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Summary   
Protection against illicit drone intrusions is a matter of great concern. The relative stealthy nature 
of UAVs makes their detection difficult. To address this issue, the Deeplomatics project provides 
a multimodal and modular approach, which combines the advantages of different systems, while 
adapting to various topologies of the areas to be secured. The originality lies in the fact that 
acoustic and optronic devices feed independent AI to simultaneously localize and identify the 
targets using both spatial audio and visual signatures. 

Several microphone arrays are deployed on the area to be protected. Within its coverage area 
(about 15 hectares), each microphone array simultaneously localizes and identifies flying drones 
using a deep learning approach based on the BeamLearning network. Each array is attached to 
a local AI which processes spatial audio measurements in realtime (40 estimations per second), 
independently to the other units of the surveillance network. 
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A data fusion system refines the estimates provided by each of the AI-enhanced microphone 
arrays. This detected position is shared in real-time with an optronic system. Once this system 
has hooked its target, a Deep Learning tracking algorithm is used to allow an autonomous visual 
tracking and identification. 

The optronic system is composed of various cameras (visible, thermal, and active imaging) 
mounted on a servo-turret. The active imaging system can capture scenes up to 1 km, and only 
captures objects within a given distance, which naturally excludes foreground and background 
from the image, and enhances the capabilities of computer vision. 

The Deeplomatics project combines benefits from acoustics and optronics to ensure real-time 
localization and identification of drones, with a high precision (less than 7° of absolute 3D error, 
more than 90 % detection accuracy). The modular approach also allows to consider in the long 
term the addition of new capture systems such as electromagnetic radars. 

1. Introduction  
 
The illegal or hostile use of aerial drones is an emerging threat, which is only partially addressed 
by current ground or airborne anti-intrusion systems. The techniques required to identify moving 
targets with weak acoustic and visual signatures, and locating them for predictive trajectory 
tracking, represent more than ever a scientific and technical challenge. There are many 
applications related to defence in the context of securing sites, but also for locating targets thanks 
to compact and portable modules, which could complete the equipment of the 21st century 
soldier. They have many applications related to civil security (surveillance and security of critical 
energy access infrastructures, fight against industrial espionage, or security of demonstrations). 
These techniques are also of interest for civil applications in monitoring or controlling noise 
pollution caused by road or air vehicles, and for ecosystem monitoring applications (inventory 
and monitoring of animal species to protect biodiversity). 
 
The DEEPLOMATICS project is aiming to achieve a scientific and technological leap forward to 
optimize multimodal detection and UAV threat tracking. We propose to integrate in an original 
way to the sensors of a surveillance network a set of independent artificial intelligences, 
specifically trained to respond to the tasks of real-time dynamic localization and target 
recognition. The majority of the project's tasks are based on a knowledge base acquired by the 
DEEPLOMATICS project partners in projects related to artificial intelligence for image 
recognition, acoustic source localization using Deep Learning, sound source recognition, but also 
in the development of sensors and specialized microphone arrays for the localization and imaging 
of acoustic sources, as well as in sniper detection projects, or acoustic beacons for helicopter 
detection. The DEEPLOMATICS project also involves an active imaging optronic system that has 
been adapted to automatic UAV identification and tracking using a real-time deep detector to 
perform drone recognition. 

2. Multimodal sensors, Deep-Learning, and data fusion for UAV tracking 
and identification 

 

2.1 Global system description  
 
This interdisciplinary project uses advanced Deep Learning techniques, using the raw acoustic 
date measured by compact microphone arrays distributed over the site to be monitored, 
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complemented by an active imaging optronic system, which feeds an independent artificial 
intelligence for a computer vision task (see Figure 1.) 
 
We believe that this modular surveillance network organization allows to adapt the sensor 
topology to the diversity of sites to be protected. The objective is to take advantage of the 
convergence of data-sciences, acoustics and optronic signal processing. When multiple acoustic 
and optronic systems are deployed in a fixed or reconfigurable manner at a site (urban or not) to 
locate a weak signature moving target, the first challenge is the real-time tracking of the moving 
target in a potentially noisy environment, and the orientation of the optronic systems towards the 
target.  
 

 
 

Figure 1: Multimodal detection and tracking using a set of N (3 depicted) A.I-enhanced 
microphone arrays, an optronic system feeding a realtime video drone detection A.I. The data 
fusion system refines the estimates provided by each of the AI-enhanced microphone arrays. 
This detected position is shared in real-time with an optronic system. 
 

