 𝑥, 𝑡 𝑣′ 𝑦, 𝑡
𝑇
∶ 𝑀 × 𝑀 ∼ 1013 coefficients → intractable

REDUCED LUM (RED LUM)

Multiplicative noise covariance

𝑓 =
1

𝑇
න
0

𝑇

𝑓

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡 with  𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗− ⋅ 𝐶 𝜉, ϕ𝑞

(n+1) x (n+1)

M x 1

Full order (∼ nb spatial grid points): 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
Number of time steps : 𝑁 ∼ 104

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

from synthetic data

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

24

New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation

▪ Efficient estimator Σ𝑗𝑞,𝑖𝑝 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′ (hybrid fitting & physics-based)

requires only 𝑂 𝑛2𝑀 correlation estimations and 𝑂 𝑛2 evaluations of 𝐾

 Consistency of our estimator (convergence in probability for Δ𝑡 → 0, using stochastic calculus and continuity of K)

Δ𝑡 𝐾𝑗𝑞 𝑏𝑝
Δ𝑏𝑖

Δ𝑡
𝑣′ = Δ𝑡 𝑏𝑝

Δ𝑏𝑖

Δ𝑡
𝐾𝑗𝑞 𝑣′ ≈

1

𝑇
0
𝑇
𝑏𝑝 𝑑 < 𝑏𝑖, 𝐾𝑗𝑞 𝜎𝐵 > =

1

𝑇
0
𝑇
𝑏𝑝σr=0

n 𝑏𝑟𝑑 < 𝐾𝑖𝑟 𝜎𝐵 ,𝐾𝑗𝑞 𝜎𝐵 > =σr=0
n Σ𝑗𝑞,𝑖𝑟 𝑏𝑝𝑏𝑟 = Σ𝑗𝑞,𝑖𝑝 𝑏𝑝

2 (orthogonality from PCA)
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2 (orthogonality from PCA)

 Optimal time subsampling at 𝚫𝒕 needed to meet the white assumption
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Δ𝑡
𝑣′ (hybrid fitting & physics-based)

requires only 𝑂 𝑛2𝑀 correlation estimations and 𝑂 𝑛2 evaluations of 𝐾

 Consistency of our estimator (convergence in probability for Δ𝑡 → 0, using stochastic calculus and continuity of K)
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2 (orthogonality from PCA)

 Optimal time subsampling at 𝚫𝒕 needed to meet the white assumption

 Additional reduction for efficient sampling : 
diagonalization of Σ → 𝐾 𝜎𝑑𝐵𝑡 ≈ 𝛼 𝑑𝛽𝑡 with a n-dimensional (instead of (n+1)2-dimensional) Brownian motion 𝛽
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From 107 to 8 degrees of freedom

No data assimilation

Known initial conditions 𝑏 𝑡 = 0
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UNCERTAINTY QUANTIF ICATION (PRIOR)

𝑏𝑖 𝑡 VS reference

P
ré
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97

State of the art

Red. LUM
mean

Red. LUM
confidence

interval

Reference
(full-order simulation)

a Red. LUM
realization
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UNCERTAINTY QUANTIF ICATION (PRIOR)

Error on the reduced solution 𝑤

98

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid velocity: 
𝑣′

Reynolds number (Re) = 100 / 2D
(full-order simulation has 104 dof)

Reynolds number (Re) = 300 3D
(full-order simulation has 107 dof)

Red. LUM
RMSE

Red. LUM
bias

Red. LUM
ensemble
minimal
distance

to the reference

Red. LUM
std

m ean 

part icle

reference

closest  

part icle

bias

m in distance

RMS distance

ensemble

From 107 to 8 degrees of freedom

No data assimilation

Known initial conditions 𝑏 𝑡 = 0
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UNCERTAINTY QUANTIF ICATION (PRIOR)

Error on the reduced solution 𝑤

99

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0
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Unresolved fluid velocity: 
𝑣′

Reynolds number (Re) = 100 / 2D
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Red. LUM
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Red. LUM
ensemble
minimal
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to the reference

Red. LUM
std

m ean 

part icle

reference

closest  

part icle

bias

m in distance

RMS distance

ensemble

From 107 to 8 degrees of freedom

No data assimilation

Known initial conditions 𝑏 𝑡 = 0

The Reference remains always close

to the Red. LUM ensemble
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DATA ASSIMILATION (POSTERIOR)

Error on the solution estimation

Reynolds number (Re) = 100 / 2D
(full-order simulation has 104 dof)

Reynolds number (Re) = 300 3D
(full-order simulation has 107 dof)

Red. LUM
bias

Red. LUM
std

State of the art

State of the art𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid velocity: 
𝑣′
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