2.2 Acoustic surveillance network using A.I. units  
 
For this purpose, the DEEPLOMATICS surveillance network is partly based on the use of a set 
of independent transportable broadband compact microphone arrays. The overall surveillance 
range using the audio modality is therefore only dependent on the number of AI-enhance 
microphone arrays in the surveillance network. The miniaturization of these microphone arrays 
is obtained thanks to the use of digital MEMS microphones. Their main advantages are their 
compactness, their adaptability, and their low cost. These microphone arrays, equipped with 
independent compact deep learning processors (see Figure 2), provide a solution adapted to the 
diversity of sites to be protected by recognizing the flying UAV while accurately identifying its 
position. The acoustic localization and recognition system will be further detailed in section 3 of 
the present paper. 
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Figure 2: AI-enhanced MEMS microphone array used in the project, with a compact, low-power 
AI processor (bottom right).  
 

2.3 Video tracking  
 
To confirm the presence of a UAV on the area to be protected, it is important to complete the 
information transmitted by the AI-enhance microphone arrays, which can sometimes generate 
false alarms, especially when many sound sources are present in the vicinity of the microphone 
array. Indeed, the trained acoustic deep learning networks allow a substantial screening of the 
detected and localized sound sources, but can generate false positive detections. For that 
purpose, an optronic system is also deployed in the area. This optical system is mounted on a 
motorized steerable turret stand and its orientation can be controlled by the data fusion 
application. In contrast to the microphone arrays, cameras have a much narrower solid angle of 
observation, but have the strong advantage of having a maximum range of 1 km, which can allow 
the video tracking of a non-cooperative UAV (see Figure 3). The optronic system is composed of 
various cameras (visible, thermal, and active imaging) mounted on a servo-turret.  
 
The active imaging system can capture objects within a given selected distance, which naturally 
excludes foreground and background from the image [1,2], and can enhance the capabilities of 
computer vision . For example, when the drone blends into the background with the visible 
camera, active imaging can isolate the UAV by visually eliminating the background on the image. 
The parameters of these imaging systems are controlled by the fusion of information provided in 
real time by the AIs of each microphonic arrays placed on site. 

In the Deeplomatics project, the images provided by the optronic systems are processed in real 
time to detect and track a drone present in the field of view of the optronic system. This task 
refers to the field of computer vision detection, which will be detailed in section 3, a task 
dominated today by deep neural network algorithms with convolution filters that perform by 
extracting visual features from the data. We decided to choose the YOLO [3,4,5] model as the 
final model. Its very fast inference time are perfectly with the constraint on the detection time per 
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frame was imposed so that the camera has time to adjust and track the drone. It was therefore 
necessary to have the fastest possible model. 

 

 

Figure 3: Left: The optronic system composed of various cameras (visible, thermal, and active 
imaging) mounted on a servo-turret. Right: On-site field of view of the various cameras used in 
the optronic system. Cyan: visible field of view. White: active imaging field of view. The active 
imaging range is selectable and controlled by the fusion unit which processes the inferred UAV 
positions transmitted in real time by the acoustic monitoring nodes. 
 
 

 
Figure 4: Exemple of a detection of a flying drone on a textured background using the trained 
YOLO v5 network using in-house dataset constituted during the project. 
 

2.4 Data fusion 
The data fusion application developed in the DEEPLOMATICS project must allow the analysis of 
data from different types of sensors deployed on the area to be monitored. Various types of 
sensors must be able to transmit information to the data fusion, including acoustic and optical 
sensors at this point. In future developments, the fusion should also be able to integrate 
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information from other types of sensors, including for example Radar, Lidar, and electromagnetic 
sensors. 
 
Additionally, when monitoring a large area, the number of connected sensors can be large, so it 
is mandatory to establish a simplified information exchange, limiting the bandwidth used for 
communication. This information must then be processed quickly to locate the source with 
sufficient accuracy to be visible in the camera's field of view. To meet these constraints, the 
communication protocol between the sensors and the fusion application was defined based on 
the National Marine Electronics Association (NMEA) protocol, which was adapted to define 
"proprietary" messages. Using this data exchange protocol, the data fusion application manages 
the metadata transmitted by the different sensors present in the area to be monitored. The 
standard scenario consists in deploying several microphone arrays around the area to be 
protected in order to detect intrusions in the area. When a threat is detected, the data fusion 
allows to estimate its geographical position (latitude, longitude, altitude) and transmits this 
information to a camera which undertakes a second phase of detection/identification of the threat. 
In case of confirmed intrusion, the camera starts an independent tracking of the target and 
transmits information about its orientation to the data fusion. This information is then used to 
display the camera's field of view and its orientation on a map and to verify that the acoustic and 
optical data are consistent (see Figure 5).  
 
In order to improve the tracking performance of a drone entering a sensitive area, a particle filter 
process is  applied at various stages of the data fusion process. Particle filtering is a Bayesian 
recursive filtering method using discrete "particles" to approximate the posterior distribution of 
the system state. This filter has the advantage of being efficient whatever the distribution of the 
input data, but has a high computational cost because it requires a large number of "particles", 
i.e. samples, representative of the data distribution [6].  
 

 
 

Figure 5: Human Machine Interface (HMI) of the fusion server integrating the position of four 
microphone arrays (white dots) and the associated estimated direction of arrival (red line), the 
position of the camera (black camera icon), its orientation and the associated field of view (black 
and orange lines). The fusion of the estimated UAV position provided by the 4 acoustic AIs allows 
to control the orientation of the visible and active imaging system to realize an automated video 
tracking of the drone. 
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3. Acoustic localization and detection using Deep Learning 
In the DEEPLOMATICS project, each microphone array is attached to a deep neural network, 
trained for source localization and sound signature identification tasks. The neural network is a 
variant of the BeamLearning architecture [7] that we previously published for sound source 
localization. This variant of the network, Beamlearning-ID, has been specifically designed to 
simultaneously perform the recognition and localization tasks in real time [8].  The specialized 
AIs have been trained on a multi-channel dataset of acoustic signals from small UAVs in flight, 
under realistic conditions. These data acquisitions are augmented by a 3D spatializer. This 
augmentation will allow the neural network to respond as efficiently as possible to the localization 
and source identification tasks that will be performed simultaneously by the AI modules at the 
output of the compact microphone arrays. 

3.1 Dataset: live measurements and higher order ambisonics 3D synthesis  
A multichannel dataset of multichannel audio data was built throughout the Deeplomatics project 
to train the Beamlearning-ID network for drone localization and recognition. The acoustic signals 
recorded by the microphone arrays intrinsically convey information on the position of the acoustic 
source and its nature. The objective of the developed BeamLearning-ID deep network is to 
retrieve this information through supervised learning. Supervised learning requires a priori 
knowledge of this information. The audio data must therefore be annotated with the position and 
nature of the drone in flight.  
 
The entire acoustic dataset is heavily annotated. To achieve this tedious task, a semi-automated 
process has been developed during the Deeplomatics project. During the flight of the drones, a 
GPS-RTK beacon is mounted on the drone and allows to know the position of the drone in real 
time. In parallel, several ambisonic microphone arrays record the 3D sound scene. The GPS and 
acoustic data are then synchronized. Moreover, a 3D spatialization step of the sound scene can 
be implemented if the antenna used to record the sound scene on site is different from the one 
used for the inference using the BeamLearning-ID network. This 3D spatialization process has 
been developed to produce an automated annotation of the multichannel audio (with labels 
denoting the drone model, and its 3D position synchronized with audio data) [8]. 
 
During the DEEPLOMATICS project, various measurement campaigns have allowed us to 
accumulate more than 34 hours of usable data of UAV flying data (simultaneous measurements 
of multichannel audio using high-order ambisonic microphone arrays and georeferenced position 
using a high precision realtime kinematics (RTK) GPS carried by the flying drones). 
 

 
 
Figure 6: Higher order ambisonics spatializer used in the training process and dataset 
augmentation. 
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A large and realistic database allows deep neural networks to extract hidden patterns in the 
observation data. The size of the dataset is obviously not the whole story. For the deep neural 
network to be effective, it is necessary to build a dataset with a large variability of data. This is 
the reason why computer giants now have neural networks at their disposal that can exceed 
human capabilities in the field of image recognition. Image recognition researchers are now 
looking for ways to generate realistic synthetic images to train neural networks where the data 
sets are not yet large enough. We have, for localization or acoustic recognition tasks, access to 
a tool that allows to lift this lock and to generate simulated, augmented, or modified databases, 
while respecting the realism and the physical validity of the 3D pressure field. 
 
 
The LMSSC has developed in the last few years a device that will allow to offer to localization 
and identification techniques by Deep Learning a flexibility and a realism not reached until now. 
Two tools developed and validated at the LMSSC are at our disposal [9-11]. The first device 
allows the spatialized capture of the sound environment, used in the measurement campaigns, 
and the second allows the restitution of the three-dimensional field (see Figures 6 and 7). These 
two devices allow us to render the 3D pressure fields of drones in flight on compact microphone 
arrays to train their individual artificial intelligence, even if the specific microphone arrays were 
not used for the on field experiments. One of the major advantages of this process is that we will 
also be able to "augment" the data captured during the measurement campaigns, by 
superimposing the 3D field of a large number of noisy environments, corresponding to potential 
locations for the installation of smart compact antennas (see Figure 7). These environments are 
also recorded by HOA ambisonic microphonic arrays. 
 
 

 
 

Figure 7: Schematic of the data augmentation strategy using the 3D spatializer for building an 
individualized audio learning dataset on a compact microphone: example of spatially noisy 
environment additions. 
 
The flexibility of the ambisonic encoding operated by these two devices also allows us to modify 
the three-dimensional sound scene (e.g., modify the trajectory of the drone by rotation or dilation 
in the ambisonic domain / vary the signal-to-noise ratio and modify the spatial profiles of the 
ambient noise / etc ...). 
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The reproducibility of this physical synthesis of 3D acoustic fields will allow us to specifically train 
neural networks on different compact microphonic arrays, even other geometries than those used 
in the project. These AIs are trained to overcome or exploit the specificities of the environment in 
which the microphone will be installed, while implicitly performing a self-calibration of the several 
microphones included in the array [12]. This original approach provides Deep Learning for 
acoustics with the necessary variability to achieve abstraction and generalization capabilities that 
cannot be achieved by approaches based on array or environment models. 
 
 

3.2 Beamlearning-ID deep neural network 
 
Figure 8 shows the global architecture of BeamLearning-ID neural network developped 
specifically for this project. For more details on the underlying BeamLearning architecture, please 
refer to [7]. The BeamLearning-ID network is divided into blocks. The first block represents the 
raw input multichannel audio data, corresponding to the microphonic signals measured by the 
microphone array. The second block corresponds to a succession of several filter banks that 
allow to project the data into representative subspaces for the localization problem, thanks to 
residual subnetwork of atrous convolution kernels. The two parallel blocks in the third position 
are used to compute a pseudo-energy of the output channels of this succession of learnable filter 
banks, respectively for the localization and for the acoustic signature recognition tasks. Finally, 
the last two blocks allow to exploit these pseudo-energies, in order to deduce either the 3D 
angular position of the drone, or the type of drone having emitted the pressure field captured by 
the microphone array. The regression and classification approaches for source location have 
been compared by Tang et al [20]. In this project, the UAV angular localization problem, a 
regression approach is used. the source location will be given from a regression approach. Unlike 
the position of the source, the type of drone cannot be considered as part of a continuum. We 
therefore use a classification approach for the sound signature task. In our case, 6 classes are 
considered: one for the absence of drones and five for different drones used in this study (see 
Figure 9). 
 
 

 
 
Figure 8: General architecture of the Beamlearning-ID network developed for the Deeplomatics 
project, consisting of two branches, one for drone recognition (bottom), one for realtime 3D 
localization (right) 
 
Some deep learning architectures in the literature exploit pre-processed signals as input data, 
for example by using either the covariance of the signals, or their spectral representation, or the 
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information contained in the modulus, or/and the phase [14-20]. We propose, on contrary, to use 
raw temporal signals. The different convolutions used to process the data are precisely intended 
to project the temporal data into a representational space that is most appropriate to the problem 
at hand. Thus, we do not a priori constrain the data by pre-processing them. This approach, 
commonly called "Joint Feature Learning", represents an increasingly important area of research 
for Deep Learning applications in acoustics, and is since an a priori priori choice of representation 
for the input data can potentially omit features that the neural network could extract by itself. 
Moreover, thanks to this approach without pre-processing, the inference latencies are minimized 
and it is possible to maintain a real-time data processing approach. 
 
 

 
 

Figure 9: Drones used for the flying drones dataset. From left to right: S1000, Phantom, Mavic 
pro 2, Mavic air, Spark. 

 
 

3.3 Example of the localization and recognition performances for a single microphone 
array on a test flight 

In order to illustrate the performance of the Beamlearning-ID trained network, this section 
presents the results of position and identification estimation obtained from a recording made by 
an AI-enhance microphone array (see Figure 2) during the June 2021 measurement campaign 
of the Deeplomatics project (data not used for the training process). 
 

 
 

Figure 9: Relative position of the flying drone during the testing flight. Those positions are 
obtained using the mounted RTK-GPS beacon. Each point corresponds to a georeferenced 
position, sampled each 200 ms. 
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The drone used for this flight is an S1000 (see Figure 9). The flight lasted 7 min, which 
corresponds to 19734 consecutive estimates of drone positions and model identification (40 
estimations/second). A 3D plot of the actual positions obtained using the RTK-GPS beacon 
mounted on the flying drone. Those positions are plotted on Figure 10 in a reference system 
centered on the microphone array, where the x axis points towards the north direction. 
 
The way we designed the Beamlearning-ID deep neural network as well as its training process 
allows us not only to provide an angular position estimate at the output of the network, but also 
a confidence index noted r, which allows us to refine the estimated positions and to naturally filter 
the sound sources present in the environment of the microphonic array which are not flying 
drones. Figure 10 illustrates the statistical analysis for the angular localization performances for 
this flight, and Figure 11 illustrates the statistical analysis for the drone recognition task that is 
handled concurrently by the Beamlearning-ID network. 
 

   
 

Figure 10: Left : Boxplot analysis of the 3D absolute angular error on the estimated position 
during the testing flight, without filtering data with the confidence index (blue), or with the use of 
the confidence index by only keeping the estimations that correspond to r > 0.85  (orange). Right 
: corresponding azimuthal estimations during the flight.  
 
The analysis of figure 10 allows us to observe that the obtained 3D absolute angular errors  
are satisfactory during the whole flight, with a median of less than 4° (with or without the use of 
the confidence index as a filter). Using the confidence index to reject estimates due to non-UAV 
noise sources improves the results, with the mean 3D localization error improving by 16%, from 
5.5° to 4.6°. On the other hand, the median varies only slightly, from 3.5° to 3.4°, which means 
that the confidence index has automatically removed outlier angular estimates due to auxiliary 
noise sources. This interpretation is confirmed by the estimated azimuthal trajectory plot on the 
right of Figure 10, especially at seconds 40 and 430: the estimates that are rejected are indeed 
estimates that are outliers with respect to the UAV trajectory. 
 
The drone recognition functionality can also be evaluated. Figure 11 shows a histogram of the 
19734 consecutive classifications obtained by the trained Beamlearning-ID network during the 
test flight presented above.  The true-class inference rate is 76% for the raw data (in blue). On 
the other hand, after applying the r confidence criterion (in orange), the true-class inference rate 
is of 78%.  The Deeplomatics project aims at protecting sites from drone overflights. Even if the 
recognized drone is not the right one, it is important that it is still recognized as a drone. The 
rate of non-detection of a drone observed in Figure 11 is 3% without using the confidence criterion 
and improves to 1% of non-detection of a drone on this flight. This observation confirms the 
effectiveness of the trained recognition system based on Beamlearning-ID archicture. 
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Figure 11:  Drone recognition performances for the testing flight (total of 19734 estimations for 7 
seconds of flight). The drone classes are 0 (no drone), 1 (S1000), 2 (Phantom), 3 (Mavic Pro), 4 
(Mavic Air), 5 (Spark). The recognition histograms are shown without filtering data with the 
confidence index (blue), or with the use of the confidence index by only keeping the estimations 
that correspond to r > 0.85 (orange). 
 
 
Thanks to the deep learning approach developed during the DEEPLOMATICS project, it is 
therefore possible to detect, localize and recognize a drone intrusion using a single AI-enhanced 
microphone array in its coverage area. The main benefit of the proposed approach is to perform 
these three tasks simultaneously which allows to spare a significant amount of time during the 
estimation process. With this approach, it is actually feasible to perform these three tasks in real 
time on relatively light hardware architectures (see Figure 2). 

4. Conclusions 

All the technological bricks of the Deeplomatics project are now functional and interoperate in 
realtime. Each microphone array associated to its own Beamlearning-ID network allows to detect 
and localize a drone intrusion, at a rate of 40 estimations per second. The estimations of each 
microphone array are sent in realtime to the data fusion unit in order to refine the georeferenced 
position of the drone in flight and its identification. The analysis of the output data of the fusion 
unit shows that for all the flights tested, the position error obtained is on average 13 meters when 
the drone is in the middle of the acoustic antenna cluster, ensuring the presence of the threat in 
the camera's field of view when the camera is 200 meters away from the microphone array 
cluster. Further developments concerning the acoustic devices include the industrialization of 
custom microphonic arrays with custom AI processors, and the potential use of informed spatial 
filtering in order to improve the detection and localization range.  
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